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Abstract
Land surface temperature (LST) is a major factor that affects many biophysical processes in the land–atmosphere rela-

tionship. This factor is obtained from satellite images having different temporal and spatial resolutions. This study applied

the geographically weighted regression (GWR) model for four different dates representing each season a year to improve

the LST images obtained in coarse resolution. In this study, MODIS LST images that are available having fine temporal but

coarse spatial resolution were modeled using NDBI and NDVI indices, and their spatial resolution is improved. In addition,

LANDSAT 8 images were used as reference images to evaluate the accuracy of the images obtained from the models.

Results of the GWR model have been evaluated by comparing it statistically with TsHARP and DisTradother commonly

used methods. As a result of the comparison by using the average of four dates outputs, the GWR model (R2 = 0.73,

RMSE = 0.78) was more successful than the TsHARP (R2 = 0.56, RMSE = 1.00) and DisTrad (R2 = 0.49, RMSE = 1.09)

methods. The most successful downscaling performance in the GWR model was obtained in the spring season (RSR =

0.48). According to these findings, the GWR model can be used for downscaling LST images in urban areas. However,

before applying this algorithm to scenarios outside of urban areas, it is recommended to use the required parameters and

optimize their combinations.
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Introduction

Land surface temperature (LST) is a critical parameter that

affects many biophysical processes in the land–atmosphere

relationship derived from solar radiation (Khan et al.

2021). LST is used in studies such as determining the

amount of evapotranspiration (Anderson et al., 2012),

hydrological cycle (Sun et al., 2007), climate change

assessment (Wu et al., 2015a, 2015b), estimating the

amount of radiation (Jiao et al., 2015), modeling the

maximum-minimum temperature difference (Duan et al.,

2017), ph enology of vegetation (Badeck et al., 2004), and

monitoring the urban heat island (Caihua et al., 2011). LST

images can be obtained by satellite having thermal sensors

such as MODIS and LANDSAT 8 with different spatial

and temporal resolutions. One of the biggest problems of

currently used satellite thermal sensors is that they cannot

have both high temporal and high spatial resolution at the

same time due to technical and financial constraints

(Mukherjee et al. 2015). In particular, MODIS LST can be

obtained daily for an observed area. However, LST images

are obtained at a coarse resolution (1000 m). Therefore, it

is considered that the improvement in the spatial resolution

of MODIS LST data is significant for many applications

with high-resolution demands, both spatially and tempo-

rally (Peng et al., 2019; Yang et al., 2011). For this reason,

researchers tend to find effective and low-cost methods that

can be a solution to this problem. The most concentrated

research on this subject has been applying downscaling

methods to LST images in recent years (Duan & Li, 2016;

Wu et al., 2015a, 2015b).
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LST reduction is the process of separating the mixed

pixels of the coarse resolution LST image by matching the

spatial details of high-resolution images from the same or

different sensors (Peng et al., 2019). In recent years, dif-

ferent approaches have been proposed to reduce the coarse

resolution of the land surface temperature images to the

regional scale. These algorithms have generally been

developed based on correlations between LST images and

auxiliary biophysical parameters acquired at better spatial

resolution. In these algorithms, digital elevation data, land

cover maps and reflectance images obtained from visible/

near-infrared wave bands are generally used as auxiliary

parameters (Hutengs and Vohland 2016). In general, veg-

etation indices are preferred as an auxiliary parameter in

such models because of the high correlation between them

and LST.

One of the most widely used statistical regression

methods is the DisTrad method proposed by Kustas et al.

(2003). This method is based on the assumption that the

relationship between the normalized difference vegetation

index (NDVI) and the LST is invariant to scale. Another

widely used downscaling method is the TsHARP method

(Agam et al., 2007). In this method, NDVI maps are used

as auxiliary parameters to sharpen the land surface tem-

peratures to the resolution of the VIS/NIR waveband. The

main limitation of the TsHARP algorithm is the relation-

ship between NDVI and LTS is not unique, which results in

a wide range of LSTs for a given value of NDVI (Bindhu

et al., 2013; Duan & Li, 2016; Merlin et al., 2010). How-

ever, vegetation index-based downscaling models assume

that regional-scale LST variability is dependent on regional

vegetation. This situation can cause significant errors in the

spatial LST distribution by causing changes in the amount

of solar radiation in heterogeneous regions where regional

differences in the region’s topography and albedo exist

(Dominguez et al., 2011; Hais & Kucera, 2009; Jeganathan

et al., 2011). Therefore, in recent studies, alternative

methods have been developed to the TsHARP method,

taking into account the effect of photosynthetic and non-

photosynthetic active vegetation within the spatial vari-

ability of LST (Peng et al., 2019). These methods both use

various auxiliary parameters for downscaling the LST and

use a geographic model that considers the spatial stability

between these parameters and the LST. Yang et al. (2010)

aimed to establish a regressive relationship between the

LST and multiple factors, assuming that a single estimator

cannot fully reflect the difference in LST in different land

covers. The downscaling results showed that this algorithm

gives better results than the traditional approach. Duan

et al. (2016) used GWR as the LST downscaling algorithm.

As a result, they obtained better results than the commonly

used TsHARP algorithm. Peng et al. (2019) developed a

geographic flywheel-weighted regression (GWR) model

for the spatial reduction of MODIS LST data from 1000 to

100 m. The results showed that the GWR algorithm per-

forms better with lower RMSE than the traditional method.

Wang et al. (2021) proposed a geographically weighted

model to reduce the spatial resolution of MODIS LST from

1000 to 100 m, considering the spatial non-stationarity and

obtained good downscaling results.

The main goal of this study is to use the GWR down-

scaling model to improve the spatial resolution of MODIS

LST images by using NDBI and NDVI indices and to apply

the model for Antakya, Turkey. LANDSAT 8 images that

have fine spatial resolutions were used as reference images

to determine the usability of the images obtained from the

GWR, TsHARP and DisTrad models. Results have been

evaluated by comparing them statistically with models for

four different dates.

Material and Methods

Study Area

In this study, Antakya city located in the province of Hatay

in Turkey was chosen for the case study. The locations of

the study areas having the false-color images generated

from the LANDSAT-8 data are given in Fig. 1. The

coordinates of the study area are 36� 030 050’ E to 36� 130

520’ E and 36� 180 1300 N to 36� 070 4100 N. According to the

Köppen climate classification, it is located in the

Mediterranean climate with warm winters and very hot and

dry summers. The annual average temperature is approxi-

mately 18.6 �C, where the lowest and highest temperatures

are - 11.8 and 44.6 �C, respectively. The average annual

precipitation is approximately 1124.2 mm. Land use and

land cover map was obtained from CORINE given in

Fig. 2.

Datasets and Preprocessing

In this study, LANDSAT 8 raw reflectance data and

MODIS LST data taken from four different dates were

used. The acquisition dates of LANDSAT 8 and MODIS

LST images are given in Table 1.

In this study, the MOD11 collection with a spatial res-

olution of 1000 m was used as the auxiliary data for LST

downscaling. The MODIS LST data were downloaded

from the NASA website (https://ladsweb.modaps.eosdis.

nasa.gov/). ArcGIS-10.8 software was used to process the

MODIS dataset, which has hdf file format. In addition, the

projection of the data was converted to the UTM WGS

1984 projection. Finally, using the following Eq. 1,

MODIS LST data (DN value) were converted from Kelvin

to Celsius temperature (Alqasemi et al., 2020);
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LST �Cð Þ ¼ a � DNð Þ � 273:15 ð1Þ

where LST is MODIS land surface temperature and a is

the scaling factor (0.02) of the MODIS LST product.

LANDSAT 8 was launched by the National Aeronautics

and Space Administration (NASA). Two sensors are car-

ried by the LANDSAT 8 satellite, Thermal Infrared Sensor

(TIRS) and OLI. The LANDSAT 8 data of this study was

taken from the Earth Explorer data gateway (http://earth

explorer.usgs.gov/). The downloaded LANDSAT 8 surface

reflection data was obtained by processing with calibration

and atmospheric correction modules from ENVI 5.3 soft-

ware. In addition, the image-to-image module of ENVI 5.3

software was used for geometric correction between

MODIS and LANDSAT 8 data. Feature points of LAND-

SAT 8 data such as road and river were chosen as reference

control points to correct MODIS images (Rawat et al.,

2019; Zareie et al., 2016).

In this study, MODIS LST with 1000 km spatial reso-

lution represents LST with coarse spatial resolution.

LANDSAT 8 is used in two different stages in the down-

scaling model. Firstly, LANDSAT 8 surface reflectance

data with 30 m resolution was used to calculate auxiliary

parameters Normalized Difference Vegetation Index

(NDVI) and Normalized Difference Built-up Index (NDBI)

Fig. 1 Locations of the study areas with the false-color images generated from LANDSAT-8 data for 07.05.2021 (R: band 5, G: band 4, and B:

band 3)
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to create the model given as Eq. 2 (Purevdorj et al., 1998)

and Eq. 3 (Zha et al., 2003).

NDVI ¼ RNIR � RRED

RNIR þ RRED

ð2Þ

NDBI ¼ RSWIR1 � RNIR

RSWIR1 þ RNIR

ð3Þ

where RNIR, RRED and RSWIR1 are the reflectance values of

the near-infrared band, red band and the first shortwave

infrared band, respectively. The NDVI and NDBI data

obtained were resampled to 100 m and 1000 m to establish

the fine and coarse resolution model. Finally, LANDSAT 8

LST calculated with LANDSAT 8 data was used as ref-

erence data to validate the downscaling results. To calcu-

late LANDSAT 8 LST, the Top of Atmospheric Spectral

Radiance (Lk) was first calculated using Eq. 4.

Lk ¼ MLQcal þ AL � Oi ð4Þ

where ML is the band-specific multiplicative rescaling

factor (0.000342), Qcal is the Band 10 image, AL is the

band-specific additive rescaling factor (0.1), and Oi is the

correction for Band 10 (0.29) (Barsi et al., 2014). Second,

the TIRS band data needs to be converted to brightness

temperature (BT). For this, thermal constants provided in

the metadata file were used (Eq. 5).

BT ¼ K2

ln K1=Lkð Þ þ 1½ � � 273:15D ð5Þ

where K1 (1321.08) and K2 (777.89) represent the band-

specific thermal conversion constants (Avdan & Jova-

novska, 2016). Existing vegetation is an important factor

affecting the surface temperature. For this reason, NDVI is

very important to obtain information about the general

vegetation of the study area because vegetation rate can be

calculated using NDVI (Eq. 6) (Song et al., 2017).

Pv ¼
NDVI � NDVImin

NDVImax � NDVImin

� �2

ð6Þ

In another step, the land surface emissivity (LSE) has to

be calculated (Eq. 7) because LSE (ek) is the efficiency of

transmitting thermal energy from the surface to the

atmosphere.

ek ¼ 0:004 Pv þ 0:986 ð7Þ

The final step in calculating the LST is as given in Eq. 8.

LST ¼ BT

1 þ kBT=qð Þ ln ek½ �f g ð8Þ

q ¼ h
c

r
¼ 1:438x� 10�2m K ð9Þ

where k is the wavelength of emitted radiance (10.895), q
is Planck’s constant (6.626 9 10-34 J s), c is the velocity

of light (2.998 9 108 m s-1), and r is the Boltzmann

constant (1.38 9 10-23 J K-1).

LST Downscaling Algorithm Based GWR Model

Geographical Weighted Regression (GWR) is one of the

spatial regression techniques like ordinary least squares

(Fotheringham et al., 2002). GWR is used to evaluate and

examine the relationship between variables, taking into

account the regression coefficients that vary according to

geographical location. The GWR model is expressed as

given in Eq. 10;

yi ¼ b0 li;Við Þ þ
Xm
k¼1

bk li;Við Þxik þ ei ð10Þ

where yi represents the dependent variable at location i, xik

Fig. 2 Land use and land cover map for study area

Table 1 The LANDSAT 8 and

MODIS land surface

temperature (LST) data

collected in this study

Season Acquisition Time (MODIS LST Data) Acquisition Time (LANDSAT 8 Data)

Winter 30.12.2020 07:35:00 30.12.2020 08:10:11

Spring 07.05.2021 07:35:00 07.05.2021 08:09:23

Summer 08.06.2021 07:35:00 08.06.2021 08:09:42

Autumn 14.10.2021 07:35:00 14.10.2021 08:10:19
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represents the kth independent variable at location i, li and

Vi are the geographical coordinates of the ith location,

b0 li;Við Þ represents intercept, bk li;Við Þ represents kth

slope of the regression model at location I, and ei is the

regression residual at location i. b0 and bk parameters can

be calculated from Eq. 11;

b̂ li;Við Þ ¼ XTW li;Við ÞX
� ��1

XTW li;Við ÞY ð11Þ

where X and Y are matrices for independent and dependent

variables, W li;Við Þ is the weight matrix used to make

observations close to a given point have larger weighted

values, and b̂ li;Við Þ presents estimated value of the

regression coefficient b.

In this study, the GWR analysis was carried out using

ArcGIS 10.8 software. NDVI and NDBI were chosen as

auxiliary variables for LST downscaling. The NDVI was

used to take into account the effects of different vegetation

types on thermal processes at land surfaces. NDBI was

used because it is accepted as an effective indicator of

urban density. The flowchart of the GWR-based LST

downscaling algorithm is shown in Fig. 3.

The first step in creating the GWR downscaling model,

whose flowchart is given in Fig. 3, is to preprocess the

LANDSAT 8 surface reflectance data. After preprocessing,

NDVI and NDBI ancillary parameters were calculated

using LANDSAT 8 data, and these indices were resampled

as 1000 and 100 m, respectively. These resampled

parameters were used to fit the relationship at coarse and

fine resolution. The coarse resolution GWR model was

created as in Eq. 12.

LST1000
i ¼ b1000

0 li;Við Þ þ b1000
1 li;Við ÞNDVI1000

i

þ b1000
2 li;Við ÞNDBI1000

i þ e1000
i ð12Þ

The intercept, coefficients and residuals obtained from

the created coarse resolution GWR model were improved

to 100 m spatial resolution using the kriging interpolation

method. Finally, accepting that the temporal and spatial

relationship between the LST and auxiliary variables is

invariant depending on the scale, a model was created as in

Eq. 13.

LST100
i ¼ b100

0 li;Við Þ þ b100
1 li;Við ÞNDVI100

i

þ b1000
2 li;Við ÞNDBI100

i þ e100
i ð13Þ

DisTrad Downscaling Method

Tested on US farmlands, this model was created with the

aim of downscaling based on the inverse correlation

between temperature and NDVI (Kustas et al., 2003). For

this purpose, a second-order polynomial regression model

was used (Eq. 14).

dLST ¼ aþ bNDVI þ cNDVI2 ð14Þ

TsHARP Downscaling Method

The TsHARP model is a modification of the DisTrad

algorithm (Agam et al., 2007). This method, which is the

most widely used spatial downscaling model, uses the

least-squares regression (OLS) function and NDVI is used

as the predictive variable. The TsHARP model was created

by testing on farmland in the USA. The TsHARP model is

given in Eq. 15.

dLST ¼ aþ b 1 � NDVIð Þ0:625 ð15Þ

Performance Evaluation of Downscaling Models

The four statistical methods coefficient of determination

(R2), root-mean-square error-observations standard devia-

tion ratio (RSR) and the Nash–Sutcliffe model efficiency

coefficient (NSE) were used for the evaluation of models

output against the observation station data.

The coefficient of determination is the ratio of how much

of the variation in the observed data can be explained by the

model. R2 varies between 0 and 1; higher values indicate less

error variation. Generally, values above 0.50 are considered

acceptable (Wright, 1921; Santhi et al. 2001). The coefficient

of determination is calculated by Eq. 16.

R2 ¼
Pn

i¼1 Oi � O
� �

� Mi �M
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Oi � O

� �2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Mi �M
� �2

q
0
B@

1
CA

2

ð16Þ

The RMSE (root of mean squared error) is one of the

commonly used error index statistics (Chicco et al., 2021). It

is generally accepted that the lower the RMSE, the better the

model performance. However, the low value of this value

varies according to the size of the values in the dataset. For

this reason, RSR, which is a model evaluation statistic that

will enable us to interpret these values more easily, has been

developed (Singh et al., 2005). RSR converts the RMSE

values to a standard value using the standard deviation values

of the observations. It is calculated by dividing the RMSE

and observation standard deviations (Eq. 17).

RSR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Oi �Mij j2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Oi � O
�� ��2q ð17Þ

The Nash–Sutcliffe efficiency coefficient gives a coef-

ficient value that represents the predictive ability of the

model. Its values range from - ! to 1. It is desired that

the value it receives is between 0 and 1, and as it gets closer

to 1, it shows that the model gives a good estimation result
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(Moriasi et al., 2007). NSE is calculated by the equation

given below.

NSE ¼ 1 �
Pn

i¼1 Oi �Mið Þ2

Pn
i¼1 Oi � O

� �2
ð18Þ

In this equation, Oi is the observation station measure-

ment, O is the average of the observation station mea-

surements, Mi is the model output, M is the average of

model output, and n is the number of data. RSR and NSE

evaluation classes are given in Table 2.

Results and Discussion

Regression Analysis

The performances of the DisTrad, TsHARP and GWR

models are compared and given in Fig. 4. High-resolution

LST obtained from LANDSAT 8 data is often used as

reference data in downscaling studies. In many studies, it

has been explained that the relationship between MODIS

LST and LANDSAT 8 LST is preferable in creating a

downscaling model because of the low amount of error

between them (RMSE\ 2 �C).

For this reason, LANDSAT 8 LST which was obtained

from LANDSAT 8 data was preferred as reference data in

Fig. 3 Flowchart of the GWR-based LST downscaling algorithm

Table 2 RSR and NSE performance evaluation table (Moriasi et al.,

2007)

Degree NSE RSR

Very Good 0.75 - 1.00 0.00 - 0.50

Good 0.65 - 0.75 0.50 - 0.60

Satisfactory 0.50 - 0.65 0.60 - 0.70

Unsatisfactory \ 0.50 [ 0.70
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this study. The correlation coefficient, standard deviations

and RMSE values of the models are visualized with the

Taylor diagram. When compared with other models, the

correlation coefficient of the GWR-based model was

higher than that of the other methods. In addition, it was

determined that the prediction error of the GWR-based

algorithm decreased significantly for all images

(RMSE\ 1). In conclusion, the statistical results show that

considering the nonlinear relationship improves the accu-

racy of the downscaling results.

The spatial distribution pattern of the intersection,

regression coefficients and residual values obtained by the

kriging interpolation method of the GWR model is given in

Fig. 5. When Fig. 5 is examined, it is seen that the spatial

distribution of these parameters is not homogeneous.

Therefore, it has been determined that it is necessary to use

spatially varying regression coefficients and residual values

in order to model the relationship between LST and other

auxiliary parameters. It has been understood that this is the

most important reason why the GWR model achieved more

successful results against the other two models. Duan and

Li (2016) reported in their similar study that the GWR-

based algorithm outperformed the TsHARP algorithm in

terms of statistical results in the LST downscaling appli-

cation. As a result of the statistical comparison, the RMSE

value was calculated as 2.7 for the TsHARP algorithm and

2.3 for the GWR-based algorithm. In another similar study,

Wang et al. (2021) calculated the RMSE performance as

Fig. 4 Taylor diagrams of downscaling models for a 30.12.2020, b 07.05.2021, c 08.06.2021, d 14.10.2021
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2.71 for the satellite image obtained for June of the GWR

downscaling model and as 3.23 for the TsHARP algorithm.

Downscaling Results

Figure 6 shows the downscaling results obtained using

different methods for a spatial resolution of 100 m. When

the downscaling results are examined visually, it is seen

that the downscaling model results are similar to the ref-

erence LANDSAT 8 LST. It is seen that the GWR model

obtained with the NDVI ? NDBI parameters is the closest

visually to the reference values among the models.

Additionally, it was observed that the TsHARP algo-

rithm was better than the GWR algorithm for some areas.

This is due to the smoothing effect of the GWR model,

which can cause information loss. There are two important

reasons for this effect. The first reason is that the interpo-

lation methods applied in the process of obtaining images

are based on the minimum mean square error method.

Because of this method, low values are overestimated,

while high values are underestimated.

Fig. 5 Spatial distribution of kriging-interpolated regression coefficients and residuals for the GWR model in the study area
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Another reason is that in the process of resampling the

auxiliary parameters NDBI and NDVI to 100 and 1000 m

spatial resolution, the image becomes smoother than the

original as a result of replacing the pixel values with the

average values. As a result of this smoothness, some

important information may be lost. However, because the

GWR model takes into account the non-stationary rela-

tionship between LST and environmental factors, GWR

outperformed the other two methods in terms of statistical

results.

When the seasonal results for the GWR model are

evaluated, it can be seen from Table 3 that the error amount

is lower on the dates when the temperature is high, similar

to the study of Wang et al. (2021). The lowest error amount

was obtained for the image taken in the spring season

(07.05.2021) (RSR = 0.48). The highest error rate was

Fig. 6 Downscaling results at 100 m resolution obtained using different downscaling methods

Journal of the Indian Society of Remote Sensing (June 2023) 51(6):1241–1252 1249

123



obtained for the image taken in winter (30.12.2020)

(RSR = 0.61). Peng et al., (2019) evaluated the perfor-

mance of the GWR downscaling model for September and

October in another similar study conducted in Beijing,

China. According to the results obtained, they calculated

the RMSE values as 2.46 for September and 2.78 for

October. When the calculated RSR values were examined,

it was determined that the values obtained were within the

acceptable threshold values given in the literature

(RSR\ 0.65). As for the model performance evaluation, it

was determined that the estimations obtained were quite

successful (NSE[ 0.60). In general, it was determined that

the downscaling model was more successful on hot and

cloudless days compared to winter months. According to

LULC (Fig. 2) map, results show that GWR downscaling

model gave better accuracy in LST data in forestry and

agricultural area than in urban area, because of using NDVI

and NDBI indices.

Conclusion

This paper proposes a downscaling processing framework

using the geographically weighted regression (GWR)

model, which allows taking into account spatially hetero-

geneous relationships compared to commonly used pre-

dictive models. NDVI and NDBI data, which have a fine

spatial resolution as auxiliary variables, were chosen for

the LST downscaling model. A non-stationary relationship

was established between these auxiliary variables and LST

images using the GWR model. The accuracy of the GWR-

based model was evaluated by comparing it with other

commonly used models. GWR is a spatial downscaling

method that has some advantages and disadvantages when

compared to the TsHARP and DisTrad methods. GWR

accounts for spatial autocorrelation, which allows to esti-

mate local regression models, and considers the spatial

variability of the data. GWR can be applied to linear and

nonlinear relationships between variables. Also, GWR can

be useful for downscaling of various environmental and

meteorological variables such as precipitation, tempera-

ture, and wind speed. But GWR may be sensitive to

outliers, which could affect the accuracy of the model, and

GWR is computationally intensive, which could be a lim-

itation for some applications. Also, GWR’s assumption of

linearity may lead to an over- or underestimation of the

relationships in certain cases.

The performance of the GWR-based algorithm was

compared against that of the DisTrad and TsHARP algo-

rithms using the concurrent LANDSAT 8 LST product as a

reference LST dataset. A visual comparison of the spatial

distribution of the downscaled LST results indicates that

both the TsHARP and GWR-based algorithms outperform

the DisTrad algorithm. Furthermore, a boxy artifact is

observed in the TsHARP downscaled LST, whereas a

smoothing effect occurs in the GWR-downscaled LST.

When compared against the LANDSAT 8 reference LST

dataset, the performance of the GWR-based algorithm is

better than that of the TsHARP algorithm in terms of the

statistical results.

We consider our study a successful attempt to build a

nonlinear relationship in geographically weighted regres-

sive algorithms where the downscaling result’s accuracy is

significantly improved due to the introduction of nonlinear

terms. Data taken from different dates were investigated,

and the proposed method gets better downscaling results in

all datasets. The GWR model can be applied to urban

areas. However, in extremely heterogeneous areas such as

mountains, using nonlinear term in LST downscaling may

introduce unstable results.

It is also recommended that before applying this algo-

rithm to scenarios other than urban areas, the selection of

more auxiliary parameters and optimization of their com-

bination should be performed. For example, slope angle or

incoming solar radiation may be more relevant in moun-

tainous areas than NDBI. The overall procedure was

repeatable, and the data are available for many different

practices, thus providing a new urban heat island study

tool.
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