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Abstract
Remote sensing utilization has become a new and well-accepted trend in the use of multisource images at different

processing levels for numerous applications such as the classification of the urban area. Throughout this study, in order to

fully exploit information for the classification of the urban land cover, feature-level data fusion of a coarse resolution

hyperspectral long-wave infrared (LWIR) image and a very high-resolution visible-light image are employed. However,

optimum parameter determination for the support vector machine (SVM) classifier and the feature subset pick strongly

affect the classification performance of these data. Taking into consideration the complex relationship between these two

obstacles, the parameters of SVM and the feature subset by particle swarm optimization (PSO) are the simultaneous

determinants proposed in this paper. For this purpose, on the one hand, vegetation index, spectral and textural features, and

morphological building index (MBI) obtained from visible data are extracted. On the other hand, PCs are derived from

hyperspectral LWIR. Experimental implementations of the 2014 Data Fusion Contest dataset showed that the suggested

approach improved the classification efficiency by up to 7% compared to SVM without PSO. Furthermore, the obtained

findings illustrate the superiority of the suggested technique compared to other data fusion experiments with the same data.

Keywords Hyperspectral thermal infrared � Feature-level fusion � SVM � Parameter determination � Feature selection �
Particle swarm optimization

Introduction

Nowadays, a substantial increase in interest in fusing

remotely sensed data from multiple aerial and satellite

imaging sensors is witnessed. The initial data used in this

work is derived from sensors including; long-wave infrared

radiation (LWIR), hyperspectral, multispectral, light

detection, and ranging (LiDAR), and synthetic aperture

radar (SAR) data.

A plethora of urban applications such as the classifica-

tion of the urban land cover (Bigdeli et al., 2021; Li et al.,

2015; Lu et al., 2015; Samadzadegan et al., 2017), detec-

tion of heat islands (Bulatov et al., 2020; Heldens et al.,

2013), and monitoring of the urban infrastructure (Tarighat

et al., 2021) are performed by employing different remote

sensing fusion techniques. However, urban land cover

classification is believed to remain a challenging issue

considering a variety of land covers such as diverse

building materials or vegetation types (Lu et al., 2015).

Accordingly, urban land cover classification with only one

type of remotely sensed data like multispectral images may

not yield accurate and satisfactory results (Abdi et al.,

2017). Therefore, numerous urban studies leveraged the

simultaneous application of multi-resolution and multi-

sensor data from the same region (Abdi et al., 2017; Big-

deli et al., 2021; Lu et al., 2015; Samadzadegan et al.,

2017). Many of these efforts were focused on urban land

cover classification (Abdi et al., 2017; Bigdeli et al., 2021;

Samadzadegan et al., 2017; Zhang et al., 2012; Zhong

et al., 2017).

Many works have been published on decision-based

data fusion, particularly between hyperspectral LWIR and

visible images with a high resolution, for the classification

of the urban land cover (Bigdeli et al., 2021; Samadzade-

gan et al., 2017; Zhang et al., 2012). Also, for instance,
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Bigdeli et al. (2021) suggested a decision-based fuzzy

integral and modification of PSO for urban land cover

generation utilizing thermal infrared hyperspectral data as

well as high-resolution RGB images. Lu et al. (2015)

demonstrated a decision-level fusion approach for classi-

fying residential land cover utilizing those mentioned

earlier. Moreover, Abdi et al. (2017) have proposed a

decision-based urban classification system, which resulted

in improved performance compared to single-sensor clas-

sification. Nevertheless, many works focused on the fea-

ture-level data fusion for the classification of urban land

cover urban by the utilization of hyperspectral LWIR as

well as very high-resolution visible images. These scarci-

ties might originate from the different nature of the two

datasets (RGB image with high resolution and thermal

infrared hyperspectral data). As a result, those two methods

can be used as complementary (Dalponte et al., 2008).

Hence, feature-level fusion with hyperspectral LWIR and

RGB data expects better results for urban land cover

classifications.

It is believed that in the discernment of the classes of

land cover that are spectrally analogous, hyperspectral

remote sensing images perform a critical function (Feng

et al., 2019; Hänsch et al., 2020). This data source is known

for its very high spectral resolution, typically containing

hundreds of observation bands. Based on its spectral rich-

ness, addressing the urban application, which requires

extraordinary discrimination potentials in the spectral area,

is achievable (Hasani et al., 2017). However, classifying

this high-dimensional feature space is difficult, and ordi-

nary parametric classifiers are hugely influenced by the

Hughes phenomenon (Lu et al., 2015; Ma et al., 2013).

For improving the classification performance of high-

dimensional data, several methods are recommended

including parameter determination of classifier (Liu et al.,

2014; Phan et al., 2017) and selection of features

(Samadzadegan et al., 2017). Numerous researchers

investigated the optimization of the techniques mentioned

earlier. They discovered that the highest accuracy because

of the dependence of parameters and features might result

from feature selection and simultaneous parameter deter-

mination (O’Boyle et al., 2008) The grid search is a con-

ventional way to determine the accuracy, however, the

highest accuracy is obtained because the classifier’s

parameters strongly impact its execution, (Hsu et al.,

2003a). Additionally, the classification precision and

computation cost can be determined by the selection

approach for feature subset (Lin et al., 2008).

Also, Du et al. (2017) implemented PSO to optimize

SVM parameters for precipitation prediction; their findings

confirmed the supremacy of the suggested approach com-

pared to the traditional models. The other fundamental

level in the classification of high-dimensional data is

feature selection. Taşkın et al. (2017) proposed a novel

algorithm called high-dimensional model representation

for feature selection. Its execution was finalized, conclud-

ing that the performances are improved in classification

accuracies and computational times. Considering that

parameter values may affect the feature subset selection

and vice versa, other studies confirmed that the fittest

classification achievement is achieved by selecting the

classifier determination and feature at the same time by an

optimization technique (Samadzadegan et al., 2012).

Recently, a study conducted by (Abdulrahman, 2021), used

SVM parameters, and the feature subset by PSO, which

have a complicated relationship when joined together; thus,

they are used to optimize the final classification outcome.

On the other hand, Marwaha et al. (2015) used two

datasets, airborne LWIR hyperspectral image, and high-

resolution RGB data, with ground-truth image tested on

Thetford Mines, sited in the region of Québec, Canada. The

authors performed a comparative analysis between pixel-

based and object-based analysis approaches to classify

airborne hyperspectral thermal data. The results on the

thermal hyperspectral image confirm that the object-ori-

ented algorithm works better in classifying objects with

regular geometries and well-defined edges. At the same

time, its performance drops with more confused and less

defined patterns.

Therefore, the technique that is employed is based on

classifying hyperspectral thermal and visible spectra ima-

ges using an optimized feature-level image fusion

approach. This work generates several features consisting

of spectral and textural features, the vegetation index, the

morphological building index (MBI), and PCs from

hyperspectral thermal imagery (LWIR) data. The obtained

results are used to classify all objects and discriminate all

classes (bare soil, roofs, road, grass, tree, etc.) in a complex

area. The parameters of the SVM classifier and the selec-

tion of the feature subset using PSO are determined by the

proposed technique to improve the combined thermal and

visible hyperspectral classification performance.

Optimum Hybrid Classification
of Hyperspectral Thermal Imagery and VIS
Data

According to the Particle Swarm Optimization, the pro-

posed hybrid classification of hyperspectral thermal ima-

gery and VIS data is summarized in a flow chart in Fig. 1.

The hybrid feature space generation, the classification

engine based on SVM, and the optimization with Binary

PSO are three main parts that compose the proposed flow

chart.
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In order to fuse the hyperspectral thermal imagery and

visible data, a hybrid feature space, including the spectral

and textural features, is produced:

1. A series of initial processes are performed on the

hyperspectral thermal data to remove the noisy data

from the inputs, and then the principal components are

extracted.

2. These data are added to the original hyperspectral

bands.

3. The Gabor filter, vegetation index, and MBI are taken

from the visible data, which comprise the spectral

feature space.

By joining extracted features, the hybrid feature space is

defined, and finally, normalization is utilized to convert

data into a predetermined range [0, 1] so as to reduce the

numerical complexity.

The SVM parameters consist of (1) regularization

parameter C, which defines the balance between decreasing

the training error and subduing the difficulty of the model;

(2) Kernel parameters (Wu et al., 2007). Moreover, to

maintain the endurance of SVM in high-dimensional space,

the SVM is chosen as the classifier (Melgani et al., 2004).

However, the two primary difficulties in applying the SVM

classifier for high-dimensional data classification are the

measurement of the SVM parameter and choosing the

feature subset. Grid search is a conventional technique for

model determination that delivers exhaustive research and

chooses a series of parameter values with the highest

compatibility (Hsu et al., 2003b). However, reliable model

selection utilizing high-resolution grids takes a longer time

for real-valued situations. Another crucial process in clas-

sifying high-dimensional datasets via SVM is the choice of

optimum feature subset (Lin et al., 2008; Tan et al., 2008).

Therefore, before SVM can be utilized to enhance the

classification of such a hybrid feature space, optimized

amounts for the parameters and the proper feature subsets

are better to be thoughtfully picked. The binary PSO is a

robust optimization which is population-based.

Therefore, to define the parameters of SVM and con-

currently choose the features to obtain this goal, the Binary

PSO as a robust population-based optimization algorithm is

employed.

Hybrid Feature Space Generation

Considering that the feature space can directly control the

system’s performance in terms of computation complexity

Fig. 1 Flow chart of the suggested technique implemented in the paper
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and processing duration and regulate the precision of the

outcomes, it is a fundamental factor in the deciding pro-

cedure. Hence, an appropriate feature space depending on

hyperspectral thermal imagery and visible data should be

produced as the primary measure of the suggested

approach.

Textural Features

The spatial features can significantly enhance classification

precision because of the spatial correlation between

neighbouring pixels (Janalipour and Mohammadzadeh,

2018). Notably, when the high spatial resolution imager is

in mind, feature extraction becomes even more relevant. In

this paper, both occurrence and co-occurrence statistics are

used. In occurrence statistics, features are employed to

describe local variance within 3 9 3, 5 9 5, 7 9 7, and

9 9 9 windows. However, the latter utilizes grey-level co-

occurrence matrices (GLCM) via different window sizes of

5, 7, and 9, and the offsets of 1, 2, and 3 pixels, respec-

tively. As a result, both contrasts and homogeneity features

are obtained from visible imagery of every respective bond.

Furthermore, Gabor features are derived in the spatial

domain. The equations for each textural feature can be

found in Haralick et al. (1973). The equations for

the vegetation index, morphological building index, and

Gabor are shown in Table 1.

Vegetation Index (VI)

Considering the biophysical properties of the vegetated

land, the normalized proportion among the averaged LWIR

channels, and the red band from visible spectra are utilized

as VI (see Fig. 2 (b)).

Morphological Building Index (MBI)

This work calculated the morphological building index

(BMI) that can detect buildings by defining the spectral-

spatial features utilizing a suite of morphological operators

to identify the residential areas as shown in Fig. 2. Taking

into account that the Toller structures cast relatively longer

shadows and thus provide a significant local contrast con-

cerning their roof. In this regard, the white-top hat can

highlight the bright house and building and can be used for

calculating MBI in an unsupervised approach by applying

it to a set of multidirectional linear SEs.

Classification Based on SVM

The proposed algorithm successfully identified each land

cover via a binary SVM classifier, which is a training

method obtained from statistical learning theory. The SVM

calculates an optimally separating hyperplane to maximize

the margin between the respective groups. Moreover, after

classification, the majority filtering is utilized to overcome

the binary map’s salt and pepper noise. However, if sam-

ples cannot be divisible in the primary space, kernel

functions should be utilized for mapping data in spaces

with higher dimensions by applying linear decision func-

tions (Abe, 2005).

Considering a dataset having samples denoted by n

fðxi; yiÞji ¼ 1; :::; ng, where xi 2 <k defines a vector for

feature with components denoted by k, and yi 2 f�1; 1g

Table 1 Textural features
Vegetation index

VI ¼
1
n

Pn

x¼1
bandðxÞ

bandðRedÞ

Morphological building index
MBI ¼

P
d;s
MPW�TH d;sð Þ

D�S

Gabor g ¼ gR þ jg1

gR ¼ c
2pr2

exp � x2rþc2y2r
2r2

� �
cos 2p xr

k þ u
� �

gI ¼ c
2pr2

exp � x2rþc2y2r
2r2

� �
sin 2p xr

k þ u
� �

Fig. 2 Visible data a; vegetation index b; morphological building index c
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represents the label off xi. The SVM searches for the

hyperplane w:uðxÞ þ b ¼ 0 in a space that is high dimen-

sional which can divide the data from classes’ 1 and 1 with

the highest margin. W represents the vector for weight,

orthogonal to the hyperplane, the offset expression is

defined by b, and a mapping function is represented by u,
that gathers data into a high-dimensional space to divide

the linearity of the data with a training error that is low.

Maintaining the highest contrast equals achieving the

lowest norm of w, and accordingly, the SVM has to be

ready to solvation the minimization problems as follow:

Minimize :
1

2
wk k2þC

Xn

i¼1

ni ð1Þ

Subject to : yiðw:uðxÞ þ bÞ� 1� ni and ni � 0; for i
¼ 1; :::; n

Here, C denotes an arrangement parameter that requires

balancing the value of misclassifying in the training data

and maximizing the margin and ni is slack variables.

Below is the way to achieve the decision function by

finding the minimum value for Eq. 1:

f ðxÞ ¼
X

xi2SV
yiaiuðxiÞ:uðxÞ þ b ð2Þ

The parameter ai represents a constant value in the

Lagrange multipliers defined through the minimization

method. The SV correlates with a series of support vectors

of the training samples for which the related Lagrange

multipliers are significantly higher than zero. To calculate

dot products among the given pair of samples in the feature

space, the kernel function is used. Moreover, the Gaussian

RBF used here in this work is a standard kernel described

by Eq. (3)

KGaussianðxi; xjÞ ¼ e
� xi�xjk k

2r2 ð3Þ

In the suggested approach, the classification module

performs a fundamental function in assessing the fitness

function, where training data and trained SVM train SVM

are assessed by test (unseen) data. The evaluation is

achieved by generating a confusion matrix and calculating

the accuracy indicators.

Using the Binary PSO for Simultaneous SVM
Parameter Determination and Feature Subset
Selection

The Particle Swarm Optimization (POS) algorithm is

applied, which is an algorithm that depends on the popu-

lation as well as on the simulation of the social action of

flying birds in their flock. In the area of research, a group of

individuals (particles) are spread as a candidate solution in

the PSO algorithm. Depending on the existing speed, and

their intellectual and social background, they iteratively

increase their answer and push towards an enhanced

location (Engelbrecht, 2007).

Let Xt
i ¼ fxi1; xi2; . . .; xiDg and Vt

i ¼ fvi1; vi2; . . .; viDg
denote the position and velocity of the i particle, respec-

tively, in the research area that is D dimensional at time t.

At each iteration, particle i alters its position and velocity at

every iteration, as shown below,

Vt
i ¼ Vt�1

i þ c1r1 pbesti � Xt�1
i

� �
þ c2r2 gbest� Xt�1

i

� �

ð4Þ

Xt
i ¼ Xt�1

i þ Vt
i ð5Þ

pbesti ¼ fpi1; . . .; piDg denotes the personal best experi-

ence of particle i, gbest ¼ fg1; . . .; gDg denotes the global

best of all particles, c1 and c2 signifies the intellectual and

social factors, respectively, and r1, r2 are haphazard vari-

ables in [0, 1]. By the utilization of PSO to handle binary

search space, the solutions are characterized by binary

strings, Binary PSO (BPSO) is presented. It changes stan-

dard PSO in the position updating step according to the

sigmoid function.

Binary strings. To measure the SVM parameter and

feature subset choice in the fusion of hyperspectral and

LiDAR data, simultaneously, the solution includes four

components: structural features, spectral features, kernel

parameter, and regularization parameters (Fig. 3). The first

and second parts are identical to the spectral (nhyper) and

structural features (nLidar), respectively, in terms of widths.

Regularization and kernel parameters are real-valued and

transformed to binary coding for adaptability with the

binary properties of the feature selection process. The

regularization (nc) and kernel parameters (nk) depend on

the amount of the parameters and the demanded accuracy,

in terms of length.

1 0 … 1 0 … 1 1 … 0 … 10

Spectral Features Structural 
Features 

Regularization 
Parameter 

Kernel 
Parameter 

Fig. 3 Representation of

solution for BPSO
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For the assessment of the particle solution, a fitness

function is used. Hence, in the binary of the solution, the

first and the second parts define the feature and are to be

chosen by designating ‘1’ to the ith bit. Moreover, the

feature in the hybrid will be dismissed if the amount is ‘0’

for the ith feature. Additionally, the binary makeup of the

third and fourth sections of the answer are switched to the

real values for determining the SVM parameters in Eq. (6).

p ¼ min
p

þmaxp �minp

2l � 1
� d ð6Þ

Here, p, minp, and maxp correspond to the real value for

bit string, its smallest and largest values, respectively, and

are controlled by the user. Moreover, the length of the bit

string and decimal values of the bit string, for each

parameter, are represented by letters l and d, respectively.

Obtained data shows limited chosen features, but

increased classification accuracy that overall organizes the

evaluation function. The objective function that is provided

in Eq. (7) can help in the solution of the multiple criteria

problems by mixing the two aims with the production of a

single objective fitness function.

f ¼ q� 1� accuracyð Þ þ 1� qð Þ � Nf

N
ð7Þ

where f represents the fitness value, a constant parameter in

[0,1] is represented by q; the kappa coefficient is used to

Fig. 4 Dataset for the 2014 Data

Fusion Contest: a RGB false-

colour composed of the LWIR

image, b colour data, c training

labels. The last row represents

the data which was released for

testing in the second phase:

d LWIR data, e colour data,

f ground truth (color

figure online)

Fig. 5 a Vegetation and tree, b grey roof, c soil, d roads, e red roof and concrete roof, f primary classification map (color figure online)
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achieve accuracy (Congalton & Green, 2019), Nf describes

the number of selected features, and N is the number of

total features, including spectral and structural features.

As can be seen in Fig. 1, the reasonable solutions can be

randomly produced in the first cycle, and afterwards, the

particle is evaluated by Eq. (7) in a way that the chosen one

as the global solution for the population has the maximum

classification accuracy and the minimum selected feature

subset. Furthermore, individual particles compare their

current location alongside all the previously experienced

locations from which the optimum location is chosen. Then

the velocity of the particle is updated by Eq. (8), and the

particles that are displaced are calculated, sigmoid function

is applied to the velocity vector, as in Eq. (9), to identify

the novel location that illustrates a new featured subset and

SVM parameters. Finally, based on Eq. (10), the particle’s

position xtid is computed in a way that shows the ith com-

ponent of its new position (feature space/SVM parameters).

vtid ¼ vt�1
id þ c1r1 pid � xt�1

id

� �
þ c2r2 gd � xt�1

id

� �
ð8Þ

s vtid
� �

¼ 1

1þ e�vt
id

ð9Þ

xtid ¼ f1; ifs vtid
� �

[ qid0;Otherwise ð10Þ

where qid represents a vector of random numbers that are

picked arbitrarily from 0 and 1, the algorithm begins with

initial locations and velocities; at each iteration, Eq. (8) is

used to update the velocity components of all particles and

then they are transferred to the range of [0, 1] by the sig-

moid function. After that, as a new location for particles, a

binary string is constructed. Once a termination criterion

such as maximum iteration is fulfilled, the repetition of this

procedure is ceased. The fitness functions, including;

dimensionality of feature space and classification accuracy,

are enhanced through multiple iterations according to the

swarm intelligence theory.

Experiments and Results

Remote Sensing data

The proposed methodology was applied to a dataset pro-

vided by the 2014 IGARSS Data Fusion contest. The

dataset consists of thermal data acquired by Telops Inc.

Another sensor collected the visible high-resolution images

and covers an urban area that includes roads, gardens, and

residential and commercial buildings located around

Thetford Mines in Québec, Canada.

As an airborne long-wave infrared hyperspectral, the

Telops Hyper-Cam collected the LWIR data (ref. to

Fig. 4a-and-d). It is worth mentioning that Telops Hyper-

Cam is a Fourier-transform spectrometer (FTS), including

84 spectral bands in the 7.8 - 11.5 lm wavelength realm.

Two distinct sensors with a small temporal gap (the

LWIR and visible bands) were adopted on May 21, 2013,

for collecting two series of airborne data from an average

height of around 800 m above the ground. The obtained

images provide an averaged spatial resolution of about 1 m

for the LWIR and 0.1 m for the visible-bond images.

Moreover, to reduce the differences in the resolution of

these two sets of data, the visible images were then

Table 2 BPSO parameter values

Parameters Value

Length of particle for VIS features 146

Length of particle for LWIR features 63

Length of particle for SVM parameters 33

Population size 50

w 1

c1,c2 2

Maximum iteration 300

Fig. 6 The value of fitness for

the global best in every cycle of

BPSO
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resampled to 0.2 m, utilizing two internal calibration

blackbodies, and then for the infrared measurements, the

end-to-end radiometric calibration was executed. It is

worth mentioning that the initial inputs were radiometri-

cally and geometrically corrected. Moreover, the materials

of the visible wavelength were composed of uncalibrated

data, with high spatial resolution and sparse digital data

ground coverage, compared to the LWIR hyperspectral

images that were taken from the same area (ref. Figure 4b

and e). Moreover, the visible data were geo-referenced and

designated to the thermal data.

Classification Results

The SVM classifier with RBF kernel was utilized to assess

the integrity of the hybrid feature space. The specialized

Matlab interface was used to perform the LIBSVM (Chang,

2001). To address the evaluation measure choice, as a most

critical issue in the ordering procedure and to determine the

classification accuracy the kappa coefficient and the overall

accuracy are employed. Based on the principles proposed

by (Congalton & Green, 2019), the Khat index is employed

to estimate the correctness of the classification by com-

puting the confusion matrix, as shown in Fig. 5.

Simultaneous Parameter Determination
and Feature Selection Based on BPSO

Several correlated and unnecessary features are available

that deteriorate the classification output of the suggested

approach. However, the hybrid imagery method enhances

the classification accuracy. Additionally, the SVM param-

eters are a crucial additive element in classification per-

formance, considering that they influence the selection of

feature subset and vice versa. Thus, the SVM parameters

tuning and feature subset selection depending on BPSO (as

provided in Table 2) are performed simultaneously in this

work to address this problem. The complexity and

dimensionality of the search space are two factors that the

binary string’s length is chosen relative to, and the rest of

the parameters are organized based on environmental

preconditions.

The convergence plots are given in Fig. 6 for the BPSO

schemes for the VIS and LWIR features and respective

hybrid images, and the fitness value for the most suit-

able one in each production is presented. Based on Eq. 7,

the weight parameter is fixed at 0.8. This indicates 80% of

fitness is dedicated to accuracy and 20% is dedicated to the

dimensionality of feature space.

Close inspection in Fig. 6 reveals an increase in the

fitness values (i.e. classification performance), which are

relatively higher for the hybrid imagery compared to the

VIS and LWIR features. However, the fitness function, as

discussed above, is composed of two distinct components,

including; the kappa coefficient and the feature space

dimension. Figure 7 provides the global best kappa coef-

ficient based on the iterations to estimate the variation in

the classification accuracy.

Depending on iterations, Fig. 8 represents the number of

chosen features showing the global best and provides an

estimation of the diversity of feature space dimensionality.

Furthermore, a close inspection of this figure declares that

fewer feature subset sizes are chosen for hybrid image (102

features) compared to the whole picked numbers for VIS

(37 features) and LWIR (65 features), separately.

The collected results produced increases in classification

accuracy and extraordinary decreases in the feature space

dimension. The features chosen for the recommended

approach for hybrid imagery, structural feature space, and

spectral features space are compiled in Table 3.

Table 4 includes the quantity of chosen features,

alongside the quantities for the regularization, kernel

parameters, and the classification accuracy of checking and

validation dataset, defined through the suggested approach

for spectral and structural hand hybrid feature space.

Fig. 7 The coefficient of kappa

for the global best in every

cycle of BPSO
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Fig. 8 The quantity of features

chosen for the global best in

each cycle of BPSO

Table 3 Chosen features in the

suggested approach
Dataset # Selected Features Selected Spectral Feature Selected Structural Features

VIS Features Space 37 3 bands

1 vegetation index

1 MBI

32 textural features

–

LWIR Features Space 65 – 60 Hyperspectral Bands

5 PCs

Hybrid Image 102 3 bands

1 vegetation index

80 Hyperspectral Bands

5 PCs

Table 4 Output for the selection of features and determination of parameters simultaneously depending on BPSO for VIS and LWIR feature

space and hybrid image

Data #Features C Gamma Checking Data Validation Data

Kappa Overall Accuracy Kappa Overall Accuracy

VIS Features 37 398.479 0.801 0.726 81.3% 0.669 86.88%

LWIR Features 65 477.374 0.989 0.13 43.04% 0.06 35.12%

Hybrid Image 102 329.005 0.339 0.976 98.91% 0.961 97.42%

Fig. 9 Classification outcomes for each class depending on the proposed method
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Scrutinizing in Table 4 shows that implementing the

suggested approach for the hybrid image produces a better

production in comparison with any other dataset. The

detailed estimations of results for any class accuracy

assessment are represented in Fig. 9.

Lastly, in Fig. 10, the performance of the recommended

approach is contrasted with some of the previously pub-

lished works, namely on the 2014 IEEE dataset (IEEE,

2014). Close inspection of this figure revealed that the

performance of our approach is superior to the other pre-

vious reports. It is worth mentioning that the analyses were

executed on the same test and the train dataset was also

provided by Telops Inc.

Conclusion

Throughout this research, an innovative structure is con-

sidered to enhance the hybrid classification system. Then

the suggested approach is investigated depending on BPSO

for the fusion of hyperspectral thermal and visible data.

Moreover, the visible and LWIR spectra were used to

obtain a couple of spectral and spatial features. It is known

that the SVM classifier is a suitable one in higher-dimen-

sional spaces. Moreover, by measuring the parameters and

selection of feature subsets simultaneously, its representa-

tion is optimized. The achieved outcomes revealed that the

hybrid classification system based on BPSO cannot only

promote classification efficiency by up to seven percent but

may also increase the per-class accuracy through the

removal of unnecessary features. Accordingly, the excel-

lent system of hybrid classification achieved higher accu-

rate outcomes in a lower complex space. Additionally, the

entire classes in the hybrid system show improved or at

least the same accuracy compared to the results obtained

from the classification of visible and LWIR separately.

Finally, a comparison of the archived outcomes based on

the suggested methodology with the previously reported

data in the 2014 IEEE GRSS Data Fusion Contest con-

firmed the encouraging results and the superiority of our

approach.
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