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Abstract
A landslide susceptibility map (LSM) assists in reducing the danger of landslides by locating the landslide-prone locations

within the designated area. One of the locations that are prone to landslides in India’s Western Ghats of which Goa is a

part. This article presents the LSMs prepared for the state of Goa using four standard machine learning algorithms, namely

Logistic Regression (LR ), Support Vector Machine (SVM), K-Nearest Neighbour (KNN), and Random Forest (RF). In

order to create LSMs, a 78-point landslide inventory, as well as 14 landslide conditioning factors, has been used, including

slope, elevation, aspect, total curvature, plan curvature, profile curvature, yearly rainfall, Stream Power Index, Topographic

Wetness Index, distance to road, depth to bedrock/soil depth, soil type, lithology, and land use land cover. The most

pertinent features for the models’ construction have been chosen using the Pearson correlation coefficient test and the

Random Forest method. The presence of landslides is shown to be strongly influenced by the distance to road, slope of the

terrain, and the annual rainfall. The LSMs generated were classified into five levels ranging from very low susceptibility

level to very high susceptible. The prediction accuracy, precision, recall, F1-score, area under the ROC (AUC-ROC), and

True Skill Statistics (TSS) have been used to analyse and compare the LSMs created using various methodologies. All of

these algorithms perform pretty well, as evidenced by the overall accuracy scores of 81.90% for LR, 83.33% for SVM,

81.94% for KNN, and 86.11% for RF. SVM and RF are the better approaches for forecasting landslide vulnerability in the

research area, according to TSS data. The maximum AUC-ROC of 86% was achieved by the RF algorithm. The results of

performance metrics lead to the conclusion that the tree-based RF approach is most appropriate for producing LSM for the

state of Goa. The results of this study indicate that more landslide-prone areas can be found in the Sattari, Dharbandora,

Sanguem, and Canacona regions of Goa.

Keywords Landslide conditioning factor (LCF) � Landslide Inventory Mapping (LIM) � Landslide susceptibility mapping

(LSM) � Western Ghats

Introduction

A ‘Landslide’ is the term used to depict the mass devel-

opments happening over a sliding surface of the land. The

population, properties, and economic activities, including

public services, are all severely damaged by this potentially

harmful phenomena (Van Westen, 1993). Nearly 66 mil-

lion people reside in areas that are severely prone to

landslides, and 17% of casualties in these areas are

attributed to landslides, which are recurrent calamities in

mountainous areas (Achu et al., 2022a, 2022b).

An area of biodiversity, the Western Ghats (WG)

mountain range in the Indian sub-mainland, is currently

under grave risk for the valley’s residents and environment
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due to altering precipitation trends and changes in land use.

WG is a mountain range crossing the states of Gujarat,

Maharashtra, Goa, Karnataka, Kerala, and Tamil Nadu

(Yunus et al., 2021). Goa is a tiny state located between the

Arabian Sea to the west and the WG’s eastern slopes

(Mascarenhas et al., 2009). In the majority of locations in

Goa, lateral soils have overflowed, making them one of the

most perilous kinds of soil. Similar to how the precipitation

seems to be quite intense along the WG, the soundness of

lateritic slants has emerged as a crucial factor in the

occurrence of landslides in the state of Goa (Achu et al.,

2020).

Depending on the geophysical, meteorological, and

topographical variables, landslide susceptibility mapping

(LSM) estimates the likelihood of a landslide event

occurring in the area of interest (Chen et al., 2021).

Information on earlier landslide catastrophes and all of the

factors causing failures in the study area must be used in

the LSM preparation phase. Geographic information sys-

tems (GIS) and satellite remote sensing (RS) have received

widespread use and are regarded as valuable tools for

observing the changes in the land. In order to comprehend

and track changes in the topography of the research region,

RS provides economic data expressed in several electro-

magnetic bands and acquired at various time intervals (Lee,

2019). The postulated LSM techniques can be broadly

divided into qualitative and quantitative techniques. In the

qualitative approach, it is the field expert’s task to identify

the slope failure attributes through field investigation and

location mapping. The use of statistical or machine learn-

ing (ML) algorithms on data that can be derived by

superimposing a map of the study area with thematic

variables pertaining to structural, geological, hydrological,

and geotechnical characteristics that impact the probability

of the occurrence of landslides at the defined study area is

an integral part of quantitative methods (Dias et al., 2021).

The main objective of Tsangaratos et al. (2017), is to

produce the LSM using Logistic Regression (LR), Weight

of Evidence (WoE), and Random Forest (RF) in Nancheng

County, China. The mapping approach made use of a

database with information on 112 prior landslides. Lithol-

ogy, altitude, slope, aspect, Topographic Wetness Index

(TWI), sediment transport index (STI), profile curvature,

plan curvature, distance to rivers, distance to faults, and

distance to roads are the thematic variables considered

landslide conditioning factors (LCF). The statistical

methods FR, information value, and Certainty Factor (CF)

have been applied in Wubalem (2021) to develop LSM at

Uatzau catchment area, in north-western Ethiopia. Six

LCFs and 514 slope failure points have been used in this

model. There have been quite a few activities carried out to

get LSM ready for the Western Ghats regions. The study

conducted by Vijith et al. (2014) aims to form LSM with

the help of GIS-based WoE method for the upland catch-

ment of river Meenachil, Kottayam district, Kerala. The

LCFs such as geomorphology, drainage density, soil type,

soil thickness, land use, Normalized Difference Vegetation

Index (NDVI), slope, aspect, relative relief, slope length,

curvatures, flow path length, and TWI have been generated,

and its weights were determined. An attempt is made to

map the landslides in the Tevankarai Ar sub-watershed,

Kodaikanal, India, utilizing binary Logistic Regression

analysis (Ramani et al., 2011). This model depicts the link

between the independent factors chosen for research (pre-

dictor variables) via the best-fitting function and the

dependent variable (landslide presence or absence). The

regression analysis employs a forward stepwise Logistic

Regression model with maximum likelihood estimation.

The traditional statistical algorithms such as FR, WoE,

Statistical Index, and Shannon entropy are easy to imple-

ment but they are less accurate compared to the more

advanced statistical methods such as ML and deep learning

(DL). ML techniques have been drawing good attention as

they are producing LSMs with better accuracy. The

effectiveness of deep and machine learning approaches,

such as deep neural networks (DNN) and Random Forests

(RF), has been tested against the outcomes of conventional

statistical techniques in the study carried out by Achu et al.,

2022a, 2022b, in portions of the Kozhikode and Wayanad

districts of Kerala state. According to the study, DL and

ML approaches work best with datasets that have fewer

landslide points. Six distinct ML models, including

Adaptive Boosting (AdaBoost), Naive Bayes (NB), Neural

Network (NNET), Random Forest (RF), Support Vector

Machine (SVM), and eXtreme Gradient Boosting

(XGBoost), were employed in another study (Jennifer,

2022) to create the LSM of Kerala’s Idukki district.

Comparing the AdaBoost model to the other five models, it

was the most accurate and consistently useful.

Many of the locations undergoing landslides have not

yet been investigated by the researchers, despite the fact

that a few LSMs have been developed for the various WG

of India. Goa is one of the states in WG, witnessing several

landslides during monsoon season with not much attention

towards developing LSMs. The study carried out by

Nagarajan et al. (2000) created a technique and tested its

efficacy in identifying landslide-prone locations in the state

of Goa. A small portion of the WG known as the Kumb-

harli Ghat has been chosen as the study area. As there was

no inventory available, they have identified landslide

conditioning factors by analysing the information of pre-

vious landslides occurred at different areas such as

Kumbharli Ghat and Varandh Ghat. Landslide-prone

locations have been determined based on the domain spe-

cialists’ expertise of the area. Without using any statistical

algorithms, this investigation was solely qualitative. The
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accuracy of the solution is subjected to the knowledge of

the experts. In one more study (Mhaddolkar, 2017),

researchers have presented the study of landslides that have

occurred in the past. They considered only two landslides

that occurred at the locations Ponda and Neura and

investigated to understand the conditions for the slope

failure. Through this, it was inferred that inappropriate

practices of hill cutting are one of the reasons for the

landslides at these places. The solution provided by their

study is limited to those two landslides and does not pro-

vide any general solution to locate landslide-prone areas in

other places of Goa. A methodology has been proposed in

Kessarkar et al. (2011) to create an LSM for the Canacona

region of Goa state. The method entails computing the

Landslide Potential Index (LPI) and categorizing this LPI

to prepare various susceptible zones, such as low, medium,

high, and extremely high. The slope and height of the

landscape, elevation, vegetation, soil type, and drainage

pattern are only a few of the variables taken into account

while determining LPI. The resolution of the maps used in

deriving the conditioning factors was 90 m. It was difficult

to obtain the LSM with high accuracy because of the lack

of sufficiently resolution satellite data for establishing the

triggering components.

It is obvious that no LSMs have been produced using

ML algorithms for the full state of Goa, based on our

understanding of the literature that is currently available.

Traditional statistical techniques are used to construct the

LSMs for some Goa regions. In our article, LSM has been

created for the entire state of Goa using different ML

algorithms such as LR, SVM, K-Nearest Neighbours

(KNN), and Random Forest (RF) with an ensemble

approach. The use of recently captured hyperspectral good

resolution satellite data, GIS software, and ML algorithms

resulted in accurate LSMs for the state of Goa. The study

area has a wide variety of landslide conditioning elements

that have been created, and the LSM of the study area has

been prepared using the most significant triggering factors

selected after applying feature selection methods. The work

adds to strengthening our understanding of the relationship

between landslides and potential causal factors by using

established methodologies in the region of Goa that has not

previously been extensively researched. The results will

provide an important basis for future efforts to reduce

disaster-related risk and plan for land use in the entire state

of Goa. While ArcGIS 10.8.2 by Environmental Systems

Research Institute (ESRI) was used to compile the data and

create the LSMs, the computational process was carried out

using Python Language in Google Colaboratory.

Description of Study Area

The study area, located between N 14� 530 and N 15� 480, is

the part of Western Ghats. Figure 1 displays the map of the

study area. With a beachfront that runs its whole length of

more than 100 kms, the state is wider to the north. E 73�
390 and E 74� 200, respectively, are the approximate

western and eastern extents. The state can be split into

three types of topography based on its physiography,

ranging from low-lying coastal–estuarine plains in the west

to an undulating region in the centre to the steep slopes of

the Western Ghats on the state’s eastern border. The

steeper and higher ranges that make up the Western Ghats

are found in Goa’s eastern and southern regions. With the

exception of the ranges in South Goa, the Western Ghats

generally slope from north to south. They are more than

40 km from the sea in North Goa. However, towards the

south, the trend of the hills is virtually east–west, which is

connected to the underlying rock structure. Here, the

lowest portions of the Karmal Ghat, a western arm of the

Ghats, literally touch the ocean (Mascarenhas et al., 2009).

According to the reports of Climate Research and Services,

India Meteorological Department (IMD), with an average

of over 2900 mm from June to September, the Southwest

Monsoon is when Goa has the heaviest rainfall. Most of the

geological formations are covered in laterite, alluvium, and

sand, as one could anticipate from the humid tropical cli-

mate. The distinctive property of laterite is that it is soft

underneath and hard on top (Mascarenhas et al., 2009).

Methodology and Experiments

The methodology used for this study involves five steps as

depicted in Fig. 2, (a) construction of landslide inventory,

(b) preparation of LCF maps, (c) selection of most suit-

able LCFs, (d) ML classification model building, and

(e) assessment of model performance.

Landslide Inventory Mapping (LIM)

The algorithms used in this study work on the assumption

that future landslides can be predicted based on the infor-

mation about the previous landslides that have occurred in

the study area and the conditioning factors that trigger the

slope failure. Conducting field surveys and interpreting

satellite images are commonly used data acquisition

methods (Ganesh et al., 2023). The development of geo-

graphic information systems (GIS) in recent years has

made it possible to analyse the collected data for effective

landslide mapping and monitoring. Landslide Inventory

Mapping (LIM) is the name given to the process of creating
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a map that contains details concerning landslides. In this

work, the information of historical landslides has been

acquired from the Bhukosh portal of the Geological Sur-

vey of India. This inventory includes 78 landslide points. It

includes the fields such as latitude and longitude of the

location, date and time of the event, type of landslide,

depth of landslide, short description, link to the news if

any, topo sheet, geologic, hydrologic condition of the

Fig. 1 Study area mapping

Fig. 2 Methodology of LSM

creation
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location, land use land cover (LULC) information, and so

on. Out of 78 landslides, 13 landslides have occurred at the

border of Karnataka and Goa, 3 have occurred at the border

of Maharashtra and Goa, and the remaining 58 landslides

have occurred inside Goa. About 66% of the total land-

slides that occurred were of the shallow translational type,

31% of total landslides belong to the shallow rotational

type, and 2.56% of them were deep rotational slides. The

majority of the landslides took place along the roads

adjacent to the Ghats section. In this work, as we have

created a predictive model to differentiate between land-

slides and non-landslides using a binary classification as

the foundation, we had to integrate the landslide points

with non-landslide points in order to train and test the

classifiers. A total of 200 randomly selected locations were

used as the non-landslide points. Therefore, the landslide

inventory contains 278 data points in total as shown in

Fig. 3.

LCF Preparation

LCFs refer to the several causal factors that cause land-

slides to occur (Rane & Vincent, 2022). These factors

directly or indirectly influence the occurrence of landslides.

Based on the geological conditions of the study area,

availability of data, and existing literature, we have

selected 14 LCFs for this study as shown in Fig. 4. Soil

type, lithology, and land use land cover (LULC) are cate-

gorical variables, and others are continuous variables. For

the simplification purpose, these continuous variables have

been reclassified into a set of classes. The list with

description and classification methods of these LCFs is

presented in Fig. 4.

Table 1 With a resolution of 30 m, all of these thematic

parameters have been represented in raster format in Arc-

Map. The thematic maps including the landslide inventory

map have been projected onto the WGS-1984-UTM-Zone-

43N coordinate system.

LCF Selection

Multi-collinearity test using Pearson correlation coeffi-

cient: Each LCFs contribution will have an impact on the

model’s accuracy. As a result, prior to the mapping pro-

cess, choosing the most pertinent criteria and excluding the

irrelevant ones is crucial. In landslide research, the Pearson

correlation method is a successful and popular feature

selection technique (Feby et al., 2020).

LCF importance analysis using Random Forest: It is also

important to look into and get rid of any factors associated

that have little to no predictive potential. One of the pop-

ular techniques for determining the significance of each

LCF is to calculate the information gain ratio (IGR) (Dou

et al., 2020).

ML Model Preparation

ML classifier preparation entails splitting the entire number

of data points into training data and testing data. In our

study, out of the total 278 landslide and non-landslide

points, 75% (222 data points) and 25% (56 data points)

have been used for training and testing the classifiers,

respectively. By placing the LCF map on the LIM of the

research area, the values of various LCFs relevant to these

training and testing data points have been derived. Then,

the different classifiers have been constructed in the Goo-

gle Colaboratory platform to fit the dataset. LR, SVM,

KNN, and RF are the ML classifiers that were employed in

this study. The description of these supervised classifiers is

presented in this section.

Logistic Regression (LR)

Based on the values of a number of predictor variables, a

multimodal analysis model described as LR can be used to

predict whether a feature or event will occur. The linkFig. 3 Landslide inventory of Goa
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between the incidence and its dependencies on various

variables can be quantified using Eq. (2).

y ¼ expðzÞ
1 þ expðzÞ ð2Þ

where z = b0 ? b1X1 ? b2X2 ? _ ? b3Xn, b0 is the

intercept of the algorithm, and bi is the weight of each

dependent variable Xi (Chen et al., 2018; Zhou et al.,

2018).

Support Vector Machine (SVM)

In a multidimensional space, the SVM algorithm traces a

hyperplane that could characterize diverse data points. The

Fig. 4 Landslide conditioning factors a Elevation, b slope angle, c aspect, d plan curvature, e profile curvature, f total curvature, g SPI, h TWI,

i annual rainfall, j distance to road, k depth to bedrock, l soil type, m lithology, and n LULC
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adoption of a suitable kernel function, such as linear, sig-

moid, polynomial, and radial basis functions (RBF), has a

substantial impact on the model’s ability to forecast out-

comes. The gamma parameter measures the influence of a

single training example, with low values implying ‘far’ and

large values denoting ‘close’. Recognizing training cases is

traded off by the C parameter to enhance the tolerance of

the decision function (Pourghasemi et al., 2013a, 2013b).

Because they yielded better results than those of other

choices, the default parameters for the kernel, C, and

gamma were retained in our investigation.

K-Nearest Neighbours (KNN)

The KNN algorithm determines the distance between the

target point and the closest points in accordance with the

number of points that were picked, taking into account the

value specified for K and the highest number of votes cast

for these encircling points in the classification setting. The

KNN approach skips the density subordinate and goes

directly to a decision rule, assuming that pixels near one

another in the trait space should belong to the same class

(Avand et al., 2019). In our implementation, the ‘Eucli-

dean’ distance algorithm with the optimal value of 5 for a

number of neighbours has been used.

Random Forest (RF)

This ensemble learning technique leads to the creation of

classification trees that are aggregated to achieve a classi-

fication (Youssef et al., 2016). The two parameters that RF

must specify in order to create a classification model are

the size of trees in the forest and the amount of analysed

parameters at each node to promote the growth of the tree

(Taalab et al., 2018). In this experiment, utilizing ‘entropy’

as the function to determine the quality of the division and

setting the count of trees in the forest to 30 yielded

improved accuracy relative to other settings.

Table 1 Description of LCFs

LCF Description Source of data Reclassification

method

No. of

classes

Elevation

(altitude)

Snapshot of the terrain along with the features that are present (Saleem

et al., 2019)

United States

Geological Survey

(USGS)

Natural break 5

Slope First derivative of elevation (Saleem et al., 2019) DEM derivatives Natural break 5

Aspect The direction of the terrain surface’s greatest slope (Saleem et al.,

2019)

Not reclassified 10

Plan curvature It is perpendicular to the direction of highest slope (Saleem et al.,

2019)

Manual 3

Profile

curvature

It is parallel to the direction of highest slope (Saleem et al., 2019)

Total curvature Integrates the profile and plan curvatures (Saleem et al., 2019)

SPI SPI is calculated with the help of Eq. (1)

SPI ¼ lnðFlowAccþ 0:001 � slope
100

þ 0:001Þ ð1Þ
Natural break 5

TWI Explains the spatial variability of particular processes (Mattivi et al.,

2019)

Natural break 6

Annual rainfall Amount of rainfall (Yunus et al., 2021) Climatic Research Unit

(CRU)

Natural break 6

Distance to

road

Distance from the highways (Yunus et al., 2021) Open Street Map

(OSM) data

Natural break 5

Depth to

bedrock/soil

depth

Depth between the ground’s surface and the point where coherent

(continuous) bedrock is encountered (Guiling et al., 2017)

ISRIC data hub (Hengl

et al., 2017)

Manual 3

Soil type Grouping soils with comparable chemical, physical, and biological

characteristics into units (Babitha et al., 2022)

FAO-UNESCO Soil

Map

NA 3

Lithology Type of rock such as clay sand, basalt, argillite, granite, laterite, and

limestone

USGS world

geological map

NA 31

LULC Land formations such as water bodies, built-up land, agricultural land,

and forest areas

ArcGIS living atlas NA 7
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Assessment of Model Performance

With the aid of a confusion matrix and the area under the

receiver operating characteristic curve (AUC-ROC), the

effectiveness of the various classifiers outlined above has

been examined. The description of these evaluation meth-

ods is presented in this section. The number of pixels in the

confusion matrix that is successfully identified as land-

slides is known as true positive (TP), whereas the number

of pixels correctly identified as non-landslides is known as

true negative (TN). False positive (FP) and false negative

(FN) pixels denote the proportion of pixels that are incor-

rectly classified as landslides and non-landslides, respec-

tively. The different metrics such as accuracy, precision,

recall, F1-score, and TSS have been derived from this

confusion matrix using Eqs. (3)–(7) (Pourghasemi et al.,

2013a, 2013b).

Accurcay ¼ TP þ TN

TP þ TN þ FP þ FN
ð3Þ

Precision ¼ TP

TP þ FP
ð4Þ

Recall ¼ TP

TP þ FN
ð5Þ

F1 � score ¼ 2 � Precision � Recall

Precision þ Recall
ð6Þ

TSS ¼ TP

ðTP þ FNÞ �
FP

ðFP þ TNÞ ð7Þ

When evaluating or displaying the performance of the

classification task, we use the AUC-ROC as the evaluation

statistic. Recall and false-positive rate (FP/(FP ? TN)) are

shown on the y-axis and x-axis, respectively, to represent

the ROC curve (Nhu et al., 2020). AUC falls within a range

of 0 and 1. AUC above 0.7 is regarded as fair in studies on

landslides. The reliability of LSM is determined by

Cohen’s kappa statistic, which quantitatively assesses the

agreement between predicted and observed values

(Kalantar et al., 2020).

Result and Analysis

The results obtained for the algorithms described in the

previous section are discussed here.

LCF Selection

According to the results of the Pearson correlation coeffi-

cient test, the categorical variables lithology, soil type, and

LULC are not correlated with each other as shown in

Fig. 5a. As shown by Fig. 5b, among the 11 continuous

variables, total curvature is highly correlated with other

variables. Therefore, it has not been considered for further

processing. The result obtained after applying the RF fea-

ture selection is shown in Fig. 6. The LCF distance to road

is the most influencing factor as it is having the highest

score of 0.26 as shown in the graph. It is followed by slope

angle and annual rainfall with considerable information

gain. Eleven LCFs with score of more than 0.03 have been

taken into account for preparing LSM. Although it is

challenging to establish a connection between many cate-

gories and previous landslide locations, category factors

such as lithology and LULC do not contribute to predicting

future disasters.

Landslide Susceptibility Maps

Different levels of susceptibility, including very low, low,

moderate, high, and very high, exist in the LSM that we

have created via our research. These separations were

achieved by calculating the prediction probability values

for every data point and then interpolating these points over

the research region. The reclassified LSMs using LR,

SVM, KNN, and RF are shown in Fig. 7a, b, c, and d,

respectively. The range of these classes and the distribution

of these classes over the study area are shown in Table 2.

Approximately 2.34% of the entire study area is very

highly prone to landslides, and almost 11.91% of the study

area is incredibly susceptible to landslides, according to the

results of LSM derived using the LR algorithm. Approxi-

mately 2.34% of the entire study area is very highly sus-

ceptible to landslides, and approximately 11.91% of the

study area is also vulnerable to landslides, according to the

results of LSM created using the SVM algorithm. The

KNN classifier produced an LSM that indicates that 2.21%

of the land is very sensitive to landslides and 6.90% of Goa

is very highly vulnerable to them. As per the results of the

RF classifier, 0.25% of Goa is extremely prone to land-

slides, while 3% of the area is highly vulnerable. On an

average, 36.32% of the total land is vulnerable to landslides

whereas the remaining portion of the study area does not

have the risk of landslides.

From the visual interpretation of Fig. 7b, it is observed

that the border areas of Karnataka are very susceptible to

landslides, according to an LSM created using the SVM

algorithm. In comparison with the other three LSMs, an

LSM developed using SVM has more sites that are not at

risk of landslides. The LSM generated by the LR classifier

has more locations that are at high risk of landslides. The

north-western locations of Parnem, Bardez, and Tiswadi

are not at risk of landslides, according to the RF algo-

rithm’s output, which is displayed in Fig. 7d. There are

many locations that are at moderate risk as per the results

of RF. The LSMs produced in this study indicate that the
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Sattari, Dharbandora, Sanguem, and Canacona regions

have more locations that are dangerous compared to other

regions.

Validation of LSMs

Different metrics such as accuracy, precision, recall, and

F1-score were derived from the confusion matrix of the test

dataset. The values of these metrics shown in Table 3 used

to compare the performance of classifiers LR, SVM, KNN,

and RF are presented in this section. This section also

shows a comparison of LSMs produced by these classifiers

using the AUC-ROC parameter.

The findings of the experiments show that all of these

models delivered good-quality outcomes. The highest

accuracy of 86.11% reveals that the RF classifier can

Fig. 5 Results of multi-collinearity test a for categorical variable and b for continuous variables

Fig. 6 Landslide influencing factor selection
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predict the landslide and non-landslide points accurately

compared to the other three models. SVM classifier can

predict the positive (landslide sites) more precisely than

other classifiers, as shown by the highest precision values

of 0.92. Recall values of 0.64, 0.76, 0.52, and 0.64,

respectively, for the various models LR, SVM, KNN, and

RF show the proportion of accurate landslide predictions to

all landslide spots. The SVM classifier has a maximum

recall value of 0.76. The F1-score considers both landslide

and non-landslide points while assessing the performance.

F1-score can be utilized as a helpful indicator when com-

paring classifiers because of the imbalance between land-

slides (78 points) and non-landslides (200 points) in the

given dataset. The greatest F1-score of 0.74 shows that RF

outperforms the other classifiers considered in this study.

When comparing the LSMs produced by the four distinct

classifiers taken into consideration in our study, the

ensemble RF classifier performs slightly well when com-

pared to the other three classifiers, according to the highest

AUC-ROC value of 0.86 as shown in Fig. 8. The AUC-

ROC values of 0.84, 0.81, and 0.83 for LR, SVM, and

KNN, respectively, indicate that these algorithms behave

almost similarly in terms of their performance.

Discussion

Regional landslide mapping has become a popular topic

due to the regular occurrence of landslides in various pla-

ces of the world. Mapping the susceptibility to future

landslides is a crucial task in the field of environmental

protection. Due to the nonlinear nature of the LSM

Fig.7 LSM using different ML algorithms a LSM using LR, b LSM using SVM, c LSM using KNN, and d LSM using RF

Table 2 Distribution of

percentage of area over different

classes of LSMs

Susceptibility levels ML classifiers

Range of values LR SVM KNN RF

Area (%) Area (%) Area (%) Area (%)

Very low 0–0.2 20.12 38.78 32.37 27.48

Low 0.2–0.4 33.70 32.42 37.03 32.75

Moderate 0.4–0.6 31.91 22.01 21.49 36.52

High 0.6–0.8 11.91 4.62 6.90 3.00

Very high 0.8–1 2.34 2.15 2.21 0.25

Table 3 Performance metrics

values for different classifiers
Classifier Accuracy Precision Recall F1-score Kappa Index TSS

LR 81.90 0.611 0.647 0.629 0.50 0.52

SVM 83.33 0.92 0.765 0.684 0.57 0.62

KNN 81.94 0.643 0.529 0.581 0.46 0.43

RF 86.11 0.733 0.647 0.74 0.59 0.58
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datasets, it is difficult to execute in the field and requires

significant resources (Jennifer, 2022). Parts of the Western

Ghats of India have been witnessing several landslides in

recent years. Goa is one of the states that lie within the

Western Ghats which has been experiencing landslides

during the rainy season. In recent years, there have been

multiple landslides in the Indian Western Ghats. Landslides

have been happening in Goa, one of the states in the

Western Ghats, during the rainy season. It is evident from

the literature that Goa has been a region that has not been

thoroughly researched when it comes to creating LSM

employing machine learning techniques. One of the causes

of this can be a lack of data availability. In this work, we

used the freely released landslide inventory to assess the

elements that contribute to landslide fatalities in the state of

Goa and then produced a landslide susceptibility map that

illustrates the likelihood of landslides in a specific area.

This is a result of the interaction between existing land-

slides and the triggering factors associated with the envi-

ronment. We investigated fourteen landslide conditioning

factors that affect landslide disasters in the state of Goa and

created LSM utilizing the most important parameters that

have the greatest impact on the forecasting of upcoming

landslides. Slope, aspect, distance from road, lithology,

curvature, LULC, rainfall, curvature, Topographic Wetness

Index (TWI), and Stream Power Index (SPI) are examples

of factors that are widely employed (Achu et al.,

2022a, 2022b; Jennifer, 2022). By noticing that the

majority of the landslides in the research area are rain-

induced mud flows, we have added soil depth and depth to

bedrock as additional factors to prepare LSM.

From the distribution of landslide points, it is clear that

55% of the total landslides lie in locations that are having a

distance of 0–195.5 m from the road. Therefore, areas

close to roadways have a significant probability of slope

failure. Another factor that affects the occurrence of

landslides in the research area is the slope. The majority of

the study area has a slope ranging from 0 to 17 degrees

which can be referred to as a low-to-moderate slope.

However, the eastern and southern portions of the study

area that belong to WG have the steepest slopes up to 70

degrees. In areas where the slope angle ranges from 10.20

to 17.38 degrees, there is a significant density of landslides.

The average annual rainfall of the study area in millimetres

has been classified into 6 classes. The locations that receive

rainfall of 3044–3213 mm have more landslide points

compared to all other classes. SPI is also one of the factors

that play a role in predicting future landslides. The values

of SPI range from - 13.81 to 12.83. Elevation is another

element that is thought to be a trigger. The majority of the

landslide points lie in those study areas with SPI ranging

from - 13.81 to - 6.08. From the inventory of landslides,

it is revealed that the majority of the landslides are rainfall

induced mass movements. So, depth of bedrock or soil

depth has been considered in our study. Most of the land-

slide locations lie in a moderate class of soil depth in which

depth varies from 20 to 100 m. The locations of 47% of the

landslide points are between 64 and 167 m above sea level,

and 29% are between 332 and 541 m. The landslide density

of the TWI factor is high in the range of 2.5–5.9 and low at

15.47–24.59. LCFs such as total curvature, LULC, and

lithology have not contributed much in predicting land-

slides of the future. It is challenging to establish a rela-

tionship between landslide points and LCFs with numerous

categories because there are not enough landslide points in

the provided study area.

The ML algorithms LR, SVM, KNN, and RF use a

portion of the points from landslide inventories and the

accompanying LCF values as training data. Based on the

results of these classifiers, the LSM is prepared. The

landslide susceptibility maps of the study area were clas-

sified into a fivefold classification scheme of very low, low,

moderate, high, and very high susceptibility classes. The

test dataset which was compiled randomly is used to

determine the AUC. Other criteria were utilized to compare

the suggested models, including accuracy, precision, recall,

F1-score, Kappa Index, and TSS.

RF had the greatest prediction rate when the four models

were validated making it the most trustworthy approach.

The outcomes could also derive from the existence of

linear and nonlinear correlations between the numerous

geographical data that RF could trustworthily take into

account. The advantages of the RF model include the fact

that it has robust and accurate ML algorithms and is con-

sidered a highly accurate classifier for many datasets. It can

run efficiently on large databases, manage enormous input

variables without elimination, estimate effective factors in

the classification, and generate an internal, unbiased esti-

mate of the generalization error as the forest building

progresses. RF algorithm is suitable for developing LSMs

Fig. 8 Comparison of different classifiers in terms of AUC-ROC
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of a larger scale (Taalab et al., 2018). The result of our

study justifies the nature of ensemble algorithms over

single classifiers. The land use and disaster management

policies in the research region can be decided upon using

the LSM produced by the RF algorithm.

Conclusion

LSM is required to reduce the disaster, property losses, and

human casualties brought on by landslides. In parts of the

Western Ghats, landslides have recently grown to be a

particularly sensitive subject. This study sheds light on

ML-based LSM modelling, which is based on ten condi-

tioning elements of the study area. The combination of GIS

and ML techniques helps to identify the associated rela-

tionship between the historical landslide points and land-

slide conditioning elements. Further, these associations can

be used to forecast the landslides that may occur in

the future. According to the study’s findings, the ensemble

RF method is more effective than the other three strategies

and is a resilient algorithm to prepare the LSM of the study

area. The study shows that some of the regions such as

Sattari, Dharbandora, Sanguem, and Canacona require

some actions to be taken to mitigate the risk of landslide

disasters as it includes more number of landslide-prone

locations. Also, the study reveals that North Goa has less

risk associated with landslides. Planning agencies are very

interested in creating LSM for early hazard analyses, par-

ticularly when a regulation planning policy is going to be

enacted. Landslide prediction was made simpler by the use

of ArcGIS software and the availability of Python modules.

In subsequent research, we intend to use cutting-edge

ML and DL approaches to increase the classifiers’ accuracy

and generate more reliable findings. The performance

would also be improved by conducting additional research

on the study region to generate more landslide conditioning

components and by using a landslide inventory with more

landslide points.
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