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Abstract
Modeling framework for simulation at a finer scale is important for long-term water resources planning for management. It

has always been a challenge to select the appropriate model to simulate the hydrology of a watershed/river basin at a finer

spatial resolution. Comparative evaluation of models based on field observations could help researchers to select the

suitable model for their purpose. However, a single hydrologic model generally leads to simulation uncertainties due to

poor input data, model structure, and model output uncertainty in large-scale exercises. The ensemble model approach

could be a better decision-making tool to overcome uncertainty in modeling hydrological processes. In the present study, a

widely used macroscale hydrologic model, the three-layer Variable Infiltration Capacity (VIC-3L), was employed to

simulate runoff and evapotranspiration (ET) at 30 9 30 grids (* 5.5 km) resolution over an agriculture-based Marol

watershed (5092 km2) of India. The VIC-simulated results were compared and assessed with the results obtained from the

Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWAT) hydrologic model. Further, the

ensemble of VIC and SWAT outputs (EnSwaVi; averages of individual model-simulated datasets with equal weights) was

also assessed. Simulated runoff and ET were evaluated using observed discharge data at the outlet of the watershed and the

actual ET product (MOD16A2) of Moderate Resolution Imaging Spectroradiometer (MODIS), respectively. The simulated

discharge values generated by the two models were closely matched with the observed flow. Conversely, ET simulated by

VIC was found to be more precise as compared to SWAT. A minimal difference between two model results can be due to

the difference in the model structure and runoff simulation method. In general, the ensembles of VIC and SWAT outputs

(EnSwaVi) were found better than the individual model outputs. The ensemble modeling approach could provide more

reliable assessments of hydrological processes for the planning and management of water resources.
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Introduction

Water resources are the prime contributor to a developing

economy, environmental protection, and sustainable

development (Madolli et al., 2022). It helps in advancing

economic growth if managed and planned properly (Dhami

et al., 2018). Shortage and misuse of freshwater cause a

serious and growing threat to the protection, management,

and sustainable development of water resources. Unless the

water and land resources are managed accurately, industrial

expansion, the natural ecosystems on which they depend,

human health, social well-being, and sustainable food

production are all in danger (ICWE, 1992). Only a small

fraction (about 2.53%) of the estimated total volume of

water available on the earth is freshwater (Water facts,
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2020). A considerable portion of this freshwater is not

available for use, as they lie in inaccessible deep aquifers

or frozen in polar regions. This causes a challenge to

protect, manage and develop water resources in a sustain-

able manner considering the economic growth, climate

change, and population increase (Amrit et al., 2019; Fan

et al., 2022; Kumar et al., 2021a, 2021b; Shiklomanov,

1998; Swain et al., 2021). Hydrologic models have been

widely used to assess and manage the sustainability of

water resources (Paul et al., 2021).

Hydrologic modeling is an efficient way for consistent

long-term behavioral studies of hydrologic and climatic

variables (Tanmoyee et al., 2015). Initially, hydrologic

models were focused on the development of theories,

concepts, and models for a particular component of the

hydrologic cycle, such as baseflow (Barnes, 1940), over-

land flow (Horton, 1939; Keulegan, 1944), channel flow

(Manning, 1891), subsurface flow (Fair & Hatch, 1933;

Jacob, 1943, 1944; Theis, 1935), depression storage (Hor-

ton, 1919; SCS-CN method, 1956), evapotranspiration

(Cummings, 1935; Penman, 1948; Thornthwaite, 1948),

infiltration (Green & Ampt, 1911) and interception (Hor-

ton, 1919). The first physical model capable of modeling

the entire watershed with all hydrologic cycle components

was most likely the Stanford Watershed Model (SWM),

developed in 1966 (Crawford & Linsley, 1966). Further,

many hydrologic models were developed to advance

computational abilities and algorithms with recently

available databases like space technology, remote sensing

satellite data, high-resolution digital elevation models

(DEMs), and radar rainfall (Pandey et al., 2016). There is

vast variability in the capabilities and characteristics of

these hydrologic models, such as a representation of pro-

cesses, accountability of spatial–temporal scale, algorithms

used, input requirements, and types of output they provide

(Pandey et al., 2016; Paul et al., 2021).

A complex hydrological system has always been

investigated by employing physically-based models and

simulating the major components like streamflow and

sediment yield (Himanshu et al., 2017, 2018a). Many lit-

erature studies have proven the robustness of the SWAT

(Aadhar et al., 2019; Dhami et al., 2018; Gupta et al., 2020;

Murty et al., 2014; Pandey & Palmate, 2019; Swain et al.,

2022) and VIC (Narendra et al., 2017; Oubeidillah et al.,

2014; Srivastava et al., 2017) hydrologic models in the

evaluation of the water balance components. Kang and

Sridhar (2018) found SWAT and VIC models reliable for

short-term drought forecasting in the contiguous USA.

Alvarenga et al. (2020) compared VIC and SWAT hydro-

logic models in their capabilities to simulate runoff in the

Verde River Watershed, Brazil. They found both models

suitable for streamflow simulation and suggested that the

integration of SWAT and VIC models can be useful in

different water resource assessment studies.

With the development of advanced models and the

availability of spatial–temporal data, modelers and stake-

holders are now broadly depending on the information

derived from hydrological models to make more sustain-

able choices. However, with the growing family of

hydrological models and tools, it has become difficult for

decision-makers to identify a plausible model for their

intended application (Jajarmizadeh et al., 2012; Pandey

et al., 2016). There are several queries related to the

model’s fitness for the intended application, model relia-

bility, and uncertainties associated with the results. More-

over, because each model has a different modeling concept,

algorithms, and input requirement, each would perform

differently, and their performance could be non-unique in

space and time. Further, to make an appropriate choice

among various models, it is important to evaluate models

with the available quantity and quality of the input data in

the catchment.

Therefore, a comparative evaluation of the commonly

used hydrological models (SWAT and VIC) was per-

formed. Although both models perform catchment water

balance, there are several characteristic differences

between these models. The Soil and Water Assessment

Tool (SWAT) was primarily developed by USDA’s Agri-

cultural Research Service (ARS) to assess the impacts of

land management practices on water quantity, water qual-

ity, and sediment fluxes in a watershed (Arnold et al., 1998;

Borah & Bera, 2003; Himanshu et al., 2019; Miller et al.,

2007; Palmate & Pandey, 2021). It is a physically-based,

continuous-time, long-term, semi-distributed watershed-

scale hydrologic model (Arnold & Fohrer, 2005; Arnold

et al., 1998; Garg et al., 2012; Pandey et al., 2016). On the

other hand, the Variable Infiltration Capacity (VIC) is a

physically-based semi-distributed macroscale model

developed on the Land Surface Modelling scheme, pri-

marily to link with the climate models (Liang et al., 1994).

The VIC model explicates the sub-grid level spatial

heterogeneity, vegetation phenological changes, soil tex-

tures, and terrain characteristics at different spatial reso-

lutions (Kimball et al., 1997). The model can simulate

several hydrologic and climatic variables such as snow

depth, snowmelt, ET, surface runoff, soil moisture, frozen

soil, and streamflow (Tanmoyee et al., 2015). Unlike

SWAT, the VIC model can simulate energy balance in

addition to water balance at a sub-daily time step (Liang

et al., 1994).

Various hydrological models have their strengths and

weakness in representing hydrological processes (Li et al.,

2018). Due to insufficient input data, model structure, and

model output uncertainty in large-scale exercises, relying

on a single hydrological model generally leads to
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simulation uncertainties (Dietrich et al., 2009; Kauffeldt

et al., 2016; Li et al., 2018; Liu & Gupta, 2007; Palmate

et al., 2021). To overcome uncertainty in modeling

hydrological processes, several techniques have been used

in the recent past (Liu et al., 2017; Kasiviswanathan and

Sudheer, 2017; Gaur et al., 2022). Among these, the

ensemble modeling technique has been gaining popularity

in recent years in different sectors of water resources

modeling (Doblas-Reyes et al., 2005; Gaur et al.

2021a, 2021b; Horan et al., 2021; Kumar & Nandagiri,

2015; Kumar et al., 2015; Li et al., 2018; Muhammad et al.,

2018; Paul et al., 2021; Yadav et al., 2020). Multi-model

ensembles, however, outperform individual models and

tend to perform better than single-model ensembles in

weather prediction and streamflow simulation (Gaur et al.

2021a, 2021b; Kumar et al., 2015; Mendoza et al., 2014;

Paul et al., 2021). Different modeling approaches are used

to simulate hydrological variables in the ensemble mod-

eling technique. Out of which, the mean ensemble mod-

eling approach that averages the individual hydrological

model-simulated datasets with equal weights has been used

in many studies to simulate hydrological variables for

reducing errors with optimal bias (Doblas-Reyes et al.,

2005; Baker & Ellison, 2008; Kumar & Nandagiri, 2015;

Muhammad et al., 2018; Li et al., 2018; Horan et al., 2021).

SWAT and VIC models have their own strengths and

weakness in representing hydrological processes. Many

previous studies on SWAT and VIC comparison have

shown that the results of these models may vary, and

depending on the accuracy of inputs and parameters, these

models overestimate, underestimate or contradict each

other in assessing the hydrometeorological variables such

as discharge and evapotranspiration. Seasonal simulation

performance of the SWAT and VIC-3L models studied by

Hu et al. (2007) showed underestimated runoff values than

the observed values for spring and winter. The SWAT-

simulated runoff values in summer were higher than the

VIC-3L simulation but were smaller in winter. These

hydrological models also provided useful insights into the

impact of climate and anthropogenic activities on regional

water security (Veettil et al., 2022). Kang et al. (2022)

assessed the impacts of climate change on conventional

and flash drought conditions using these models. The

SWAT-driven drought indices showed an overall increase

in drought occurrence; however, the VIC-driven drought

indices showed a decrease in drought occurrence. Dash

et al. (2021) revealed that the SWAT simulation-based

standardized evapotranspiration drought index (SEDI) was

consistent; in contrast, the VIC-3L simulation-based SEDI

was continuously overestimated and underestimated with

the benchmark satellite (MOD16A2-ET)-derived esti-

mates. A study employing these models showed a

remarkable decrease in drought predictions 36% for SWAT

and 38% for VIC, due to uncertainties associated with the

meteorological variables (Kang & Sridhar, 2018). An

ensemble modeling approach leads to offset uncertainty in

input data as well as poor reservoir operation functionality,

if any, within the models (Horan et al., 2021).

In a large watershed, the application of a single model

can lead to simulation uncertainties if detailed data are not

available. Ensemble modeling combines multiple model

predictions to create a single prediction that generally tends

to perform better than the individual model. Ensemble

modeling can be utilized to better simulate components of

the hydrologic cycle, and provide a range of possible

outcomes and uncertainty. Looking at the above men-

tioned, this study explores the applicability of an ensemble

modeling approach for hydrological variables (runoff and

evapotranspiration) over the study area. The study could

help in developing a finer spatial resolution modeling

framework to simulate the hydrology of a watershed that

can contribute to policy and decision-making processes for

sustainable water resource management. The SWAT and

VIC models were selected to investigate the predictive

capability of individual models and the performance of the

mean ensemble of these two models (EnSwaVi) to improve

the accuracy of the simulation of runoff and evapotran-

spiration in the study area. To evaluate the models for their

ability to address spatial heterogeneity in soil, land cover,

and topography in the semiarid region, a heterogeneous

watershed named Marol watershed (5092 km2), India, was

identified for the study.

Materials and Methods

Study Area

The Marol watershed is part of the upper Krishna River

basin, which covers a geographical area of about 5092 km2

between longitude from 74�4803000 E to 75�3603800 E and

latitude from 1480501800 N to 1580704800 N. The Krishna

River is an important eastside flowing river in the penin-

sular region of India (Himanshu et al., 2018b). The study

area is positioned along a sub-tributary Varada River of

Tungabhadra River in the State of Karnataka, India

(Fig. 1). The elevation of the watershed above the mean

sea level varies from 340 to 848 m. An average slope

varies from 0 to 8.9%, which majorly consists of a gently

undulating plain area. However, because of some western

hilly areas, the maximum slope of the study area goes up

to 31%. Topographic elevation, land use/land cover,

and soil textures of the watershed are given in Fig. 1.

The average annual rainfall of the watershed is 1330 mm,

with a variation in temperature between 16 and 38 �C.
The availability of observed hydrometeorological data,
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heterogeneous land use, and absence of any large storage

structure makes the watershed appropriate for the present

case study.

Data

Different types of datasets, including meteorological data,

hydrological data, and thematic data, summarized in

Table 1 were used in this study. Daily IMD gridded pre-

cipitation data available at a spatial resolution of

0.25� 9 0.25� grid (Pai et al., 2014, 2015) were used as

inputs to the model. The Marol watershed covers fifteen

precipitation grid points. The daily IMD gridded temper-

ature data available at 1� 9 1� were also used in the pre-

sent study (Srivastava et al., 2009). In addition to this, other

important data variables, namely relative humidity, solar

radiation, and wind speed, not available for the study area,

were obtained from the Global Weather Database for

SWAT (Dile & Srinivasan, 2014) website at 0.25� 9 0.25�
spatial resolution.

Daily hydrologic data, i.e., streamflow, measured at the

Marol gauge and discharge (G&D) site, were obtained for

the years 2000–2010 from the India Water Resources

Information System (WRIS) WebGIS portal, Government

of India. The Marol G&D site of the Varada River is

located at the longitude of 7583603800 E and a latitude of

1485500400 N. The period between 2005 and 2007 was not

considered in the evaluation as no discharge data were

available. Also, due to inconsistency in the data for

November to May, the model evaluation was performed

only for the months from June to October.

The freely available digital elevation model (DEM) of

advanced space-borne thermal emission and reflection

radiometer (ASTER) at 30 m spatial resolution was used to

delineate the watershed and sub-watershed boundaries and

generate drainage networks. In this study, the soil data

were procured from the ‘‘National Bureau of Soil Survey

and Land Use Planning (NBSS & LUP), Government of

India’’ (Shivaprasad et al., 1998). The study area covers

seven soil textural classes, as presented in Fig. 1. The

spatial land use/land cover map was procured from the

‘‘National Remote Sensing Centre (NRSC) Hyderabad,

Government of India’’. The study area covers regionally

important ten land use/land cover classes (NRSC, 2014)

(Fig. 1).

The vegetation parameters were defined in the models

based on the land use/cover map. The ET and vegetation

parameters, including Leaf Area Index (LAI) and Albedo,

were obtained from MODIS 1 km 8-day composite product

(MOD16A2). The MODIS onboard the Aqua and Terra

satellites makes available reliable ET estimates at different

spatial–temporal resolutions (Anderson et al., 2011; Senay

et al., 2013). The downloaded MODIS products were pre-

processed to filter out poor-quality pixels utilizing MODIS

Quality Control (QC) band. Finally, the ET values are

resampled at the model grid/hru scale for the analysis.

These pre-processing steps were performed on the MODIS

data using the model builder and batch processing tools of

ArcGIS. The study used the MODIS ET estimates at 8-day

and monthly temporal resolutions to validate the model

simulation-based ET values.

bFig. 1 Details of the Marol watershed: a location map, b land

use/cover map, and c soil map

Table 1 Details of datasets used in the present study

Data type Data name Resolution Duration Data source Online data reference

Meteorological Forcing Precipitation 0.25� 9 0.25� 2000–2010 IMD Gridded Pai et al., (2014, 2015)

Temperature 1� 9 1� 2000–2010 IMD Gridded Srivastava et al. (2009)

Humidity 0.25� 9 0.25� 2000–2010 NCEP–CFSR http://globalweather.tamu.edu/

Wind Speed 0.25� 9 0.25� 2000–2010 NCEP–CFSR http://globalweather.tamu.edu/

Solar Radiation 0.25� 9 0.25� 2000–2010 NCEP–CFSR http://globalweather.tamu.edu/

Hydrological data River discharge – 2000–2010 CWC Gauge http://india-wris.nrsc.gov.in/

Thematic Data Topography 30 m 2008 ASTER GDEM http://earthexplorer.usgs.gov/

Land use 1:250,000 2007–08 NRSC, ISRO NRSC (2014)

Soil 1:250,000 1998 NBSS&LUP Shivaprasad et al. (1998)

Leaf Area Index 1 km 2000–2010 MODIS http://modis.gsfs.nasa.gov

Albedo 1 km 2000–2010 MODIS http://modis.gsfs.nasa.gov

Evapotranspiration 1 km 2000–2010 MODIS http://modis.gsfs.nasa.gov
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Model Performance Evaluation

In this study, the model simulation performance was

evaluated using the four statistical measures, namely

coefficient of correlation (CC), root-mean-square error

(RMSE) observations, standard deviation ratio (RSR),

percent error (PBIAS), and index of agreement (d-index).

In addition, the Nash–Sutcliffe model efficiency (NSE) was

also used to evaluate the model for discharge simulation.

The d-index, which varies between 0 (no agreement) and 1

(perfect agreement), measures the degree of model simu-

lation error (Willmott et al., 1985) (Eq. 1). The CC, which

ranges from - 1 to ? 1, measures the direction and

strength of a linear relationship between observed and

estimated data (Eq. 2). The CC value of 1 represents the

perfect correlation, while 0 represents no correlation,

and—and ? signs indicate negative and positive linear

correlations between the observed and simulated values.

The RSR, which ranges from the optimal value of 0 to a

large positive value, is estimated as the ratio of RMSE and

a standard deviation of the measured data (Eq. 3). The

PBIAS was used to assess systematic over- or under-pre-

diction and varies between - 100 and ! (Xu et al., 2010)

(Eq. 4). The PBIAS value close to 0 shows a perfect

agreement between observed and simulated data. The NSE

is a normalized statistic that determines the relative mag-

nitude of the residual variance compared to the measured

data variance (Nash & Sutcliffe, 1970) (Eq. 5). NSE ranges

between - ! and 1.0, with NSE = 1.0 being the optimal

value.
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where Ysim
i ; Yobs

i , Ysim and Yobs are the simulated, observed,

average simulated, and average observed values,

respectively.

SWAT Model Setup

The hydrological SWAT model is governed by water mass

balance. The model processes depend on the discretized

hydrological response units (HRUs) and are simulated at

daily time steps using the following soil water balance

equation (Eq. 6) (Neitsch et al., 2011).

SWt ¼ SWo þ
Xn

i¼1

Rday � Qsurf � Ea � wseep � Qgw

� �
ð6Þ

where SWt = final soil water content (mm); t = time

(days); SWo = initial soil water content on day i (mm);

Rday = amount of precipitation on day i (mm); Qsurf-

= amount of surface runoff on day i (mm); Ea = amount of

ET on day i (mm); wseep = amount of percolation and

bypass exiting the soil profile bottom on day i (mm);

Qgw = amount of return flow on day i (mm).

Modified rational method and modified soil conserva-

tion service curve number (SCS-CN) method (USDA,

1972) are used to compute peak runoff rate and surface

runoff, respectively. The actual ET, as well as potential

transpiration, is calculated using the Penman–Monteith

method. In the present study, Muskingum method approach

(Cunge, 1969) was adopted for flood routing.

The required weather and spatial datasets were prepared

using the ArcGIS interface. The whole Marol watershed

was discretized into several smaller sub-watersheds, which

were further sub-divided into HRUs representing homo-

geneous combinations of land use/land cover, soil texture,

and slope class. In this study, 1% threshold for each land

use, soil, and the slope was considered and generated 647

HRUs. The ASTER DEM data were used to delineate

watershed, sub-watershed, and drainage networks. By

specifying the initial threshold on the drainage area, the

ArcSWAT interface allows the user to fix the number of

sub-watersheds. This study uses a threshold value of

8000 ha to delineate the drainage network and define outlet

points for discretizing the Marol watershed into 31 sub-

watershed. The threshold value of 8000 ha was considered

to discretize the watershed so that each sub-watershed has a

drainage area smaller than the precipitation grid area. This

ensures minimum spatial degradation of precipitation data

for capturing temporal variations over the watershed. The
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minimum and maximum area of a particular sub-watershed

are estimated as 48.25 km2 and 311.35 km2, respectively,

with an average area of 164.26 km2. The delineated sub-

watersheds and reach map of the study area are presented

in Fig. 2. The SWAT model was simulated at daily time

steps in this study.

VIC Model Setup

The VIC model accounts for sub-grid scale land use frac-

tions of transpiration from vegetation, canopy layer evap-

oration, and soil evaporation for partitioning the grid-scale

ET (Liang et al., 1994). The VIC model computes the

water balances and surface energy budgets within the

specified grid using the water budget equation (Eq. 7)

(Narendra et al., 2017). The budget balance equation for

the canopy layer is expressed in Eq. (8).

oS

ot
¼ PR� ET� RF ð7Þ

oWi

ot
¼ PR� Ec� Pt ð8Þ

where oS
ot ¼ changein water storage, PR = precipitation,

ET = Evapotranspiration, RF = runoff, oWi
ot ¼ changein

canopy intercepted water, Ec = evaporation from the

canopy layer, and Pt = throughfall.

The total evapotranspiration is computed as the sum-

mation of canopy layer evaporation (Ec), evaporation from

bare soil (Eb), and transpiration from vegetation (Et), as

follows (Eq. 9) (Liang et al., 1994):

ET ¼
XN

n¼1

Cv n½ �: EC n½ � þ Et n½ �ð Þ þ Cv N þ 1½ � � Eb ð9Þ

Cv n½ �= fraction of vegetation cover for the nth surface

cover class (vegetation tile). Cv N þ 1½ � ¼ fraction of area

covered with bare soil.

To calculate the runoff, the VIC model utilizes the

variable infiltration curve accounting for the spatial varia-

tion. It states that runoff generates from two upper layers of

soil when received precipitation and soil moisture from the

initial time step exceeds the storage capacity of the soil.

Fig. 2 a Delineated sub-watersheds and reach map of the study area, and b 3-min grids covering the Marol watershed
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The VIC model computes the fluxes at each cell, consisting

of the discharge, base flow, evapotranspiration, soil mois-

ture, and other outputs. These outputs are routed using a

separate routing model to obtain the discharge at the outlet

locations. The routing model developed by Lohmann et al.

(1998) was used for this present study. The routing model

states that the water flowing outwards of any grid cell does

not flow back toward the same grid cell, and the water after

entering the river channel no longer remains part of the

water balance. The routing model comprises routing within

the grid cell and routing in the channel (river routing).

Impulse response function within each grid cell, which is

depicted by the Linear transfer function, is used for routing

within the grid cell, whereas after streamflow reaches the

channel, Saint–Venant’s equation-based channel routing is

used to generate the discharge at the required outlet.

3’ 9 3’ grid (* 5.5 km) resolution was used to esti-

mate water balance components for the Marol watershed of

Karnataka, India. The Marol watershed is covered under

216 grid points. The average rainfall, ET, and runoff fluxes

were calculated based on clipped gridded portion coming

inside the watershed boundary by the weighted area

method. The dominant land-use type in the Marol water-

shed is agricultural land (77.56%, covering 168 grids)

followed by deciduous forest (10.74%, covering 23 grids).

The model was run in water balance computation mode

from January 2000 to December 2010 using various geo-

spatial datasets (Table 1). Soil hydrologic and hydraulic

characteristics for 3-layer depth were calculated from

NBSS & LUP soil map based on USDA soil texture clas-

sification. The three soil layer depths at 0–15 cm,

15–35 cm, and 35–100 cm intervals were set for the top,

bottom, and deep layers, respectively. A soil texture ID was

assigned to each grid cell for its use in the VIC model. One

of the strengths of the VIC model is its capability to

compute variable infiltration through the definition of

multiple soil layers. Each grid fraction covering specific

soil was given to the input file of the VIC model. The major

surface soil types in the Marol watershed categorized under

USDA textural classification are silty clay (31.11%, cov-

ering 68 grids) followed by sandy clay loam (28.01%,

covering 61 grids). The delineated sub-watersheds and

reach map of the study area and 3-min grids covering the

Marol watershed are presented in Fig. 2.

Ensemble of Model Outputs

Hydrological models—VIC and SWAT—although provide

satisfactory outputs, the uncertainties caused by inadequate

data and assumptions/simplifications made in modeling are

obvious. A variety of techniques has been developed to

minimize modeling uncertainties, such as by incorporating

in situ data through data assimilation and by merging

outputs of multiple models by generating ensembles. A

multi-model ensemble can provide a more skillful and

reliable system of hydrological simulation by combining

the strengths of multiple models. A classic argument to

support the use of a multi-model approach has been that it

allows ‘‘compensatory effects’’ that control the excess

spread coming from individual model errors. However, it

should also be regarded that the verification metrics used to

compare the single best model with several multi-model

configurations might make a big difference when deciding

what approach should be used (Mendoza et al., 2014).

There are several approaches to combining the outputs of

different models, while a simple and effective way of

developing a model ensemble is to take the arithmetic

mean of output variables. This approach has been used

widely by researchers to simulate hydrological variables

(Williams, 1969; Doblas-Reyes et al., 2005; Baker &

Ellison, 2008; Kumar & Nandagiri, 2015; Muhammad

et al., 2018; Li et al., 2018; Horan et al., 2021), and the

same approach has also been adopted in this study. The

HRU-based SWAT-simulated runoff is compared with

grid-based VIC-simulated runoff at the watershed outlet.

However, for ET comparison, an average of SWAT- and

VIC-simulated ET over the watershed was considered. A

schematic outlining the procedure used to generate the

ensemble model is presented in Fig. 3.

Results and Discussion

Sensitivity and Uncertainty Analysis

The sensitivity and uncertainty analyses of the SWAT

model parameters were performed using the Sequential

Uncertainty Fitting (SUFI-2) algorithm of the SWAT cal-

ibration and uncertainty program (SWAT-CUP) (Abbas-

pour et al., 2007). The analysis showed a p-factor between

0.6 and 1 and an r-factor between zero and 0.3, i.e., the

model simulation values correspond to observed values.

Hence, the uncertainty associated with the model simula-

tion was considered lower and acceptable. This study

considered 17 most sensitive parameters (Table 2). The

analysis showed that streamflow is most sensitive to

CH_N2 (Manning’s ‘n’ value for the main channel), fol-

lowed by CH_K2 (Effective hydraulic conductivity in main

channel alluvium).

Further, to calibrate the VIC model, seven model

parameters, namely infiltration parameter (b-infilt), sub-

surface flow parameters (Ds, Dsmax, and Ws), and three

soil layers (d1, d2, and d3), were considered (Table 3). The

b-infilt parameter was altered to a low and high value to

match the observed peak flows. A lower value was given to
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lower the peak, and a higher value to increase the peak.

The Dsmax and Ds parameters were adjusted to fit the

baseflow, while parameter Ws was adjusted to fit the soil

moisture. Detailed information on sensitivity and uncer-

tainty analysis adopted for both SWAT and VIC models

can be found in the supplementary file.

Evaluation of the SWAT, VIC, and EnSwaVi
Models

The SWAT, VIC, and EnSwaVi models were evaluated for

the period from 2000 to 2010 on a daily and monthly basis

for discharge simulation and an 8-daily and monthly basis

for ET simulation. The model results were evaluated using

observed discharge data for the Varada River at the Marol

Fig. 3 A schematic outlining the procedure used to generate the ensemble model

Table 2 Sensitivity order and calibrated values of the SWAT model parameters for Marol Watershed

Sensitivity

order

Parameters# Parameter’s description Range used for

calibration

Calibrated

value

1 v__CH_N2.rte Manning’s ‘‘n’’ value for the main channel 0.01 to 0.3 0.20

2 v__CH_K2.rte Effective hydraulic conductivity in main channel alluvium 100 to 500 377.20

3 r__CN2.mgt SCS runoff curve number - 20 to ? 20% 0.11%

4 v__ALPHA_BF.gw Base-flow alpha factor (days) 0.8 to 1 0.81

5 v__RCHRG_DP.gw Deep aquifer percolation fraction 0 to 1 0.86

6 r__SOL_K.sol Saturated hydraulic conductivity - 20% to ? 20% - 0.17%

7 v__EPCO.hru Plant uptake compensation factor 0 to 1 0.98

8 r__SLSUBBSN.hru Average slope length - 20% to ? 20% 14.68%

9 a__GWQMN.gw Threshold depth of water required for return flow to occur in the

shallow aquifer (mm)

- 1000 to ? 1000 - 798.00

10 r__SOL_AWC.sol Available water capacity of the soil layer - 20% to ? 20% - 0.09%

11 v__GW_REVAP.gw Groundwater ‘‘revap’’ coefficient 0.02 to 0.2 0.15

12 a__GW_DELAY.gw Groundwater delay (days) 0 to 470 67.21

13 v__SURLAG.bsn Surface runoff lag time 0.05 to 24 18.23

14 a__REVAPMN.gw Threshold depth of water in the shallow aquifer for ‘‘revap’’ to

occur (mm)

- 100 to ? 300 - 13.99

15 v__ESCO.hru Soil evaporation compensation factor 0 to 1 0.93

16 v__CH_S1.sub Average slope of tributary channels 0.0001 to 10 4.19

17 v__CH_COV2.rte Channel cover factor 0.5 to 1 0.91

# The extension in the name of the parameter file indicates the process controlled by the parameter; rte = water routing, mgt = crop cover

management, gw = groundwater, sol = soil water dynamics, hru = water dynamics at HRU level, bsn = entire watershed scale. The initials

before the name of the parameter file indicate the method used for defining the range of parameters in auto-calibration; v = replacement of value

within a given range, r = relative change to an initial value, a = absolute change with respect to the default value
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G & D site in the state of Karnataka, India, and the ref-

erence ET dataset from the MODIS. The total available

observed data series were divided into two parts,

2000–2004 for calibration and 2008–2010 for validation,

out of which the year 2000 was used as the model warm-up

period. The performance evaluation of the SWAT, VIC,

and EnSwaVi models for discharge and ET simulations is

presented in Tables 4 and 5, respectively.

The discharge simulation analysis based on PBIAS for

the SWAT and VIC model indicates that the SWAT model

captured the physical processes accurately on a daily basis

during both calibration and validation stages. However, it

marginally underestimated the discharge values in the

monthly simulation. On the other hand, the VIC model

overestimated discharge values during the calibration and

validation stage at daily and monthly time intervals

(Table 5). Further, the coefficient of correlation (CC) for

the SWAT model-simulated discharge was consistently

better than the VIC model-simulated discharge, especially

for daily simulations. Similarly, the RSR values for the

SWAT-simulated discharge were comparatively better than

the VIC model-simulated discharge for both daily and

monthly simulations. In general, different performance

statistics (PBIAS, CC, RSR, d index) indicated that the

EnSwaVi model’s performance was marginally better than

the SWAT and VIC models for discharge simulation on a

daily and monthly scale.

Table 5 presents the performance evaluation of the

SWAT and VIC model while predicting the ET at 8-daily

and monthly time intervals. Significant underestimation by

the SWAT model (negative PBIAS) and overestimation by

VIC model (Positive PBIAS) was observed while simu-

lating the evapotranspiration at 8-daily and monthly

intervals during the calibration stage. In general, the VIC

model performance was comparatively better than the

SWAT model, especially for monthly simulation (Table 5).

Overall, the performance of both SWAT and VIC models

for ET simulation was good. However, the EnSwaVi

model-simulated ET values were considerably better than

SWAT, and VIC-simulated ET on daily and the monthly

timescale. Hence, it can be inferred that the ensemble

model provides a better ET estimate than the individual

one (Table 5).

Evaluation of Discharge

The observed and simulated daily discharges for the cali-

bration and validation period using SWAT, VIC, and

EnSwaVi models are presented in Fig. 4. Similarly, the

observed and simulated monthly discharges for the

Table 3 Sensitivity order of the VIC model parameters for Marol Watershed

Sr. no. Parameter Parameter’s Description Range used for calibration Calibrated value

01 b-infilt variable infiltration curve parameter 0.125 to 0.15 0.128

02 Ds Fraction of DsMax parameter 0.170 to 0.475 0.348

03 Dsmax Maximum velocity of baseflow, mm/day 0.102 to 1.000 0.352

04 Ws Fraction of maximum soil moisture 0.500 to 0.664 0.565

05 d1 (cm) The thickness of the first (top thin) soil moisture layer – 15

06 d2 (cm) The thickness of the second soil moisture layer – 35

07 d3 (cm) The thickness of the third soil moisture layer – 100

Table 4 Performance evaluation of the SWAT, VIC, and EnSwaVi for discharge simulation

Sr. no. Parameter SWAT VIC EnSwaVi

Daily Monthly Daily Monthly Daily Monthly

Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val.

1 PBIAS 0.3 2.1 - 6.1 - 2.3 32.7 2.2 36.5 11.3 10.1 2.1 15.0 4.5

2 CC 0.87 0.90 0.94 0.95 0.78 0.83 0.96 0.95 0.89 0.90 0.98 0.96

3 RSR 0.51 0.49 0.33 0.33 1.28 0.71 0.58 0.45 0.49 0.49 0.28 0.34

4 d-index 0.93 0.94 0.97 0.97 0.78 0.89 0.93 0.96 0.94 0.94 0.98 0.97

5 NSE 0.82 0.81 0.83 0.84 0.75 0.78 0.81 0.79 0.91 0.92 0.93 0.92

Cal., calibration; Val., validation
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calibration and validation period are presented in Fig. 5.

The scatter plot between observed and simulated discharge

for daily and monthly calibration and validation using the

SWAT, VIC, and EnSwaVi outputs are presented in sup-

plementary Figs. 1 and 2. The graphical results show that

the observed and simulated discharges using the SWAT

model closely matched for the most part except for some

high-flow events, which were slightly underestimated.

Similarly, a good agreement between the observed and

simulated hydrographs was observed using the VIC model.

However, in general, the high flow events were overesti-

mated. The SWAT simulation using monthly discharge

data has performed better, which reveals that in comparison

to short-term or single storm simulation, the SWAT model

performs better for long-term simulation, and such obser-

vations were also reported previously (Borah et al., 2007).

In general, the EnSwaVi-simulated discharge values were

found more accurate than the SWAT- and VIC-simulated

discharge values on both daily and monthly scales,

specifically, over low and high flows. These results are also

reflected through different performance statistics (Table 4).

For the SWAT model simulation on a daily scale, the

coefficient of correlation (CC) values were estimated as

0.87 and 0.90; however, on the monthly timescale, the CC

values were estimated as 0.94 and 0.95 during the cali-

bration and validation period, respectively. Similarly, for

the VIC model simulation on a daily scale, the CC values

were estimated as 0.78 and 0.83; however, on a monthly

timescale, the CC values were estimated as 0.96 and 0.95

during the calibration and validation periods, respectively

(Table 4). For EnSwaVi-simulated discharge, the CC val-

ues were estimated as 0.89 and 0.90; however, on a

monthly timescale, the CC values were estimated as 0.98

and 0.96 during the calibration and validation period,

respectively. The CC values in EnSwaVi-simulated dis-

charge were improved by approximately 10–15% on a

daily scale and 5–6% on a monthly scale as compared to

the VIC-simulated discharge.

The RSR values for daily simulation were estimated as

0.51 and 0.49 using the SWAT model, while 1.28 and 0.71

using the VIC model during the calibration and validation

period, respectively. Similarly, the RSR values for monthly

simulation were estimated as 0.33 and 0.33 using the

SWAT model, while 0.58 and 0.45 using the VIC model

during the calibration and validation period, respectively

(Table 4). The RSR values for daily simulation using the

EnSwaVi model were estimated as 0.49 during both cali-

bration and validation period, which showed a consider-

able/clear improvement over VIC-simulated discharge.

Similarly, a significant improvement was seen for monthly

simulation. However, improvements were not substantial

as compared to SWAT-simulated discharge.

The different performance evaluation criteria showed a

good agreement between observed and simulated hydro-

graphs on daily and monthly timescales, indicating the

good performance of the SWAT and the VIC models

(Moriasi et al., 2007). PBIAS of 0.3 and 2.1 for daily

calibration and validation, respectively, using the SWAT

model, indicated that on average, the SWAT model over-

estimated discharge by 0.3% and 2.1% during daily cali-

bration and validation, respectively (Fig. 4). Similarly,

PBIAS of 32.7 and 2.2 for daily calibration and validation,

respectively, using the VIC model, indicated that, on

average, the VIC model overestimated discharge by 32.7%

and 2.2% during daily calibration and validation, respec-

tively (Fig. 5). A similar trend was observed for monthly

simulation; the VIC model overestimated the discharge

during both calibration and validation period; however,

negligible overestimation/underestimation was observed

using the SWAT model. On the other hand, the EnSwaVi

model overestimated the discharge by 10.1% and 2.1%

during the calibration and validation periods, respectively,

on a daily scale. Moreover, it overestimated the discharge

by 15% and 4.5% on a monthly scale (Table 4). Based on

the PBIAS values, it can be inferred that overestimation

was significantly lower in the EnSwaVi model compared to

the VIC model at daily and monthly timescale.

Table 5 Performance evaluation of the SWAT and the VIC and EnSwaVi for evapotranspiration simulation

Sr. no. Parameter SWAT VIC EnSwaVi

8-Daily Monthly 8-Daily Monthly 8-Daily Monthly

Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val.

1 PBIAS - 11.8 - 4.7 - 6.8 - 8.2 12.3 14.9 1.8 4.7 1.2 5.1 0.5 1.8

2 CC 0.68 0.60 0.77 0.62 0.62 0.64 0.70 0.69 0.71 0.75 0.82 0.71

3 RSR 1.93 1.94 1.08 1.14 1.04 1.24 0.94 0.71 0.75 0.84 0.73 0.76

4 d index 0.67 0.63 0.71 0.64 0.72 0.66 0.72 0.71 0.83 0.83 0.88 0.86

Cal., calibration; Val., validation
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Evaluation of Evapotranspiration

The observed and simulated 8-daily ET for the evaluation

period using the SWAT, VIC, and EnSwaVi hydrologic

models are presented in Fig. 6. Similarly, the observed and

simulated monthly ET for the calibration and validation

period are presented in Fig. 7. The scatter plot between

observed and simulated evapotranspiration for 8-daily and

monthly calibration and validation using the SWAT, VIC,

and EnSwaVi outputs are presented in supplementary

Fig. 4 Comparison of the observed and simulated discharge for daily calibration (2001–2004) and validation (2008–2010) using the a SWAT

model, b VIC model, and c EnSwaVi output
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Figs. 3 and 4. The graphical results show that the observed

and simulated ET were mostly matched during the simu-

lation period using both SWAT and VIC models. However,

the VIC simulation results were comparatively matching

better with the reference ET dataset than the SWAT sim-

ulation results. It can also be seen that the EnSwaVi

simulation results matched closely with the reference ET.

Interestingly, these EnSwaVi-simulated ET estimates were

better than the SWAT and VIC model’s simulated ET.

For the SWAT model simulation on an 8-daily scale, the

CC values were estimated as 0.68 and 0.60, however, on a

monthly timescale, the CC values were estimated as 0.77

Fig. 5 Comparison of the observed and simulated discharge for monthly calibration (2001–2004) and validation (2008–2010) using the a SWAT

model, b VIC model, and c Ensemble output
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and 0.62 during the calibration and validation period,

respectively. Similarly, for the VIC model simulation on an

8-daily scale, the CC values were estimated as 0.62 and

0.64; however, on a monthly timescale, the CC values were

estimated as 0.70 and 0.69 during calibration and valida-

tion period, respectively. It is interesting to note that the

CC values were 0.71 and 0.75 for the EnSwaVi model

simulation on an 8-daily scale, however, the values were

Fig. 6 Comparison of the observed and simulated evapotranspiration for 8-daily calibration (2000–2004) and validation (2008–2010) using the

a SWAT model, b VIC model, and c ensemble results
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0.82 and 0.71 on a monthly scale during calibration and

validation period, respectively (Table 5). The RSR values

for an 8-daily simulation were estimated as 1.93 and 1.94

using the SWAT model, while 1.04 and 1.24 using the VIC

model during calibration and validation period,

respectively. Similarly, the RSR values for monthly sim-

ulation were estimated as 1.08 and 1.14 using the SWAT

model, while 0.94 and 0.71 using the VIC model during

calibration and validation period, respectively. On the other

hand, the RSR values for 8-daily simulation were 0.75 and

Fig. 7 Comparison of the observed and simulated evapotranspiration for monthly calibration (2000–2004) and validation (2008–2010) using the

a SWAT model, b VIC model, and c ensemble results
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0.84 using the EnSwaVi model on an 8-daily scale; how-

ever, these values are 0.73 and 0.76 on a monthly scale

during calibration and validation period, respectively

(Table 5).

PBIAS of - 11.8 and - 4.71 for an 8-daily calibration

and validation, respectively, using the SWAT model,

indicated that on average, the SWAT model underesti-

mated ET by 11.8% during calibration and 4.71% during

the validation period (Fig. 6). Similarly, PBIAS of 12.3 and

14.9 for 8-daily calibration and validation, respectively,

using the VIC model, indicated that on average, the VIC

model overestimated ET by 12.3% during calibration and

14.9% during the validation period (Fig. 7). Performance

of the VIC model for ET simulation was observed to be

very good on a monthly timescale (PBIAS of 1.8 and 4.7

for calibration and validation, respectively). However, the

performance of the SWAT model for ET simulation was

observed relatively poor on a monthly timescale (PBIAS of

- 6.8 and - 8.2 for calibration and validation, respec-

tively). One can note that the PBIAS of 1.2 and 5.1 was

observed for the EnSwaVi model on an 8-daily scale for

ET simulation, while these values were 0.5 and 1.8 on a

monthly scale for calibration and validation, respectively.

Overall, different performance evaluation criteria showed

relatively better performance of the VIC model compared

to the SWAT model; however, the performance of the

EnSwaVi model was marginally better than the SWAT and

VIC models.

Discussion on the Performance of the SWAT
and VIC Models

Both the hydrologic model SWAT and VIC can be effi-

ciently applied to carry out water balance analysis and for

planning and management of water resources. The SWAT

model simulated the discharge more accurately than the

VIC model. The results were in conformity with Hu et al.

(2007), Dash et al. (2021), and Kang et al. (2022). In

general, overestimation was observed using the VIC model

during both calibration and validation period; this may be

due to inconsideration of the upstream abstraction. How-

ever, the accuracy of the VIC model in simulating the ET

was found better than the SWAT model. Study results

contradict Dash et al. (2021), which revealed that the

SWAT simulation-based standardized evapotranspiration

drought index (SEDI) was consistent; in contrast, the VIC-

3L simulation-based SEDI was continuously overestimated

and underestimated with the benchmark satellite

(MOD16A2-ET)-derived estimates. In general, underesti-

mation was observed using the SWAT model during the

calibration and validation periods. The SWAT hydrologic

model lump the soil characteristics and land use in each

grid cell without considering the sub-grid scale variability

of LULC and soil moisture resulting in more bias in the ET

estimates (Rathjens et al., 2015). It computes water balance

components over the HRUs and averages it for a sub-wa-

tershed. Conversely, the VIC modeling framework can be

advantageous over the SWAT model as it accounts for the

sub-grid scale variability of soil types, soil moisture, and

vegetation; hence, it can simulate the ET more closely to

reality (Srivastava et al., 2017). One can note that the

EnSwaVi-simulated discharges were considerably better

than VIC-simulated discharges; however, the improvement

was not much as compared to the SWAT-simulated dis-

charges. On the other hand, the EnSwaVi-simulated ET

was found superior to both SWAT and VIC-simulated ET.

These results revealed that the ensemble model performs

better as compared to the individual model for ET as well

as discharge simulations (Horan et al., 2021). Our study

outcomes are consistent with Horan et al. (2021) and

Muhammad et al. (2018), and suggest that an ensemble

reduces the noise, bias, and variance of simulations and can

potentially create a more in-depth understanding of the

data. However, ensemble modeling results can suffer from

a lack of interpretability and are dependent on the predic-

tion accuracy of the ensemble members.

While dividing the data into calibration and validation

subsets, it is important to check the data which present the

same statistical population (Masters, 1993). The model

performs better if it does not extrapolate beyond the range

of the data used for model calibration (Tokar & Johnson,

1999). Although, in general, the calibration and validation

datasets have relatively similar statistical characteristics, it

has been observed that a few higher-value peaks are there

in the validation period, which may be not well-calibrated,

which resulted in higher overestimation/underestimation of

these peak values. The SWAT and VIC models were cal-

ibrated and validated using observed discharge data at the

watershed outlet and the average reference ET at the

watershed scale only. Though model calibration perfor-

mance seems quite good for the calibrated gauging station,

multi-site evaluation of the models should be carried out to

achieve a better representation of the physical parameters

and to improve the model’s predictability. But due to the

availability of observed data at watershed outlet only,

single-site calibration was carried out in this study. The

model’s simulation capability could also be improved if

standardized MODIS-derived ET estimates are used since

the MODIS-derived ET estimates are generally not free

from bias.

The average annual water balance for simulation has

also been estimated for the entire 31 sub-watersheds using

the SWAT model. It has been inferred that about 39.75%

flows out as surface runoff from the watershed, out of

annual average precipitation of 1330.90 mm. ET has been
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found predominant and accounts for about 38.46% of the

annual average precipitation falling over the area. It was

observed that almost all the sub-watersheds flow out more

than 25% of annual precipitation as surface runoff, indi-

cating the need for implementing suitable soil and water

management programs to decrease the runoff volume by

increasing in-watershed application of water, in turn min-

imizing soil erosion.

The SWAT and VIC hydrologic models are useful

platforms extensively applied for water resource assess-

ment and management worldwide. The ensemble of VIC

and SWAT outputs, i.e., EnSwaVi model, can be used by

policymakers to make decisions regarding water resource

management in the study area. However, in this study, the

water balance was carried out assuming that land use/land

cover and other parameters remain constant with time. In

reality, several parameters change with time/season.

Therefore, a water balance study incorporating the vari-

ability of these parameters with time/season in the GIS

environment can be a scope for future research. Further, it

is recommended that additional studies should be con-

ducted over other river basins/watersheds to evaluate the

long-term capabilities of hydrologic models in simulating

the water balance components.

Conclusions

In the present study, the SWAT and VIC hydrologic

models were used to simulate the water balance compo-

nents (runoff and ET) over an agriculture-based watershed.

Further, the ensemble of VIC and SWAT outputs

(EnSwaVi; averages of individual model-simulated data-

sets with equal weights) were also simulated for hydro-

logical variables to assess whether modeling uncertainties

could be minimized. Following major conclusions were

drawn from the present study:

1. The results revealed that discharge had been simulated

well using both SWAT (d-index 0.93 and 0.94 during

daily calibration and validation; d-index 0.97 during

both monthly calibration and validation) and VIC

(d-index 0.78 and 0.89 during daily calibration and

validation; d-index 0.93 and 0.96 during monthly

calibration and validation) models. However, the

discharge simulated by the SWAT model was found

more accurate than the VIC model.

2. The performance of the VIC model (d-index 0.72 and

0.66 during 8-daily calibration and validation; d-index

0.72 and 0.71 during monthly calibration and valida-

tion) in simulating ET was found better as compared to

the SWAT model (d-index 0.67 and 0.63 during

8-daily calibration and validation; d-index 0.71 and

0.64 during monthly calibration and validation).

3. The EnSwaVi (ensemble of VIC and SWAT) model-

simulated runoff (d-index 0.94 during both daily

calibration and validation; d-index 0.98 and 0.97

during monthly calibration and validation) and ET

(d-index 0.83 during both 8-daily calibration and

validation; d-index 0.88 and 0.86 during monthly

calibration and validation) were more accurate than

individual SWAT and VIC outputs.

4. Based on the results, it can be concluded that both

SWAT and VIC models can be efficiently applied to

carry out water balance analysis and for planning and

management of water resources. However, the

EnSwaVi model could marginally improve the results.

5. ET has been found predominant and accounts for about

38.46% of the annual average precipitation falling over

the area. It has been inferred that about 39.75% flows

out as surface runoff from the watershed, out of annual

average precipitation of 1330.90 mm.
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