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Abstract
Forest canopy density (FCD) is one of the important parameters for forest mapping and monitoring. Terrestrial Laser

Scanning (TLS) is one of the most accurate tools used in field data collection. Hence, the present study aimed to predict

forest aboveground biomass (AGB) by integrating TLS data, satellite data-derived FCD and spectral indices. FCD Mapper

was used to classify Landsat-8 OLI data into FCD classes, which were validated using field-measured FCD. In the field,

point cloud data were collected from each FCD class using TLS. The diameter at breast height (dbh) and height of

individual trees were retrieved from the point cloud data and validated with field-measured dbh and height. AGB was

estimated from the TLS-derived dbh and height and modelled as a function of Landsat-8 OLI-derived FCD classes and

spectral indices. A total of 11 FCD classes were generated, which showed a strong positive correlation (r = 0.96) with the

field-measured FCD. From the TLS point cloud data, 96% of individual trees were extracted. Positive correlations were

found between TLS-measured dbh and field-measured dbh (r = 0.99), and TLS-measured height and field-measured height

(r = 0.96). A linear function best fitted between TLS-estimated AGB and FCD classes was established. Because of the low

variability in AGB due to absolute FCD classes, the model was further extended using a few spectral indices. Using a

multiple linear model, the average AGB (374 Mg ha-1) and total AGB (3,024,550 Mg) of the study area were predicted.

The study highlighted that the combined application of TLS and satellite data-derived FCD and spectral indices can be one

of the fastest and accurate methods in forest AGB prediction.

Keywords Terrestrial laser scanning � Point cloud � Forest canopy density � Forest aboveground biomass �
Spectral indices

Introduction

Forest cover has been changing rapidly around the globe,

increasing through plantation and conservation, and

decreasing through deforestation and forest degradation.

Different methods have been devised to measure and mon-

itor these changes and quantify the contribution of forests to

climate change mitigation through biomass production and

carbon sequestration. Forest biomass has been estimated and

predicted using various models and equations at the indi-

vidual tree-to-stand levels (Bhandari and Chherti, 2020;

Bhandari & Neupane, 2014; Chave et al., 2014; Sharma

et al., 2017; Shrestha et al., 2018; Xing et al., 2019; Vir-

gulino-Júnior et al., 2020). Satellite remote sensing (RS) data

have also been used to assess forest biomass at various spatial

scales (Dang et al., 2019; Kalita et al., 2022; Kushwaha et al.,

2014; López-Serrano et al., 2019; Nandy et al., 2019; 2021;

Nandy & Kushwaha, 2021; Nuthammachot et al., 2020;

Sousa et al., 2015; Yadav & Nandy, 2015).

Forest canopy density (FCD) is an important parameter

for forest mapping (FSI, 2021) as well as forest degradation

status assessment (Mon et al., 2012; Nandy et al., 2011). It

can also be reliably used for the prediction of forest bio-

mass at local, regional, and global levels. FCD can be
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estimated using instruments like spherical densiometer,

angle count method, qualitative ocular method, photo-

graphic recording of the canopy density, aerial photograph

interpretation, and biophysical spectral response modelling

using FCD Mapper (Abdollahnejad et al., 2017; Chan-

drashekhar et al., 2005; Goodenough & Goodenough,

2012; Keane et al., 2005; Korhonen et al., 2006; Nandy

et al., 2003). Biophysical spectral response modelling is

one of the most appropriate and rapid methods for canopy

density mapping using satellite data (Chandrashekhar et al.,

2005; Nandy et al., 2003). Unlike conventional methods,

biophysical spectral response modelling indicates growth

and changes in forest conditions over time including

degradation (Rikimaru et al., 2002). To correlate the FCD

with biomass and carbon, a precise forest inventory is

required at the ground level. The diameter at breast height

(dbh) and the height of individual trees are the most

common variables measured in forest inventories. These

variables also serve as input in growth and yield models

(Burkhart et al., 1972; Curtis et al., 1981; Wykoff et al.,

1982). The measurements made manually in the field are

subjective and can be prone to errors.

Terrestrial Laser Scanner (TLS), also known as ground-

based LiDAR, is an active remote sensing technique based

on a ranging sensor that is mounted on a ground-based

platform (Kelbe, 2015). It has gained high popularity

across numerous application domains (Tansey et al., 2009).

It can provide forest inventory parameters like dbh and

height with high accuracy which is generally used for tree

volume, biomass, and carbon estimation (Disney et al.,

2019; Liang et al., 2012; Wassihun et al., 2019). The dbh

can be estimated by fitting a circle, cylinder, or free-form

curve to a scattering point cloud at breast height (Kalwar,

2015; Tesfai, 2015). The positional accuracy of TLS is

within 0.5–10 cm which is more than the accuracy of air-

borne LiDAR, 0.1–1 m (Yang et al., 2013). The TLS has

the potential to improve forest inventories by providing

faster and more detailed information on the forest structure

than the time-consuming manual techniques (Dassot et al.,

2011). TLS can be a better option for collecting ground

inventory data with considerable accuracy (Wang et al.,

2014). Hence, the present study aims to develop a model

that can predict aboveground biomass (AGB) using TLS-

derived inventory data, and Landsat 8 OLI-derived FCD

and spectral indices.

Materials and Methods

Study Area

The study was conducted in Barkot Reserve Forest (30�
030 5200–30� 100 4300 N and 78� 090 4900–78� 170 0900 E)

(Fig. 1) of Uttarakhand, India. The study area has a mon-

soon-influenced subtropical humid climate. The tempera-

ture ranges from 1.5 to 40.5 �C and the average annual

rainfall is 1250 mm, the area lies in the moist deciduous

plant functional type in the northwest Himalayan foothills

(Srinet et al., 2020). The forest type present in the study

area is Northern Tropical Moist Deciduous Forest

(Champion & Seth, 1968). Shorea robusta is the dominant

tree species in the overwood, forming nearly pure stands

(Nandy et al., 2017). Its common associates are Lager-

stroemia parviflora, Terminalia belerica, Syzygium cumini,

Adina cordifolia, and Tectona grandis (plantation). The

common underwood species are Mallotus philippensis,

Ougeinia oojeinensis, Ehretia laevis, and Cassia fistula.

Methodology

The methodology used in this study involves image anal-

ysis, ground truth data collection and the collection of TLS

point cloud data. The detailed methodology of the study is

given in Fig. 2.

Forest Canopy Density Classification

Landsat-8 OLI satellite imagery of 12 February 2015 was

used to generate FCD classes using FCD Mapper software

Fig. 1 Location of the study area
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(Rikimaru et al., 2002). FCD Mapper is a semi-expert

system that combines four indices, viz., Advanced Vege-

tation Index, Bare Soil Index, Shadow Index, and Thermal

Index, to classify forest canopy density into 10 classes with

10% intervals (Nandy et al., 2003). From each FCD class, a

minimum of two sample points were selected to collect the

ground truth data. To ensure the collection of ground truth

data from the same FCD classes, 3 9 3 cells were selected

wherever possible. At each sample location, FCD was

measured at five points (four corners and one at the centre)

in each 30 m 9 30 m plot using a spherical densiometer.

The correlation coefficient was used to validate the FCD

classes generated by FCD Mapper with FCD classes

measured in the field.

Terrestrial Laser Scanning

From each FCD class (generated by FCD Mapper), sample

points were selected purposively to collect the TLS data.

At each point, a square plot of size 10 m 9 10 m was

established. Undergrowth was cleared wherever it

obstructed the line of sight of TLS. Each tree of the sample

plot was tagged by using white numbered paper (Fig. 3a).

The point cloud LiDAR data acquisition was carried out

from four positions in each plot i.e. one from the centre of

the plot and three from outside the boundary of the plot

using a Riegl VZ-400 TLS (RIEGL Laser Measurement

Systems GmbH). For central scanning, 0.03 mrad angular

resolution at 30–130� vertical angle and 0–360� horizontal
angle was used. For outer scanning, the angular resolution

and vertical angle were similar to central scanning but the

horizontal angle was reduced to 0–120�. Three circular

reflectors were fixed inside the plot ensuring that these

reflectors are visible from three outer scan positions and

one central scan position of TLS. The three outer scan

positions were fixed at 10–15 m away from the boundary

of the plot to capture the point cloud of the whole tree.

A Nikon camera was mounted at the top of the Riegl VZ-

400 TLS. This camera was set in such a way that it auto-

matically took images after the completion of each scan

(13 images in the central scan and 4 images in the outer

scan). These images were used to colourize the point cloud

data for better visualization during processing. Circum-

ference at breast height (CBH) of each tree within each plot

was measured at 1.37 m above the ground level using

linear tape and the height of each tree was measured using

a laser range finder.

TLS Data Processing

The point cloud data collected from 3 outer scanning

positions were registered with the point cloud data of the

central scanning position using RiSCAN PRO V1.8.1

software. The error during the registration of point cloud

data of 3 outer scanning with central scanning is given as

standard deviations in Table 1. An error of up to 2 m in the

Fig. 2 Methodology adopted in

the study
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form of a standard deviation is acceptable (RiSCAN PRO,

2013). The minimum and maximum average standard

deviation in multiple scan registration were 0.004 m and

0.054 m, respectively (Table 1). The overall average error

of multiple registrations was 0.018 m which is slightly

higher than the average error (0.016) reported by Kalwar

(2015). The registered point cloud data of each scan

position was exported to ASCII format. All exported

ASCII format point cloud data were merged to form a

single data in CloudCompare V 2.6.3 software.

Plot and Tree Extraction and Measurement

The plot of 10 m 9 10 m was extracted from the merged

point cloud data using the cross-section and segmentation

tool in CloudCompare V 2.6.3. The length and breadth of

the plot were measured by the point-picking tool. Plot

Fig. 3 TLS scanning and

processing; a tree tagging and

placement of reflector in field,

b plot extraction (point cloud),

c plot extraction (RGB), d tree

extraction (point cloud), e tree

extraction (RGB), f tree stem

extraction for identification

(RGB)

Table 1 Errors in multiple scan

registration
Plot Outer scan positions Average (m)

Position 1 (m) Position 2 (m) Position 3 (m)

1 0.028 0.033 0.019 0.026

2 0.011 0.009 0.033 0.017

3 0.020 0.039 0.015 0.024

4 0.009 0.003 0.008 0.006

5 0.007 0.003 0.008 0.006

6 0.005 0.086 0.070 0.054

7 0.021 0.069 0.034 0.041

8 0.006 0.002 0.005 0.004

9 0.003 0.008 0.008 0.006

10 0.010 0.009 0.005 0.008

11 0.019 0.009 0.013 0.014

12 0.010 0.004 0.005 0.006
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extraction was facilitated by tagging trees using a white

numbered plate. However, the white numbered plate tags

were visible only in the colourized (RGB) mode of point

cloud data. The extracted plot in the scalar field and RGB is

shown in Fig. 3b, c. Similarly, each tree was extracted

from each plot by using the cross-section and segmentation

tool in CloudCompare V 2.6.3. After the extraction of a

tree from the plot, a connected component was used to

separate the component of other trees and branches which

were intermixed with the tree of interest. Then the tree was

exported to Point Cloud Library format.

The dbh and total height of each tree were measured

using the 3D Forest software. The different parameters

(tree position, tree dbh, tree height/tree length, stem curve,

and tree planner projection) can be measured from the

extracted trees (Trochta et al., 2017). In 3D Forest, two

approaches are possible for the measurement of the dbh of

the extracted trees. The first is randomized Hough trans-

formation (RHT) and the second one is the least square

regression (LSR). The LSR method may include the out-

lying points and lead to an overestimation of the dbh in

comparison to RHT. RHT is considered a more accurate

method than LSR (Krůček et al., 2015), and therefore, we

used this method (RHT) in this study. The reason behind

the difference in the measurement between LSR and RHT

methods is that the subset of points from which dbh is

calculated includes overhanging branches or points which

do not belong to the point cloud of a particular tree. This

error can be minimized by using the tree cloud edit func-

tion or the dbh cloud edit function. The reliability of dbh

and height measured from point cloud data was validated

with the dbh measured by tape and height measured by

laser range finder during field inventory.

Aboveground Biomass Estimation

The validated dbh was used to calculate the volume of each

tree by using the site and species-specific volumetric

equations (FSI, 1996). Dbh was used as a predictor vari-

able, and volume was used as the dependent variable to

calculate the volume of individual trees. By multiplying the

volume of the individual trees with the species-specific

wood density (FRI, 2002) and biomass expansion factor

(Haripriya, 2000), the AGB of the individual trees was

calculated. The AGB of all trees inside the plot was sum-

med to get the plot-level AGB. The plot-level biomass was

further converted to per ha AGB.

Aboveground Biomass Prediction Model

Different AGB prediction models (linear, logarithmic,

quadratic, power, sigmoid, and exponential) were fitted to

the data (Table 2). These models were evaluated based on

the values of coefficient of determination (R2), root mean

squared error (RMSE) (Montgomery et al., 2021), and

Akaike Information Criterion (AIC) (Akaike, 1972), and

the best model was selected. The parameters and fit

statistics for each model were estimated in R (R Core

Team, 2017). The variation in AGB as a function of FCD

classes was very low because of the absolute FCD classes.

Therefore, different spectral indices such as Enhanced

Vegetation Index (EVI) (Huete et al., 2002), Moisture

Stress Index (MSI) (Hunt & Rock, 1989), and Normalized

Difference Moisture Index (NDMI) (Gao, 1996) were

also used to predict AGB. A model representing AGB as a

function of the EVI, MSI, FCD, and NDMI was developed

for predicting the spatial distribution of AGB in the study

area.

Results

FCD Classes

A total of 11 FCD classes were generated (Fig. 4). The

total area classified by FCD Mapper was 8429.3 ha. Of

this, 22.22% (21% was covered by non-canopy class and

1.22% area had less than 10% canopy cover) was non-

forest area and the remaining 77.78% was forest area. The

distribution of the different canopy density classes is pre-

sented in Fig. 5a. Among the FCD classes, the maximum

area was under class 8 (70–80%) and the minimum area

was under class 1 (1–10%). Density classes generated from

FCD Mapper and field measurement showed a strong

positive correlation (r = 0.96) (Fig. 5b).

Table 2 Tested biomass models

with equation and coefficients,

their respective coefficient of

determination (R2), root mean

squared error (RMSE) and

Akaike’s Information Criteria

(AIC) (B is Biomass and FCD is

forest canopy density generated

by FCD Mapper)

Models Equation R2 RMSE (Mg ha-1) AIC

M1 Linear B = - 148.09 ? 97.03FCD 0.88 90.60 145.28

M2 Logarithmic B = - 370.90 ? 475.65logFCD 0.82 111.48 151.00

M3 Quadratic B = - 41.42 ? 94.38FCD ? 0.22(FCD)2 0.88 96.55 148.28

M4 Power B = 36.48FCD1.36 0.87 93.14 146.68

M5 Sigmoidal B = Exp(7.56–8.83/FCD) 0.87 91.47 146.98

M6 Exponential B = 118.48exp(0.20FCD) 0.82 110.32 150.74
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Tree Extraction and Measurement

We extracted 96% of individual trees from the LiDAR

point cloud. The numbering of each tree was found useful

in identification and extraction. The top view was found

useful in plotting and individual tree extraction, whereas

the front view, back view, and side views in CloudCom-

pare V 2.6.3 were found useful in tree identification. The

extracted tree is shown in Figs. 3d, e, and f. The correlation

between TLS-measured dbh and field-measured dbh was

0.99, whereas the correlation between TLS-measured

height and field-measured height was 0.96. The TLS-

measured dbh and height were strongly and positively

correlated with field-measured dbh and height (Fig. 5c, d).

Model Development

All the parameters of all the models were significant at a

95% confidence interval except the quadratic form of the

model. Hence, the quadratic form of the model was

excluded from further analysis because of insignificant

parameters (p[ 0.05). The logarithmic form of the model

described 81% of the variation in total AGB with the

Fig. 4 Forest canopy density (%) map of the study area

Fig. 5 a Area covered by forest

canopy density (FCD) classes,

b relationship between field-

measured FCD and FCD

Mapper-based FCD, c field-

measured dbh versus TLS-

measured dbh, d field-measured

height vs TLS-measured height
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highest RMSE and AIC than other models (Table 2). The

power and exponential form of the model overestimated

the AGB for lower FCD classes (Fig. 6). Therefore, the

logarithmic, power, and exponential form of models were

also excluded from further analysis. Out of the remaining

two models, the linear model had the highest value of R2

(0.88) and the lowest value of RMSE (90.60 Mg ha-1) and

AIC (145.28) (Table 2). Considering fit statistics, we

selected the linear form of the model as the best AGB

prediction model although the difference between the lin-

ear and sigmoidal forms of the model was very small.

Because of low variability in AGB due to the absolute

FCD classes, the model was further extended using a few

spectral indices (Enhanced Vegetation Index (EVI),

Moisture Stress Index (MSI), and Normalized Difference

Moisture Index (NDMI)) generated from Landsat-8 OLI

satellite data. The multiple linear regression model devel-

oped by using additional indices described more than 90%

(R2 = 0.91) variation in AGB (Eq. 1).

AGB ¼ 3730:632� 6547:346� EVI� 699:153�MSI

þ 757:810� FCD� 6701:413� NDMI

ð1Þ

The AGB map (Fig. 7) of the study area was generated

from the developed multiple linear regression model. The

average AGB of the study area was found to be

374 Mg ha-1 and the total AGB was 30,24,550 Mg.

Discussion

FCD Classes

FCD classification using satellite images is one of the

fastest and most cost-effective methods of forest canopy

density classification. FCD classification generated 11

canopy density classes, where 10 classes were the forest

canopy classes and one class was a non-canopy class. The

10 forest canopy classes ranged from 1 to 100 at an interval

of 10 per cent (Fig. 4). However, the area with less than 10

per cent canopy cover was not considered as forest (FSI,

2021). Hence, the two classes were combined (FCD class 0

and 1) as non-forest classes. The number of forest canopy

density classes generated by this method is more than those

generated by other methods (Nandy et al., 2003). This

study showed a correlation coefficient (measured between

canopy density classes of FCD mapper and field inventory)

of 0.96 (Fig. 5b) which is higher than other similar studies

(Chandrashekhar et al., 2005; Nandy et al., 2003). The

correlation coefficients between canopy density classes of

FCD mapper and field inventory were 0.95 (Chan-

drashekhar et al., 2005) and 0.92 (Nandy et al., 2003). FCD

Mapper can stratify forest canopy density into 10 classes

and can detect small changes in the forest canopy and

hence, can be used as a superior method for forest canopy

density classification (Nandy et al., 2003).

Tree Extraction and Measurement

In this study, 96% of individual trees were extracted from

the TLS data which is higher than in several other studies.

Thies et al. (2004), Tesfai (2015), Kalwar (2015), and

Othmani et al. (2011) extracted 52%, 87%, 89%, and

90.6% of the trees, respectively. Four reasons may explain

a higher percentage of individual tree extraction in the

present study. The first reason: in this study, only trees with

dbh[ 5 cm were considered. Larger trees are easier to

detect and extract from the TLS point cloud data. The

second reason: each tree of the plot was numbered and

tagged. The numbering and tagging of the individual trees

significantly improved the identification after extraction.

The third reason: four scans were carried out for each plot.

This increased the probability of coverage of the individual

trees in scanning. The fourth reason: the forest had rela-

tively larger-sized trees and the stand density was low. The

low stand density provided higher visibility to the laser

scanner. In a plantation with a stand density of

16,552 stems ha-1, tree detection was only 61% (Seidel

et al., 2013). Another reason could be the smaller size of

the plot (10 m 9 10 m). However, Seidel et al. (2013)

detected only 61% of individual trees from 2 m 9 2 m

Fig. 6 Curves of different aboveground biomass prediction models

overlaid on observed data
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plots. In contrast, Bienert et al. (2007) detected 97.4% of

trees. Hence, the higher tree detection rate, in this case, was

due to the tree tagging, large size trees, a large number of

scans (4 scans), and low density per unit area. The tree

detection rate can be increased by increasing the number of

scanning but it also depends on the degree of density of

stand growth, slope, and extent of undergrowth (Tesfai,

2015).

The accuracy of tree detection, extraction, and mea-

surement are also displayed by the higher degree of cor-

relation between TLS-measured dbh and field-measured

dbh (r = 0.99) (Fig. 5c). In a study using TLS and field

inventory in Dehradun, India, Haldar (2016) found the

same degree of correlation (r = 0.99) between TLS-mea-

sured dbh and field-measured dbh. In a similar study, Sium

(2015) found a correlation of r = 0.98 between TLS-mea-

sured dbh and field-measured dbh. Similarly, Kalwar

(2015) found a correlation of r = 0.97 between TLS-mea-

sured dbh and field-measured dbh while Kelbe (2015)

found a correlation of r = 0.89. This study found a high

degree of correlation between TLS-measured height and

field-measured height (r = 0.96) (Fig. 5d) which is higher

than the correlation found by Sium (2015) (r = 0.86) and

Fig. 7 Spatial distribution of

aboveground biomass (Mg

ha-1)
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Kalwar (2015) (r = 0.87), but, lower than the correlation

(r = 0.99) found by Haldar (2016).

Model Development and Selection of the Best
Model

The biomass of individual trees generally follows the

power function with individual tree variables (Bhandari &

Chhetri, 2020; Kebede & Soromessa, 2018; Pastor et al.,

1984; Sharma et al., 2017; Shrestha et al., 2018). However,

stand-level AGB followed a linear function with FCD

classes in this study. Higher FCD classes either have a

higher stand density or bigger-sized trees than the lower

FCD classes. High stand densities and big-sized trees

always contribute to forming a linear relationship between

stand-level AGB and FCD classes.

Multiple Linear Regression Model and Biomass
Map

FCD classes ranged from 1 to 10 in absolute values. This

raised an issue of low variability in AGB if only FCD

classes were used as predictor variables. This limitation of

the model was addressed by including spectral indices in

the model which resulted in a multiple linear AGB pre-

diction model (R2 = 0.88, RMSE = 72 Mg ha-1). The

developed model predicted an average AGB of

374 Mg ha-1 and a total of 30,24,550 Mg AGB of the

study area (Fig. 7) which is slightly lower than the

observed AGB in the field (458 Mg ha-1).

TLS has been used for biomass prediction in a variety of

forest conditions and species. In a study, Takoudjou et al.

(2017) used TLS data to predict large tropical tree biomass

and calibrate allometric models. In a similar study, Calders

et al. (2015) compared TLS-derived biomass with

destructively estimated biomass and found a high degree of

correlation. Estimation of individual tree biomass is pos-

sible with high automation and accuracy by reconstructing

the stem from TLS point cloud data (Yu et al., 2013). Data

retrieved from TLS improved the predictive capacity of the

biomass model, especially for branch biomass (Kankare

et al., 2013). They also suggested the use of stem curves

and crown size geometry from TLS for allometric biomass

models rather than statistical 3D point metrics. Branch

biomass was predicted using the TLS-measured data with

higher accuracy than conventional allometric models

(Hauglin et al., 2013). All these studies developed a model

to predict the biomass of individual trees using TLS. These

models still require the measurement of individual tree

parameters (dbh, height, or crown) to predict the individual

tree biomass. These models have limited scope to be

applied in a larger area as this will increase the cost and

time. The AGB prediction model developed in this study

used FCD classes and spectral indices which can easily be

derived from satellite imagery. The advantage of using

such models is that they provide a cost-effective and less

time-consuming method of biomass prediction at local,

regional, and global levels.

Conclusion

TLS is one of the most accurate ground-based RS tools for

forest inventory data collection. On the other hand, FCD

Mapper is one of the fastest tools for the classification of

forest canopy density. It can classify the FCD into a larger

number of classes with a higher level of accuracy than

other RS-based methods. The combined application of TLS

and FCD Mapper along with satellite data-derived spectral

indices may be one of the effective methods for forest AGB

estimation. The results of this study were based on a case

study from a particular forest, and therefore the application

of the model developed in this study should be restricted to

similar forest areas. Further studies in the estimation of

biomass using FCD classes and TLS data from a larger

number of TLS plots and a larger geographical region are

recommended to make the model applicable to a larger

geographical area.
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