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Abstract
Land cover dynamics were analyzed temporally and spatially in the Al-Hubail wetland (Al-Ahsa, Kingdom of Saudi

Arabia) to determine the evolution of the environmental status of this biologically and ecologically interesting area in

Saudi Arabia. Using remote sensing data, land cover changes were estimated for 36 years (1985–2021). For this analysis,

three images from 1985 (Landsat 5 MSS), 2003 (Landsat 7 ETM ?), and 2021 (Sentinel-2) were used to classify and detect

changes. A machine learning algorithm was used, and the images were classified into four main land cover classes: Water

bodies, hydromorphic areas, vegetation, and open ground. Change detection was performed for the year pairs 1985 to 2003

and 2003 to 2021. The results of this classification showed a significant increase in the area of hydromorphic areas and

vegetation. The results were checked with a confusion matrix indicating an overall accuracy between 89.3 and 92.8%. The

qualitative trend data show that the Al-Hubail wetland has changed significantly during the study period. Thus, a significant

expansion of the wetland was observed in conjunction with an increase in agricultural drainage toward the wetland. This

analysis shows the strong anthropogenic pressure on the area and highlights the need to strengthen the existing laws to

preserve local biodiversity in the long term. It suggests that more efforts should be made to manage the water resources of

the region effectively.
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Introduction

Despite their multiple functions and services to human

society, wetlands are among the most threatened ecosys-

tems worldwide by human activities: Pollution, use of

biological resources, alteration of natural systems, impacts

of agricultural activities, etc. (Gardner & Finlayson, 2018;

Van Asselen et al., 2013; Xu et al., 2019). The Al-Ahsa

region in Saudi Arabia is characterized by a great diversity

of wetland ecosystems and natural resources. This diversity

is related to the large number of endemic species they host

(Al-Dakheel et al., 2009; Al-Hussaini, 2005; Al-Sheikh &

Fathi, 2010; Chouari, 2021b; Eid et al., 2020; Fathi et al.,

2009; Salih, 2018; Youssef et al., 2009). However,

establishing a drainage network in Al-Ahsa Oasis has led to

increasing pressures on natural ecosystems and their bio-

diversity. These human pressures, depending on their

intensity, lead to quantitative (degradation or fluctuation of

the ecosystems’ surface) and/or qualitative changes,

resulting in dysfunction and loss of bioecological values of

the natural environments (Abdel-Moneim, 2014; Almadini

& Hassaballa, 2019; Al-Obaid et al., 2017; Chouari,

2021b).

This paper aims to analyze the land cover evolution in

the Al-Hubail wetland through a mapping method using

multidata satellite imagery and a geographic information

system (GIS). Remote sensing is a powerful tool for

studying environmental issues (Al-Hussaini, 2005; Alma-

dini & Hassaballa, 2019; Chouari, 2021a, 2021b;

Maimaitijiang et al., 2015; Petropoulos et al., 2015; Rap-

inel et al., 2015). Satellite imagery provides valuable large-

scale and multi-temporal data on land cover change.

Image segmentation (texture line detection) is a key

problem in image processing. The classification is a
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significant step in this process. Classification seeks to

extract as much information as possible from images to

portray them in a comprehensible and interpretable man-

ner. An array of change detection methods works by cal-

culating a statistical probability of change. Post-

classification comparisons (PCCs) are commonly used

(Coppin et al., 2004; Deng et al., 2008; Lu et al., 2004; Wu

et al., 2017). Post-classification comparisons examine

changes between independently classified land cover data

over time. The simplest approach to detecting changes is

the post-classification comparison technique (PCC). PCCs

techniques are based on correctly coding the classification

findings for times 1 and 2 and correlating separately pro-

duced classed images (Singh, 1989). Post-classification

classifications look at how land cover data have changed

over time after being classed independently. The output is a

change map that shows the entire change matrix. Post-

classification comparisons have the following advantages:

(1) They eliminate the purpose for precise radiometric

calibration and reduce the effect of the atmospheric, sensor,

and environmental differences between multi-temporal

images; and (2) the technique provide a comprehensive

matrix of change directions in comparison to image dif-

ferentiation. However, Macleod and Congalton (1998)

report that post-classification comparisons have significant

limitations since they incorporate the inaccuracies of both

classifications. The PCC method is hampered by map

creation issues and is susceptible to cumulative errors

(Chen et al., 2003). A significant amount of auxiliary data

must also be given to classify both data sets. Furthermore,

the product of the precisions of every individual classifi-

cation and the output of the change map of two classifi-

cations generally have identical precisions. Other

constraints include the necessity for classifying products to

be created using knowledge, experience, and time (Lu

et al., 2004).

Other studies have been based on the classification

process of Cellular automata. Cellular automata are com-

puter-based ‘‘self-centered’’ modeling tools for which we

consider the recording of the behaviors of individuals of

elementary spatial entities called ‘‘cells’’ (Corgne, 2004).

Space is represented by a grid of structured cells on which

evolution rules are defined according to the principle of

spatial and temporal auto-correlation. For example, the

principle of the ‘‘Spacelle‘‘ model is adapted to the treat-

ment of landscape evolution and environmental simula-

tions. The spatialization of the cells around the central cell

can be done according to a four-neighbor topology, the von

Neumann neighborhood, or an eight-neighbor topology,

called the Moore neighborhood. To the cells of the four

cardinal points (North, East, South, West), Moore’s rule

adds the intermediate cells which are those of the North-

East, South-East, South-West and North-West. The interest

of this neighborhood in the dynamics of land occupation

lies in the fact that considers all directions, especially when

there are no obstacles (Dubos-Paillard et al., 2004; Lan-

glois, 2001).

Among the various models and approaches that have

been developed, some commonly used statistical tech-

niques are based on the Markov field model (MRF). Our

attention is focused on Markov random fields as a classi-

fication tool, because in recent years, MRF has become

more and more popular, especially in image processing.

Several reasons have led to the adoption of Markov fields a

research mode. One of these is the growing attention to the

role of spatial context in the classification of images,

whereby a label with pixels or groups of pixels is allocated

(Kato et al., 1994). In semantic segmentation in remote

sensing, the Markov random field paradigm has gotten a lot

of attention. In image processing, classification entails

assigning pixels in an image to the class to which they

belong based on a set of criteria. MRF is a probability

graph model that describes geographic neighborhood

interactions between pixels using a statistical approach.

The MRF model may successfully combine a given ima-

ge’s semantic properties and spatial neighborhood inter-

actions, reducing the influence of intraclass differences.

The MRF model consists of two sub-models (Zheng &

Yao, 2019). The first is a set of features that effectively

extract and model different features using a likelihood

function, which measures the probability of occurrence for

the characteristics of a pixel. The label field is the second

sub-model, which models spatial neighborhood interac-

tions among pixel class labels using the Markov potential

function and property to minimize pixel heterogeneity

within the same object. The feature field likelihood func-

tion in the conventional MRF model can only examine

pixel-based features. The potential label field function can

simulate neighborhood spatial interactions in a small geo-

graphic context, such as 4 or 8 neighborhood pixels.

Therefore, the classic MRF model has been expanded to

include more complex structures across a larger area

(Zheng et al., 2019). This study applied the classification

by Markov random fields on the colored composites of

multi-spectral images Landsat MSS from 1985, ETM ?

from 2003, and Sentinel-2 from 2021 Al-Hubail wetland.

This model is able to segment grayscale, color and textured

images properly.

In addition, the use of change detection approaches,

based on remote sensing and geographical information

systems, offers the possibility of monitoring the spread or

shrinkage of LULC classes and promotes an understanding

of their dynamics. Methods for detecting change are

essentially based on a multi-temporal analysis of satellite

images. A number of change detection techniques have

been developed to assess LULC changes using satellite
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data (Alwashe et al., 1993; Borak et al., 2000; Close, 2021;

Coppin et al., 2004; Lu et al., 2004; Rokni et al., 2015).

The results are of great importance for wetland manage-

ment decision-making and for predicting likely future

development scenarios.

Materials and Methods

Study Area and Data

To offset water losses from the Al-Ahsa Oasis irrigation

and drainage project in eastern Saudi Arabia, project

management developed a strategy based on the use of non-

traditional water sources such as treated wastewater and the

reuse of agricultural drainage water while reducing

groundwater pumping from wells. Excess agrarian drai-

nage water is discharged into two wetlands: Al-Asfar and

Al-Hubail, which were originally two sabkhas wetlands.

Al-Hubail wetland is connected to the D1 canal of the

Saudi Irrigation Organization (Fig. 1).

The wetland has a variety of natural environments

(temporary pools, open ground, sand dunes, etc.), with

ecosystems of great biological and ecological interest,

which, thanks to the presence of water, allow the

permanent and temporary settlement of exceptional flora

(macrophytes, algae, riparian vegetation, etc.) and fauna

(Tachybaptus ruficollis, Rallus aquaticus, Himantopus

himantopus, Egretta garzetta, Circus aeruginosus, Accip-

iter nisus, etc.). The site is one of the first refuges for

waterfowl in the Arabian Peninsula, and one of their resting

and feeding places. It attracts visitors, especially in winter,

to enjoy the natural landscape and observe migratory birds.

The birds migrate from cooler regions to areas with warmer

climates, including the Al-Hubail wetland. However, the

wetland water is now contaminated with heavy metals,

mainly from agricultural wastewater. The level of heavy

metals is generally higher than the international permissi-

ble limits and fluctuates seasonally (Alfarhan, 1999; Al-

Taher, 1999; Ashraf et al., 2020; Fahmy et al., 2011; Salih,

2018); (Fig. 2).

In order to assess the evolution of the Al-Hubail wet-

land, two Landsat images (MSS from 1985 and ETM ?

from 2003) and one Sentinel-2 image (2021) were used for

this analysis. All three images were acquired in the same

season to avoid confusion in classification due to phono-

logical changes. Because the area is often marshy and

flooded in the wet season and dry in the summer, satellite

imagery from the summer season (July and August) was

primarily used to extrapolate the diverse land covers

Fig. 1 Geographical location of the Al-Hubail wetland (eastern Saudi Arabia)
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clearly. The land cover maps generated due to the classi-

fications of the satellite images were then used for the

spatiotemporal comparison. All data and information used

in this study can be found in Table 1.

Classification of Satellite Images

The chosen satellite images underwent preliminary pro-

cessing, during which radiometric and geometric adjust-

ments were made (Fontinovo et al., 2012; Nguyen, 2015;

Wang et al., 2012). This included radiometric calibrations

Fig. 2 The flow chart of the applied methodology
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Table 1 All inputs for the classification of images in 1985, 2003 and 2021 (United States Geological Survey, 2022)

Images Bands and features Wavelength (lm) and description Resolution

(m)

Landsat 5 (MSS)

1985

Band 1 – Visible Green 0.5—0.6 60

Band 2—Visible Red 0.6—0.7 60

Band 3—NIR 0.7—0.8 60

Band 4—NIR 0.8—1.1 60

NDVI (Normalized Difference
Vegetation Index)

(B 4 – B3) / (B4 1 B3) (Near-Infrared – Visible) / (Near-
Infrared 1 Visible)

60

NDWI (Normalized Difference
Water Index)

(B4 – B5) / (B4 1 B5) Near-Infrared—Short-wave Infrared) / (Near-
Infrared 1 Short-wave Infrared

60

Landsat 7

(ETM ?)

(2003)

Band 1 – Visible 0.45–0.52 30

Band 2—Visible 0.52–0.60 30

Band 3—Visible 0.63–0.69 30

Band 4—Near-Infrared 0.77–0.90 30

Band 5—Short-wave Infrared 1.55–1.75 30

Band 6—Thermal 10.40–12.50 60 (30)

Band 7—Mid-Infrared 2.09–2.35 30

Band 8—Panchromatic 0.52–0.90 15

NDVI (Normalized Difference
Vegetation Index)

(B 4 – B3) / (B4 1 B3) (Near-Infrared – Visible) / (Near-
Infrared 1 Visible)

30

NDWI (Normalized Difference
Water Index)

(B4 – B5) / (B4 1 B5) (Near-Infrared—Short-wave Infrared) /
(Near-Infrared 1 Short-wave Infrared)

30

Sentinel-2 (2021) Band 1—Ultra blue (Coastal and

Aerosol)

0.421–0.457 60

Band 2—Blue 0.439–0.535 10

Band 3—Green 0.537–0.582 10

Band 4—Red 0.646–0.714 10

Band 5—Visible and Near

Infrared (VNIR)

0.694–0.714 20

Band 6—Visible and Near

Infrared (VNIR)

0.731–0.749 20

Band 7—Visible and Near

Infrared (VNIR)

0.768–0.796 20

Band 8—Visible and Near

Infrared (VNIR)

0.767–0.808 10

Band 8A—Visible and Near

Infrared (VNIR)

0.848–0.881 20

Band 9—Short-Wave Infrared

(SWIR)

0.931–0.958 60

Band 10—Short-Wave Infrared

(SWIR)

1.338–1.414 60

Band 11—Short-Wave Infrared

(SWIR)

1.539–1.681 20

Band 12—Short-Wave Infrared

(SWIR)

2.072–2.312 20

NDVI (Normalized Difference
Vegetation Index)

(B8—B4) / (B8 1 B4) (NIR—RED) / (NIR 1 RED) 10

NDWI (Normalized Difference
Water Index)

(B8—B12) / (B8 1 B12) (NIR—MIR)/ (NIR 1 MIR)
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to allow the transition from grayscale to apparent reflec-

tance, the parameters of which were taken from the

metadata of each image. After the geometric correction of

these images, the boundary of the study area was digitized

to crop the satellite images and extract the area of interest.

Moreover, all the field work was carried out with the help

of instruments like Differential Global Positioning System

(DGPS), topographic maps, and digital cameras. The exact

location of each area representing each land cover has to be

determined. These areas are called training areas. They

were used to classify the satellite images and evaluate their

accuracy (Table 2).

After pre-processing the images and deriving NDVI and

NDWI features, the images are classified utilizing Markov

random field model (MRF) to produce land cover maps of

the study area (Girard & Girard, 2010). Markovian mod-

eling of the image is a probabilistic modeling based on a

property of the images, namely the local interactions

between neighboring gray levels to define the different

regions of the image. In this study, we used during this

study, we worked with an image modeled by Markov

random fields and the Potts energy model using the simu-

lated annealing (SA) algorithm. More often, for this model,

the labels can represent a classification of the image. The

MRF model takes advantage of spatial class dependencies

(spatial context) among neighboring pixels in an image,

and temporal class dependencies between different images

of the same scene. The use of Markov fields makes it

possible to consider the property of influence of the

neighborhood of a point on the latter and to therefore insist

on the coherence between the class of a pixel and that of its

neighbors allowing to regularize the classification of

satellite images. According to Solberg et al. (1996), when

GIS field boundary data are included in the MRF model,

the classification accuracy of the MRF model improves by

8%. For the detection of changes in agricultural areas, 75%

of real class changes are identified by the MRF model,

against 62% for the reference model.

After selecting the channels to be subjected for the

classification, training areas were selected by digitizing

polygons of sufficiently large and homogeneous zones.

Based on the knowledge of the terrain, the plots were

located on each candidate image for classification. Their

outlines were delineated, avoiding the edge pixels to limit

the variability within the plots. This was done to

distinguish the following land uses on the satellite images:

Water bodies, hydromorphic areas, vegetation, and open

ground. The training plots were evaluated using a contin-

gency matrix representing the confusion between the

classes used for classification. This matrix was used to

redefine these areas to avoid such confusion as much as

possible.

Evaluation of the Detection of Changes

Change detection techniques assume that a change in sur-

face coverage results in a corresponding change in reflec-

tance. Recently, many change detection techniques have

been developed. Unsupervised Markov random field

(MRF) methods help detect changes in remote sensing

images (He et al., 2015). Markov random field (MRF) uses

spectral and spatial data in image processing (Gong et al.,

2014). MRF uses the maximum a posteriori (MAP) crite-

rion to take full advantage of the spectral properties of

pixels and the label field characteristic of their neighbor-

hoods to offer the best image analysis results (Gu et al.,

2017). Several approaches have been implemented for the

difference image generated by the change vector analysis

(CVA) method. MRF combines spectral and spatial CVA

data efficiently. A custom-designed Potts model was

developed to improve the accuracy of spatial information

weights (Hao et al., 2014).

When the Potts model is used to estimate the energy of

the label field in MRF, the weights adopted for each pixel

in the differential pictures are the same, regardless of the

gray value distribution of the pixels. Each pixel in a dif-

ferential image has its unique grayscale value and, conse-

quently, its unique probability of being altered. When the

gray value of a pixel is high, there is a greater probability

that it will change; on the other hand, when the gray value

is low, there is a greater probability that it will not change.

If you merely observe at the gray value, it can be chal-

lenging to determine whether or not there has been a

change in pixels with an intermediate gray level. In the

standard implementation of the Potts model, each pixel in

differential images is assigned the same penalty coefficient

when it is defined. This setting frequently results in

neighborhood spatial information, which leads to an

excessive amount of smoothing on areas that have been

adjusted for pixels with extraordinarily high or low gray

Table 2 Data collected during

training and testing for all

images

Water bodies Vegetation Hydromorphic areas Open ground

Images’ year Train Test Train Test Train Test Train Test

1985 40 80 45 91 53 88 40 115

2003 52 89 57 110 61 120 49 120

2021 38 68 53 115 72 120 40 92
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values (Gu et al., 2017). Since it considers the temporal

aspect of the information, the proposed model is appro-

priate for identifying the class changes among the dates on

which the multiple images were taken.

In the next step, a geographic information system-based

overlay technique was applied to obtain the spatial changes

in land cover over two time periods: 1985–2003 and

2003–2021. For each of the three four-class maps, a new

thematic layer was created with different combinations of

change classes. The result of this technique is a cross-

matrix with two entries that describes the main types of

changes in the studied area.

Spectral Bands and Features Used
for the Classification

The maps in Figs. 3, 4 and 5 are the results of the classi-

fication of MSS multi-spectral images from 1985,

ETM ? from 2003 and Sentinel-2 from 2021 by a Markov

field using the Potts model method as the sampling method.

Due to the presence of water and vegetation in the study

area and in order to obtain a very accurate classification,

the Normalized Difference Vegetation Index (NDVI) and

the Normalized Difference Water Index (NDWI) were

added outside the spectral band of the satellite imagery

according to the following formulas as input to the clas-

sification algorithm (Fig. 3a–c and Fig. 4a–c).

Fig. 3 a–c NDVI
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NDVI ¼ XNIR � XSWIR= XNIR þ XSWIR

NDWI ¼ XGreen � XNIR= XGreen þ XNIR

Figures 3a–c and 4a–c show the NDVI and NDWI

derived for each satellite images. In combination with the

spectral bands of the satellite images, these extracted

indices allow the classification of each image. Table 1

provides information on all spectral bands and indices that

contributed to the classification of the 1985, 2003, and

2021 images.

Results and Discussion

The Markov random field (MRF) method is used to detect

changes after creating the classification maps. The results

of this classification were compared with the accuracy of

the land cover maps and topographic maps. The findings of

land cover classification and change detection are intro-

duced in this section.

Validation of Land Cover Maps

The extraction of training data, the creation and training of

the classifier model, and, finally, the assessment of the

accuracy of the maps utilizing the test data are the three

processes in the image classification and generation of land

cover maps procedure. The number and technique of col-

lecting training and testing data affect the classification and

change detection quality in the first and third steps of this

process. Satellite image classification is used to detect

changes. Thus, in order to assess the producer’s accuracy,

Petropoulos et al., (2015) showed the importance of gen-

erating ground truth points using the random sampling

method. For this reason, in this work, the collection of

Fig. 4 a–c NDWI
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training and testing data was not only done by field sur-

veys, but DGPS and satellite imagery were also used in this

step to collect very reliable data. Table 2 shows the number

of training and test data extracted to train the classifier and

evaluate the accuracy of the maps produced in 1985, 2003,

and 2021 (Fig. 5a-c).

The derived land cover maps for 1985, 2003, and 2021

are shown in Figs. 5a-c. The extent of hydromorphic area

and vegetation classes can be visually seen on these maps.

Table 3 shows the confusion matrix for the classification

maps (Table 3).

The four land cover classes each have a distinct spectral

behavior in all the satellite images used: water bodies,

vegetation, hydromorphic areas and open ground. Also, the

comparison between the three contingency matrices cre-

ated for the years 1985, 2003, and 2021 shows a constant

Fig. 5 a–c Maps of land cover

Table 3 Average contingency

matrix for the three satellite

images of 1985, 2003, and 2021

(in %)

Classes Water bodies Hydromorphic areas Vegetation Open ground

Water bodies 90.3 6.8 2.3 1.6

Hydromorphic areas 6.2 84.9 3.2 4.8

Vegetation 2.4 4.8 90.1 3.1

Open ground 1.1 3.5 1.2 90.5
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improvement in the separability of the land cover classes.

V. A. Tolpekin and A. Stein (2009) explore the results of

class separability in super-resolution mapping on the basis

of Markov random fields (MRF). The authors systemati-

cally varied the separability of the classes, the scale factor,

and the smoothing parameters’ significance. The accuracy

of the generated land cover map is evaluated using the

kappa statistic at the fine resolution scale and the class area

proportion at the coarse resolution scale. According to the

research findings, MRF may now be used for more

extensive images, and the class separability can range

anywhere from poor to excellent.

The Accuracy Rating Estimator is the final step in the

image classification process (Foody, 2002). It is a question

of quantitatively evaluating the efficiency with which the

pixels were sampled by the Markov random field’s method.

There are different accuracy assessment models like the

accuracy assessment methods including the standard kappa

coefficient, overall accuracy, producer’s accuracy and

user’s accuracy. The overall accuracy estimator calculates

the number of pixels classified accurately in the image.

Validation of the classification consists of a statistical test

supported by a field visit (Nguyen, 2015; Petropoulos et al.,

2015). Markov random field correctly discriminates the

different classes of land use with the highest accuracy for a

2021 map derived from Sentinel-2 processing with a kappa

coefficient of 0.9 and a total accuracy of 91.5, followed by

a 2003 map derived from image processing of

ETM ? sensors with a kappa coefficient of 0.88 and a total

accuracy of 90.6, which verifies the effectiveness of the

proposed MRF model. The average accuracy resulting

from the combination of the four confusion matrices

developed for the three land cover maps is 88.9%. In

addition, the user’s accuracy measures how often the class

on the map is actually present on the ground. The pro-

ducer’s accuracy measures the number of pixels classified

to a class that accurately fits in to that class only (Patel &

Kaushal., 2010). A wide-field survey was performed and

Sentinel-2 images were used to collect ground truth (vali-

dation) data for 2021. The user’s accuracy ranged from

81.3 to 91.4%, while the producer’s accuracy ranged from

84.3 to 94.8%. Table 4 shows the producer and user’s

accuracy.

Taking into account the local interactions between each

pixel with the neighboring pixels made it possible to define

the different zones of the image. This advantage has made

it possible to obtain results reflecting the reality of the field

with an overall precision greater than 0.88, thus improving

the image classification process.

However, Gu et al., (2017) use an improved MRF to

detect changes. MRF uses linear weights to split unchan-

ged, uncertain, and modified pixels to improve spatial

database precision. Test results demonstrate the proposed

method can improve change detection accuracy. The rec-

ommended method can provide a change detection image

closer to ground reference data, resulting in higher accu-

racy and more accurate conclusions than classic MRF

methods that use the Potts model. While Zheng et al.,

(2019) proposed an object-based Markov random field

model with an anisotropic penalty matrix. The suggested

method could boost overlay accuracy (OA) and kappa

values by considering anisotropy between classes. The

suggested OMRF-AP model improved segmentation

accuracy on high spatial resolution remote sensing images

by 4 percent on average and 10 percent on OA and kappa.

Change Detection Results

To determine the extent of land cover change in the Al-

Hubail wetland, a geographic information system (GIS)

was overlaid to detect the differences between 1985 and

2003 in Fig. 6a and between 2003 and 2021 in Fig. 6b. The

change maps are shown in Fig. 6a–b and show significant

changes in the land cover of the study area.

Table 5 shows the area occupied by each land cover

class. Analysis of this table shows a significant increase in

hydromorphic areas and vegetated areas over 36 years.

Hydromorphic areas have increased from 7.91 km2

(2.69%) to 7.62 km2 (2.85%) from 1985 to 2003 and to

20.05 km2 (6.82%) by 2021.

Figure 7 shows the percent change in each land cover

between 1985 and 2021. Figure 7 shows different trends

for each land cover. Wetlands comprised about 1.4% of the

study area in 1985 and then increased sharply to over 6.8%

in 2021. Despite the ongoing conflict between water and

sand in the area, the area of wetlands (aquatic and hydro-

morphic) gradually increased from about 4.09% in 1985 to

Table 4 Evaluation of accuracy

resulting from satellite image

processing

Classes Producer’s accuracy (%) User’s accuracy (%)

1985 2003 2021 1985 2003 2021

Water bodies 89.1 92.3 94.6 88.2 91.3 91.4

Hydromorphic areas 84.3 88.9 89.8 81.3 86.2 87.4

Vegetation 91.6 90.8 94.8 90.6 89.5 90.1

Open ground 85.1 88.3 90.7 90.1 90.2 91.4

594 Journal of the Indian Society of Remote Sensing (March 2023) 51(3):585–599

123



5.21% in 2003 and then rapidly increased to nearly 12% in

2021. The vegetated area also increases gradually from

0.38% to 2.32% between 1985 and 2021. Overall, there is a

strong trend of increasing water and vegetated areas

between 1985 and 2021. At the same time, there is a strong

decrease in open ground area, which is related to an

increasing input of drainage water into the Al-Hubail

depression (Fig. 7). This same dynamic was detected by

Chouari (2021b), studying the evolution of the Al-Asfar

wetland to the east of Al-Ahsa Oasis. The author indicates

that the wetland area has increased significantly for the past

three decades. The changes detected in the study area can

be explained by the discharge of agricultural drainage

water and semi-treated water from sewage treatment plants.

According to Mccauley (2015), tracking semi-permanent

and permanent wetlands in the Prairie Pothole region of

North Dakota, the USA, showed that water bodies repre-

sent 86% higher in wetlands than they were historical. The

differences can be attributed to consolidation drainage,

which has decreased the abundance of aquatic invertebrates

and changed the land cover of these wetlands.

Tables 6 and 7 show the result of the contingency table.

They summarize the main changes in land cover during the

periods 1985–2003 and 2003–2021.

As shown in Table 6, most hydromorphic areas

increased in size (about 2.80 km2 and 9.89 km2, respec-

tively) due to the conversion of previously open ground

areas.

Fig. 6 a–b Change detection maps

Table 5 Area coverage of land

cover classes for the study area

from 1985 to 2021

Classes 1985 2003 2021

Km2 % Km2 % Km2 %

Water bodies 4.12 1.4 6.95 2.36 3.71 1.26

Hydromorphic areas 7.91 2.69 8.37 2.85 20.05 6.82

Vegetation 1.72 0.55 2.83 0.96 6.82 2.32

Open ground 280.18 95.32 275.78 93.83 263.35 89.59

Total 293.93 100 293.93 100 293.93 100
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A huge transformation between vegetation and hydro-

morphic areas (1.02 km2) also occurred between 2003 and

2021. As shown in Table 7, the conversion of approxi-

mately 5.01 km2 of open ground resulted in a vegetated

area.

The results show that methods based on the Markov

random field (MRF) are effective methods for detecting

changes in remote sensing images. Several variants of

Markov models have been developed, like Markov chain,

Markov trees, Coupled hidden Markov models, Dempster–

Shafer theory or that fuzzy logic (Chen & Cao, 2013; Gong

et al., 2014; Gu et al., 2017; Hao et al., 2014; He et al.,

2015; Pieczynski, 2003). These Markovian models have

significantly improved image classification results, yielding

good results. Unlike these works, our model was applied to

Landsat MSS, ETM ? and Sentinel-2 images and the

results are satisfactory and reflect the reality of the field.

Markov models are tools to solve the problem of

uncertainty and imprecision contained in images. In image

processing, this type of method’s success is due to their

ability to produce satisfactory results, when the various

noises present in the image considered are significant and

when the data correspond well to the model used. The

Markov fields used in this study for the classification of

Landsat MSS, ETM ? and Sentinel-2 images have been

used by several authors in previous researches for the same

image classification objective. The advantage of the Mar-

kov field model in image processing compared to so-called

‘‘local’’ models is its ability to take into account all the

information available on the observed image (Pieczynski,

2003).

However, the classic label field cannot accurately

identify the spatial relationships between neighboring

pixels. Studies often develop a change detection method

Fig. 7 Evolution of land cover

in the Al-Hubail wetland

(1985–2021)

Table 6 Details of the change in

wetland area between 1985 and

2003 in km2

Classes 1985

Water bodies Hydromorphic areas Vegetation Open ground

2003 Water bodies 2.49 0.57 0.21 3.68

Hydromorphic areas 0.32 3.74 1.31 2.80

Vegetation 0.29 0.90 0 1.64

Open ground 0.92 2.33 0.34 272.19

Table 7 Details of change in

wetland area between 2003 and

2021 in km2

Classes 2003

Water bodies Hydromorphic areas Vegetation Open ground

2021 Water bodies 2.48 0.37 0.65 0.21

Hydromorphic areas 3.46 3.91 2.79 9.89

Vegetation 0.79 1.02 0 5.01

Open ground 1.12 2.29 0.13 259.81
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based on an improved MRF to solve these problems.

However, the classic label field could not identify spatial

relationships between pixels. To address these difficulties,

researches often use an upgraded MRF. Due to imprecision

in identifying neighbor pixel relationships and determining

weights, MRF spatial information cannot be utilized

entirely (Chen & Cao, 2013). Inaccurate spatial relation-

ships and spatial information weights result in an overly

smooth change map. MRF must balance detail preservation

with denoising.

In addition, the spatial neighborhood link between pix-

els in the classic Potts model is typically defined as either 0

or 1, which is too absolute and imprecise. This method has

a propensity for making excessive use of spatial data and

smoothing out the change detection maps (Gu et al., 2017).

It is recommended that advanced MRF models be provided

in research to overcome these limitations. This will ensure

more incredible performance with less overall error

detection and more resilient performance to parameter

change. According to He et al. (2015), to improve the detail

preservation capabilities of MRF, the local uncertainty in a

particular window is first evaluated. Then, it is integrated

into the spatial energy term of the MRF model. This is

done to raise the MRF’s capabilities. The proposed local

uncertainty MRF (LUMRF) method produces a refined

change map. According to the findings, in comparison to

MRF, LUMRF offers superior performance with lower

overall error detection and is more resistant to parameter

changes.

Conclusion

This study aimed to record and analyze the land cover

changes in the Al-Hubail wetland in northeastern Al-Ahsa,

eastern Saudi Arabia. The study area has changed dra-

matically during the last two decades due to various rea-

sons, such as the discharge of increasing amounts of

irrigation water into the wetland. Multi-spectral and tem-

poral satellite images (Landsat 5 MSS, Landsat 5

ETM ? and Sentinel-2) from 1985, 2003 and 2021 were

used to achieve this objective. After pre-processing the

satellite images and in order to achieve a highly accurate

classification, the water and vegetation indices (NDVI and

NDWI) were integrated with the spectral bands of the

satellites and used as input for the classification process. To

classify the images and generate land cover maps for dif-

ferent selected years, a Markov random field (MRF) with

the Potts energy model is used to analyze the land cover

between 1985 and 2003 and 2003–2021. We were inter-

ested in a classification integrating the spatial constraint in

the approaches of classification of the multi-spectral ima-

ges by using the fields of Markov. The success of this type

of method is due to its ability to produce, when the various

noises present in the image are significant, and when the

data correspond well to the model used, important results.

The integration in the classification process of the spatial

constraint which resulted in taking into account the local

interactions between each pixel with the neighboring pixels

made it possible to define the different parts of the image.

This advantage has made it possible to obtain results

reflecting the reality of the field with an overall precision

greater than 0.9, thus improving the image classification

process.

In general, the results showed a remarkable change

within the Al-Hubail wetland and its surroundings between

1985 and 2021. The most significant change was found in

the hydromorphic area class, which increased from 2.32

km2 in 1985 to 9.89 km2 in 2021 at the expense of the open

ground class. This study expresses that remote sensing and

GIS are important technologies for the temporal analysis of

environmental phenomena that would otherwise not be

possible with obsolete techniques. With these technologies,

it is now possible to detect changes more accurately,

quickly, and at a lower cost.
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