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Abstract
Applying atmospheric corrections on satellite images is an important step before using the satellite image for any further

processing. These atmospheric corrections are broadly classified as either image-based or physics-based atmospheric

corrections. From a plethora of such corrections, which is best suited for vegetation and snow mapping in the mountainous

Himalayan region needs to be decided. Hence, in this work, we evaluated a total of eight atmospheric corrections models

including 5 image-based namely DOS (dark object subtraction method), improved dark object subtraction method (DOS3),

COST (cosine theta), apparent reflectance (Aref), QUAC (QUick Atmospheric Correction), and 3 physics-based methods,

namely SIAC (Sensor Invariant Atmospheric Correction), 6SV (Second Simulation of the Satellite Signal in the Solar

Spectrum) and FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes). We found that 6SV and

FLAASH were better than other methods and QUAC was the worst performer when applied to Landsat 8 OLI images of

the Nepal Himalayan region which has dense vegetation and snow-covered areas. The better snow reflectance values were

observed for FLAASH (B, G, R: 0.88, 0.89, 0.9; NIR: 0.83), SIAC (B, G, R: 0.85, 0.89, 0.89; NIR: 0.83) and 6SV (B, G, R:

0.87, 0.89, 0.89; NIR: 0.8) methods, whereas the FLAASH and SIAC methods exhibited higher vegetation reflectance

values in the NIR band than other methods. The spectra from the standard spectral library were compared with the values

of vegetation and snow spectral reflectance produced from corrected reflectance images. The mean values of snow and

vegetation reflectance were higher for FLAASH, 6SV, and SIAC methods as compared to other methods. Therefore,

FLAASH, 6SV, and SIAC methods, in contrast to other used atmospheric correction methods, have a high possibility of

giving accurate snow and vegetation cover mapping. The snow cover and vegetation cover map prepared using NDSI and

NDVI showed that areas covered under thin clouds and haze were better extracted when FLAASH, SIAC, and 6SV

methods are applied as compared to other methods. Thus, this study confirms that physics-based atmospheric correction

models such as FLAASH, SIAC, and 6SV methods should be used while working on satellite images of the Himalayan

region where the focus is on snow and vegetation cover mapping.

Keywords Image-based atmospheric correction � Physics-based atmospheric correction � SIAC � 6SV � FLAASH �
Himalayan region

Introduction

The multispectral satellite image from Landsat 8 OLI and

the thermal infrared sensor (TIRS) recorded continuous

information about the earth’s surface as digital numbers

(DN). These DN values are maintained in a wide range of

electromagnetic spectrum ranges, from the lowest wave-

length Band-1 coastal aerosol (0.43–0.45 lm) to the

highest wavelength Band-11 Thermal infrared TIRS2

(11.50–12.51 lm), with 16-bit radiometric resolution.
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Before using Landsat 8 OLI data for various applications,

such as mapping land resources (snow, vegetation, water,

etc.) and others, satellite images must first be radiometri-

cally, atmospherically, and geometrically adjusted. Since

Landsat 8 OLI data have already been geometrically

adjusted, comparing and analyzing images taken through-

out several seasons is easy.

In order to eliminate scattering and absorption effects

caused by the atmosphere’s particles and gases, radiometric

and atmospheric correction is mostly applied to satellite

images. The incoming radiation from the source (the sun)

travels a long distance to interact with targets on the earth’s

surface, traveling through the atmosphere (Fig. 1). E0

(solar illumination at the top of the atmosphere) interacts

with various particles, gases, and molecules in the upper

atmosphere once it has radiated from the source (Thorne

et al., 1997; Paolini et al., 2006; Jensen, 2009). As a result

of absorption and scattering, energy is attenuated (Liou,

2002). The quantity of energy that reaches the earth’s

surface is determined by TH (atmospheric transmittance),

where H is the zenith angle (Sabins, 1987). When

incoming radiation (irradiance) interacts with surface fea-

tures, it bounces back as RH (house reflectance), RR (rock

stratum reflectance), and RV (vegetation reflectance) as

shown in Fig. 1. Radiation (energy emitted from the earth’s

surface) from diverse characteristics conveys information

about the subject of interest (Jensen, 2009). Esun (diffuse

sky irradiance) or radiation from nearby places on the

ground are both included in the surface reflectance (Sabins,

1987).

The path radiance (Lp) and Esun in remote sensing data

often provide unwanted radiometric and atmospheric dis-

tortions, complicating image interpretation for a variety of

applications. Irradiance is radiated toward the sensor after

bouncing back off the earth’s surface (Paolini et al., 2006).

This path is again subjected to scattering and absorption

effects due to interaction within the atmosphere (Slater,

1985). Finally, the total amount of energy recorded by the

sensor is explained by the equation (Jensen, 2009):

Ls ¼ LT�Th�RT�H þ LP ð1Þ

where Ls = total energy recorded at the sensor, RT = total

reflectance from the earth targets, H = total irradiance.

The recorded DN values at the sensor are a function of

sun-sensor geometry, sun elevation, atmosphere (scatter-

ing, absorption), topography, and surface model. Atmo-

spheric correction is crucial for land resource mapping

applications where ground reflectance is more significant

than at sensor reflection (Slater, 1985). Through scattering,

absorption, and refraction, the atmosphere distorts the

radiance recorded by the satellite sensor (Chavez, 1996).

Two well-known scatterings, i.e., Rayleigh and Mie scat-

tering, characterize realistic atmospheric scattering rela-

tionships (Chavez, 1996). According to Rayleigh

scattering, relative scattering is inversely proportional to

the fourth power of wavelength (k-4 = 1/k4), implying that

shorter wavelengths of the electromagnetic spectrum

Fig. 1 The simplified schematic

diagram of the atmospheric

interference and the passage of

electromagnetic radiation from

the Sun to the land surface and

then to the satellite sensor
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scatter more than longer wavelengths (Chavez, 1989) Blue

and green, for example, scatter more than the red and NIR

bands. This type of scattering is mainly produced by gas

molecules that are much smaller than the incoming

wavelength (Chavez, 1996). According to the Mie scat-

tering phenomenon, the scattering is inversely proportional

to wavelength and is normally for a medium atmosphere,

i.e., (k-1 = 1/k) (Chavez, 1989). Though this relationship

can vary from k0 to k-4, where k0 represents complete

scattering, i.e., cloud cover (Hall et al., 1991). Mie scat-

tering is caused by coarser size particles that are around the

same size as the wavelength such as smoke and dust.

There are several ways of atmospheric correction that

can be used to restrict the effects of scattering and

absorption on the atmosphere (Moran et al., 1992). One

way is focused on image-based correction methods, which

are divided into two categories: absolute and relative

atmospheric adjustments (Yuan & Elvidge, 1996). Relative

standardization methods are a way of comparing each

image’s spectral properties to a reference image such that

each altered image seems to have been captured with the

same sensor and under similar atmospheric conditions as

the reference image (Yuan & Elvidge, 1996). For modi-

fying atmospheric effects based on a complete image or

permanent portions, there are several processes available

for relative normalization methods such as QUAC (Quick

Atmospheric Correction). The relative normalization

image-based atmospheric correction model is based on the

original satellite image’s unique DN values and does not

require any atmospheric information (Baisantry et al.,

2012). The overall concept of relative normalization

assumes that different glances on comparable items from

different dated focuses or multiple bands should compen-

sate for atmospheric effects (Barnas et al., 2019). In any

case, the atmospheric pathways from several looks must be

identical, which is impossible to achieve. On the other

hand, the absolute atmospheric correction approaches rely

on a thorough understanding of atmospheric factors to

change each image individually (Lu et al., 2002). Rather

than reverting to a reference image, it uses data from a

portion of the image. The haziest zones, for example, are

removed and applied to the rest of the image. Estimated

parameters were substituted for the extracted data (Caselles

et al., 1989). Absolute or physically based calibration

approaches, which rely on atmospheric information

(Richards, 1993), are considered to be more precise. Dark

object subtraction (DOS), improved dark object subtraction

(DOS3), cosine theta (COST), and apparent reflectance

techniques were included in the absolute image-based

correction model (Chavez, 1989). Histogram altering of

single-date imagery and multi-date imagery standardiza-

tion based on histogram coordinating or regression mod-

eling was among the models used. The absolute image-

based atmospheric correction method produces more

favorable outcomes than relative standardization strategies

(Cui et al., 2014). Physics-based correction techniques

involving the radiative transfer models are another means

of adjusting the impacts of atmospheric scattering and

absorption on satellite images (Wang et al., 2019). For the

purpose of removing the effects of scattering and absorp-

tion, three well-known physics-based atmospheric correc-

tion algorithms are FLAASH (Fast Line-of-Sight

Atmospheric Analysis of Spectral Hypercubes), 6SV (a

modified version of Second Simulation of the Satellite

Signal in the Solar Spectrum), and SIAC (Sensor Invariant

Atmospheric Correction) (Yin et al., 2019; Wang et al.,

2019), while QUAC is predicated based upon dark object

assumption, FLAASH and 6SV are based on radiative

transfer models (Wang et al., 2019). In contrast, SIAC is

based on a data fusion technique that first tries to incor-

porate uncertainty data from several data sources before

carrying out the atmospheric correction of satellite images

(Yin et al., 2019). The FLAASH and ATCOR atmospheric

correction technologies allow for greater accuracy (Mat-

thew et al., 2002). However, this module is licensed and so

cannot be used without authorization. As a result of its

excellent accuracy and online availability at http://6s.ltdri.

org, the 6SV model is frequently utilized today to reduce

atmospheric distortions (Kim et al., 2022). In addition, it is

possible to develop the 6SV model particularly to identify

the right parameters that will yield the highest level of

accuracy (Kim et al., 2022). Aerosols, water vapor, and

ozone are examples of atmospheric characteristics that

influence the accuracy of the results of atmospheric cor-

rection in FLAASH, ATCOR, and 6SV, but, field mea-

surements of these parameters are rarely available. This

can be addressed by using satellite data, particularly

MODIS Terra/Aqua data, which is available very instantly

(Chen et al., 2010; Basith et al., 2019).

The results of both physics-based and image-based

atmospheric correction techniques primarily reduce atmo-

spheric (absorption and scattering) effects, and they can be

successfully used for mapping land resources (vegetation,

snow, etc.) (Paul, 2000; Huete et al., 1999). Early snow

climatology researchers mapped the locations of snow

cover using a variety of ground-based and airborne pho-

tographic survey techniques (Bhambri et al., 2011). In

difficult and remote river basins, the ground-based moni-

toring strategy is exceedingly labor-intensive, costly, and

even dangerous (Kaushik et al., 2019). As a result, field

surveys are unsuitable for mapping rapidly melting snow

cover in difficult terrain. Aerial and satellite surveys, as

opposed to field surveys, are the easy method that offers

more comprehensive information in a shorter amount of

time (Barnas et al., 2019; Kaushik et al., 2019). In response

to natural disasters like ice avalanches, landslides, forest
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fires, etc., changes in the creation and distribution of snow

and vegetation extent may stand out. Ice avalanches could

result in mud/debris flows, dammed rivers, or glacial lake

outburst floods (GLOFs) (Navalgund et al., 2007). It is

necessary to identify and map the snow zones that are

prone to these risks through ongoing snow location moni-

toring (using NDSI data). When determining snow cover

and melting in conjunction with other factors including

weather, soil type, and hydrology, snow indices (mainly

Normalized Difference Snow Index–NDSI) have been

widely used in climate change research (Crippen, 1988;

Paul, 2000; Andreassen et al., 2008; Selkowitz & Forster,

2016). A loss of biodiversity and the extinction of innu-

merable plant and animal species are both potential con-

sequences of climate change (Phillips, 1997). For mapping

and monitoring the extent of vegetation loss due to

changing climate and land use patterns, vegetation indices

(mainly Normalized Difference Vegetation Index–NDVI)

are very useful (Domenikiotis et al., 2003). Changing

lighting conditions, surface slope, and viewing angle must

be taken into account while using NDVI (Matsushita et al.,

2007). Thus, NDVI is sensitive to the color of the under-

lying soil and does have a propensity to get saturated over

dense vegetation (Domenikiotis et al., 2003; Matsushita

et al., 2007).

The objective of this study involves applying and

comparing image-based atmospheric correction as well as

physics-based atmospheric correction techniques on

Landsat 8 OLI images. The spectral reflectance of vege-

tation and the snow cover areas are taken from each

atmospherically corrected image and compared to the

spectral libraries provided by the ENVI software. We also

investigated the effects of NDSI and NDVI from various

correction techniques for mapping snow cover and vege-

tation cover maps. For each reflectance image, the NDSI

and NDVI are calculated, which can be further classified

based on distinct snow and vegetation threshold values.

Materials and Methods

Study Area

This study was carried out in the Manang, Mustang, Kaski,

Lamjung, and Myagdi districts of Gandaki province Nepal

as shown in Fig. 2. Manang, Mustang, Kaski, Lamjung,

and Myagdi districts having the spatial extent between

latitude 28� 540 2.0600 N to 28� 260 42.5100 N and longitude

from 83� 470 20.8600E to 84� 340 13.500E, 29� 190 53.3200N
to 28� 330 53.4500N and longitude from 83� 280 46.2900E to

84� 150 7.9600E, 28� 360 48.8100N to 28� 40 40.3100N and

longitude from 83� 420 1.7400E to 84� 160 42.8300E, 28� 300
37.400 to 28� 30 20.5100N and longitude from 84� 110

12.0100E to 84� 410 40.900E and 28� 470 37.9800 to 28� 170

53.8600N and longitude from 83� 50 59.3100E to 83� 520

17.2200E, respectively. Manang, Mustang, Kaski, Lamjung,

and Myagdi districts of Nepal which are located in

the Dhawalagiri Zone and part of Gandaki province lies in

Northern Nepal. The elevation of the Manang and Mustang

district ranges from 1000 to 2000 m in the subtropical

climate to 3000–6400 m in the Trans-Himalayan climate

zone (Pant et al., 2018; Basnet et al., 2019). The elevation

of the Kaski, Myagdi, and Lamjung districts ranges from

300 to 1000 m in the upper tropical climate zone to

3000–6400 m in the Trans-Himalayan climate zone. The

important rivers of the provinces are Kaligandaki, Budhi-

gandaki, Marsyangdi, Modi, Madi, Daraudi, Seti, Aand-

hikhola, Badigad, and Uttarganga. The top half of the

Manang, Mustang, and Kaski districts encompass the

country’s high mountainous range, which feeds thousands

of glacial lakes, many of which are vulnerable to glacial

lake outburst floods (GLOFs) due to rapid glacial retreat

(Pant et al., 2018; Basnet et al., 2019). Tilicho glacial lake,

Thulagi glacial lake, and Kahpuche glacial lake are the

most well-known glacial lakes in Nepal (Pant et al., 2018;

Basnet et al., 2019). There are other glacier lakes in Gan-

daki province. Aside from glacier lakes, Gandaki province

has a lot of semi-natural freshwaters (stream-fed) lakes.

Fewa, Begnas, and Rupa Lakes are some of the most well-

known semi-natural freshwater lakes in the Kaski district.

The administrative boundary of Nepal is depicted in

Fig. 1a, and the location of the research area is shown in

Fig. 1b, c. The original DN Landsat 8 OLI histogram

equalized false-color composite (FCC) image is displayed

in Fig. 1c. As seen in Fig. 1c, Myagdi, Kaski, and Lamjung

districts have extensive vegetation available at lower ele-

vations, but Manang and Mustang districts have a lot of

snow cover, rocky terrain, and little vegetation cover.

Data and Software Used

Landsat 8 OLI satellite images, was downloaded from the

USGS image database site (http://earthexplorer.usgs.gov)

and used in this study. Landsat 8 OLI is the primary data

source for this study, as seen in Table 1. By selecting and

averaging end-member spectra from a large number of

natural and artificial library reflectance spectra, the ‘‘uni-

versal’’ reference spectrum is created. An example library

from the spectral libraries offered with ENVI was used as

the reference in this work. Python 2.7, Arc map 10.6, ENVI

5.3, and other applications were utilized to carry out this

work.
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Fig. 2 The study area map showing the location of 5 sub districts on

the false-color composite (FCC) image using NIR, Red, and Green

bands of Landsat 8 OLI satellite data. Dense vegetation is shown in

reddish tone, snow covered areas in whitish tone and clouds/ haze in

the eastern portion of the study area

Table 1 The information about the Landsat 8 OLI datasets utilized in this study are shown here

Landsat 8 Bands Wavelength

micrometers

Resolution

(meters)

Date of acquisition mm/dd/

yy

Operational Land Imager

(OLI)

Band 2-Blue 0.45–0.51 30 5/20/2020

Band 3-Green 0.53–0.59 30

Band 4-Red 0.64–0.67 30

Band 5-Near-Infrared (NIR) 0.85–0.88 30

Band 6-Shortwave Infrared

(SWIR) 1

1.57–1.65 30

Band 7-Shortwave Infrared

(SWIR) 2

2.11–2.29 30
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Methodology

Radiometric Calibration

Digital numbers (DN) refer to the perfectly reflected radi-

ance above the earth’s atmosphere as well as the recorded

signals reaching the sensor from various targets on the

ground surface (Chavez, 1989; Hall et al., 1991). Digital

numbers ranging from 0 to 65,535 are assigned to Landsat

8 images (Schroeder et al., 2006). Radiometric calibration

is a method of directly converting DN measurements to

radiance, and it necessitates knowledge of the sensor’s gain

and bias in each band (Paolini et al., 2006). The sensor is

radiometrically calibrated before it is launched, however

the sensor position changes with time, resulting in erro-

neous images (Lu et al., 2002). The sensor should be re-

calibrated regularly to avoid this issue. In general, there are

two processes in radiometric calibration for DN values

(Asra, 1989): First, use the gain and bias information for

each Landsat 8 band in Appendix 2 to convert DN values to

spectral radiance at the sensor. The following equation

(Price, 1987; Chavez, 1996) can be used to convert the

satellite Digital number (DN) to radiance at the satellite:

Lsat ¼ G � DN½ � þ B ð2Þ

where Lsat = at sensor spectral radiance (W m-2 sr-1 lm-l);

DN = the digital number for the given spectral band;

G = slope of the calibration function (channel gain);

B = intercept of the calibration function.

Appendix 2 shows the Gain and Bias values used for

Landsat 8 OLI spectral bands, and they are not repeated

here. The conversion to TOA (top of atmosphere) reflec-

tance with sun angle adjustment is the next stage. For

Landsat 8 data, the following equation is used to convert

DN values to TOA reflectance: (Chavez, 1989; Hall et al.,

1991)

qk
0 ¼ G � DNð Þ þ Bð Þ

cos hszð Þ ð3Þ

where qk’ = TOA planetary reflectance, with solar angle

correction; hSZ = Local solar zenith angle; hSZ = 90-sun

elevation.

Apparent Reflectance (Aref) Method

The apparent reflectance method transforms radiance into

reflectance at the sensor in a simple manner (Cui et al.,

2014). The satellite sensor, it’s known as the TOA/plane-

tary reflectance (Cui et al., 2014; Gupta & Shukla, 2020).

Although this method improves solar irradiance and solar

zenithal angle, it does not account for atmospheric scat-

tering and absorption (López-Serrano et al., 2016). After

determining the Esun, the apparent reflectance at the satel-

lite sensor is calculated using the following equation

(Chavez, 1996; Gupta & Shukla, 2020):

Aref ¼
p�d2�Lsatð Þ

Esun* cos hszð Þ ð4Þ

where d = Earth–Sun distance in astronomical units; Esun-

= Mean solar exoatmospheric irradiance.

Above Eq. (4) can be written as:

Aref ¼ Radiance=Irradiance

Radiance is the amount of energy emitted by the earth.

Radiance is the total quantity of energy measured by the

sensor. Irradiance is the amount of sunlight that reaches the

Earth and interacts with the land surface and sub-surface

characteristics. The apparent reflectance measured at the

sensor for a satellite image is also known as unit less TOA

planetary reflectance at the satellite, which has values

ranging from 0 to 1. (0% to 100%). Only the Esun value is

needed for atmospheric corrections to obtain the correct

reflectance of Earth features which was determined using

the above standard equation of TOA planetary reflectance

(qk’).

Atmospheric Correction

Atmospheric corrections are the process of removing or

limiting atmospheric effects (scattering, absorption, and

refraction) that appear in the entire image when the sensor

records surface radiance due to atmospheric attenuation

(Chavez, 1996; Paolini et al., 2006). Absolute and relative

atmospheric correction procedures are the two most com-

mon forms of image-based atmospheric correction (Song

et al., 2001). Adjusting the effects of scattering and

absorption to attain true ground surface reflectance is

known as an image-based atmospheric correction (Thorne

et al., 1997). In this study, image-based correction tech-

niques and physics-based correction methods are used to

correct the distortions. The image-based atmospheric cor-

rection techniques that are used in this paper, are Dark

Object Subtraction (DOS), Improved Dark Object Sub-

traction (DOS3), and COST (cosine theta) and QUAC

approaches, while the physics-based atmospheric correc-

tion techniques used in this work include FLAASH, SIAC,

and 6SV.

The conventional atmospheric correction equation,

which may be used with any image-based correction

technique, is as follows: (Chavez, 1989; Chavez, 1996):

2508 Journal of the Indian Society of Remote Sensing (December 2022) 50(12):2503–2521

123



qTref ¼
p�d2� Lsat�LHazeð Þ

Tv Esun*coshSZ�Tzð Þ þ Edownð Þ ð5Þ

where qTref = correct spectral reflectance of the surface

(takes value 0–1); LHaze = path radiance (upwelling atmo-

spheric spectral radiance) scattered in the direction of and

at the sensor (W m-2 sr-1 km-1); Tv = atmospheric

transmittance along the path from the ground surface to the

sensor; Esun, is mean solar exoatmospheric irradiance; Tz-
= atmospheric transmittance along the path from the sun

to the ground surface; Edown = downwelling spectral irra-

diance at the surface (W m-2 lm-1).

The method provided in this study uses the same

assumption as (Schroeder et al., 2006), but applies it to

Landsat 8 satellite data for glacial applications. Table 2

lists the necessary values for Tz, Tv, LHaze, and Edown.

Haze Estimation

The process of adjusting path radiance (Lp) and upwelling

atmospheric scattering induced by scattering and absorp-

tion is known as haze estimation (Richter, 1996). Selecting

SHV (Starting haze value) was the most accurate way of

evaluating haze. For the visible, NIR, SWIR1, and SWIR2

bands, this study calculates the DN pixel value of the dark

object (SHV). L1 percent (0.01) denotes the fraction of

pixels that have been determined to be SHV (Richter,

1996). The histogram is displayed with its finest SHV after

defining the dark pixel proportion, as illustrated in Fig. 3.

Because maximal scattering occurs in band 1, SHV (DN

values) are highest in band 1 (blue) and lowest in band 4

(NIR) in Fig. 3. The DOS method employs the atmospheric

haze decay model, which states that scattering is greatest in

the blue wavelength, reduces in the NIR, and then increases

in the SWIR1 and SWIR2 bands.

Dark Object Subtraction Method (DOS)

The dark object subtraction method (DOS) is likely the

most straightforward and consistent procedure among the

majority of widely used image-based atmospheric correc-

tion procedures (Song et al. 2001). This technique implies

the presence of dark objects that correspond to the Landsat

8 band’s minimum DN value (QMin). The minimal dark

object DN value (QMin) is chosen based on statistical data

for each band. The histogram is used to calculate the (QMin)

value for each Landsat 8 OLI band. Typically, the DOS

approach scans each band for the darkest pixel value, then

subtracts this value from every pixel in the distinct Landsat

8 OLI band to reduce the scattering impact in the scene

(Song et al., 2001). The Dark Object Subtraction (DOS)

approach removes the haze component from remote sens-

ing data caused by additive scattering (Chavez, 1989). The

DOS correction is based on the assumption that the max-

imum number of true black pixels in satellite images

contains 1% of actual ground reflectance. The following

equation (Chavez, 1989) was used to determine the amount

of haze effects in the satellite image used in this study:

L1% ¼ 0:01�Esun*coshz
p�d2 ð6Þ

LHaze ¼ SHVrad � L1% ð7Þ

where SHVrad = starting haze value which values alike to

minimum DN (digital numbers) value of the scene.

The calculated haze value and other required parameter

values are applied in the above standard equation of

atmospheric correction to obtain true ground reflectance. A

new SHV value must be computed for each band.

Improved DOS Method (DOS3)

The improved DOS method uses information from a single

band to calculate LHaze values for the remaining bands of

an image using atmospheric scattering functions. Because

scattering is band dependent, i.e., visible bands (Blue,

Green, and Red) with shorter wavelengths are more

affected by atmospheric scattering function as compared to

longer wavelength bands (NIR and SWIR). The improved

DOS method denoted DOS3 uses the standard DOS

methodology in computation, except for the atmospheric

transmittance (Tv) (Paolini et al., 2006; Song et al., 2001).

The Tv value was calculated as:

Tv ¼ exp
TAUR
coshSZ

� �
ð8Þ

where Tv = atmospheric transmittance along the path from

the sun to the ground surface; TAUR = optical thickness of

Rayleigh scattering which is calculated according to

Kaufman (1989).

TAUR ¼ 0:008569 � k�4 � ð1þ 0:0113 � k�2 þ 0:00013

� k�4Þ
ð9Þ

Table 2 The values of the parameters used in four different image-

based atmospheric correction methods

Method TZ TV Edown Lhaze

Apparent Reflectance 1 1 0 0

DOS 1 1 0 SHV

COST cos (hsz) cos (hv) 0 SHV

DOS3 Iterative Iterative Iterative Iterative
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where k is the central wavelength of each band, in microns.

The value for the atmosphere scattering function for indi-

vidual Landsat 8 bands is given in Table 3.

COST (cosine theta) Method

The COST atmospheric correction method was the first to

report on the multiplicative effects of atmospheric

scattering and absorption. This means that the COST

approach is a modification of the DOS model that includes

the cos(Hsz) term. The COST model is primarily used to

correct atmospheric transmittance along the path from the

sun to the ground surface (Tz), which is multiplicative but

not additive. For the COST method:

• Tz = cos(Hsz) = cos (solar zenithal angle)

Fig. 3 The graph shows the starting haze value (SHV) for each band of Landsat 8 OLI

Table 3 The value of the specific scattering function for Landsat 8 OLI bands that are used in this study. The values in parenthesis are in

percentage

Rayleigh Mie Completely Mie

Bands Central wavelength

(k)
Very clear

k-4 (%)

Clear

k-2 (%)

Moderate

k-1 (%)

Hazy

k-0.7 (%)

Very hazy

k-0.5 (%)

Band 2-Green 0.48 18.84 (51.73) 4.34 (36.97) 2.08 (27.37) 1.67 (24.20) 1.44 (21.98)

Band 3-green 0.56 10.17 (27.93) 3.19 (27.17) 1.79 (23.55) 1.5 (21.74) 1.34 (20.46)

Band 4-Red 0.66 5.43 (14.91) 2.3 (19.59) 1.52 (20.00) 1.34 (19.42) 1.23 (18.78)

Band 5-Near-infrared (NIR) 0.87 1.79 (4.34) 1.32 (11.24) 1.15 (15.13) 1.1 (15.94) 1.07 (16.34)

Band 6-Shortwave infrared

(SWIR) 1

1.61 0.15 (0.41) 0.39 (3.32) 0.62 (8.16) 0.72 (10.43) 0.79 (12.06)

Band 7- Shortwave infrared

(SWIR) 2

2.20 0.04 (0.11) 0.21 (1.79) 0.45 (5.29) 0.58 (8.41) 0.67 (10.23)

Total 36.42 11.74 7.60 6.90 6.55
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• TV = Cos(Hsv) = 1.0 because Hsv is zero degrees for

nadir view.

QUAC (QUick Atmospheric Correction) Method

The image-based atmospheric correction method, QUAC,

simply needs a rough description of the sensor band posi-

tions (i.e., center wavelengths) and their radiometric cali-

bration; no extra metadata is needed (Prosperi, 2012).

Compared to physics-based approaches, QUAC is signifi-

cantly faster but also more approximate because it does not

employ first principles radiative transfer calculations

(Bernstein et al., 2012) rather it uses dark targets (Wang

et al., 2019). Three hypotheses are taken into account: (1)

the image must contain more than 10 spectrally distinct

pixels; (2) the standard deviation of the reflectance from

end-member pixels is spectrally independent and can be

used to calculate the transmittance; and (3) there is a suf-

ficient number of dark pixels to calculate an invariant

baseline, assumed as a measurement of attenuation (scat-

tering and absorption) and the adjacency effect (Bernstein

et al., 2005).

SIAC (Sensor Invariant Atmospheric Correction) Method

A coarse resolution simulation of the earth’s surface is used

in SIAC using the MODIS MCD43 BRDF (Bidirectional

Reflectance Distribution Function) product. To deal with

the scale discrepancies between MODIS and Landsat 8

OLI, a model based on MODIS PSF is applied (Yin et al.,

2019). In order to solve for the atmospheric parameters, we

couple the ECMWF CAMS prediction with the 6SV model

and utilize it as a prior for the atmospheric states. The

atmospheric parameters are obtained from high temporal

resolution MODIS observations to get the BRDF descrip-

tion of the earth’s surface, and the atmospheric state is

provided by the ECMWF CAMS near-real-time data (Yin

et al., 2019). This work was carried out in Python 2.7

having integration in Google colab and Google Earth

Engine.

6SV (Second Simulation of the Satellite Signal in the Solar
Spectrum) Method

This physics-based atmospheric correction method makes

predictions about objects’ reflectance (Aref) at the top of

the atmosphere (TOA) based on data about surface

reflectance and atmospheric conditions as mentioned in

Eq. 4 (Vermote et al., 1997). The model only requires a

minimal amount of input data and characteristics to provide

this information. In the absence of atmospheric influences,

the surface reflectance (Ref) is calculated as:

Ref ¼ ðAAref þ BÞ
½1þ ðcðAAref þ BÞ ð10Þ

where A = 1/ab, B = Aref/b, a is the global gas transmit-

tance, b is the total scattering transmittance, and c is the

spherical albedo (Mahiny and Turner, 2007). a, b, and c are
the constants generated from running the model.

FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes) Method

The physics-based radiative transfer model used in

FLAASH is derived from MODTRAN4 (Matthew et al.,

2002; Cooley et al., 2002; Berk et al., 1999). It is a great

solution for atmospheric correction and can fix the cascade

effect brought on by diffused reflection (Wang et al., 2018).

Initial visibility (36.61 km) from Eq. 11, AOD at 550 nm

of 0.273, and angstrom exponent of 0.471 are the atmo-

spheric characteristics used for the FLAASH atmospheric

algorithm in this work. The aerosol model is taken as rural,

the altitude is 705 km, and the atmospheric model type is

tropical. The surface reflectance image is the FLAASH

algorithm result derived from the following mathematical

expression:

Visibility ¼ �15lnðta Ið ÞaÞÞ
0:613

ð11Þ

ta (I) = AOD at 550 nm.

a = angstrom exponent.

Result

The identification and mapping of land resources, such as

vegetation and snow cover, is examined in this study using

eight atmospheric correction methods that broadly fall

under image-based and physics-based techniques. A visual

comparison of the eight different types of atmospheric

correction methods used on the Landsat 8 OLI in the snow

and vegetation cover with and without the use of SHV

(starting haze value) was done in the first stage. In contrast

to the original Landsat 8 OLI image in DN (Digital

Number), the brightness value of atmospherically corrected

images is variable according to the parameter used in each

model to correct the atmospheric influences. The atmo-

spherically corrected reflectance images are as shown in

Fig. 4a–h after applying the histogram equalization image
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enhancement technique. The 50 random points each in

vegetation and snow cover are also shown in Figs. 4a–h.

These points are used to extract the reflectance values and

then it was averaged for vegetation and snow cover across

all atmospherically corrected images. The atmospheric

correction techniques used are the most effective for

reducing the attenuation of radiation caused by Rayleigh

and Mie scattering in the upper atmosphere. These two

scattering effects (hazy appearance) are clearly seen in the

original image (Fig. 1c), while the adjusted haze effect in

several atmospherically corrected images is shown in

Figs. 4a–h. Table 3 displays the value of the specific

scattering function that is used to eliminate haze effects

from the original image. As we can see in Fig. 4, the hazy

appearance due to Rayleigh and Mie scattering was cor-

rected but the cloud remains unaltered with implemented

different atmospheric correction methods.

Spectral Reflectance Curve

Spectral reflectance is the ratio of the amount of radiation

returning from the Earth’s surface to the amount of

radiation coming from the Earth’s surface at a given

spectral band (McCord et al., 1981). Reflectance is the

unitless quantity that typically ranges between 0 and 1. By

computing the mean of the reflectance measurements in the

individual ranges, the spectral reflectance curve may be

used to determine the total reflectance of selected pixels in

each band. In this work, we explored the spectral signatures

of snow and vegetation cover using the spectral profile tool

in ENVI and compared them to the spectral libraries pro-

vided by the ENVI software.

Snow Reflectance Curve

The averaged snow reflectance curve is plotted as a func-

tion of wavelength. The snow spectral reflectance values

extracted from different atmospherically corrected images

are shown in 8 spectral profiles (Fig. 5). The spectral

profile of snow shows ‘‘peak’’ and ‘‘valley’’ variations

which is commonly utilized to compare the atmospheric

correction methods. Snow reflects up to 95% of the entire

visible light and 50–80% of incoming NIR light (Feister &

Grewe, 1995). For all the atmospheric correction methods,

Fig. 4 The atmospherically corrected maps obtained a the apparent

reflectance (Aref) method, b dark object subtraction (DOS) method;

c improved dark object subtraction (DOS3) method; d Cosine theta

(COST) method; e quick atmospheric correction (QUAC) method;

f sensor invariant atmospheric correction (SIAC) method; g fast line-

of-sight atmospheric analysis of spectral hypercubes (FLAASH)

method; and h second simulation of the satellite signal in the solar

spectrum (6SV) method. The locations from where vegetation spectra

were taken are shown in yellow dots, while the blue triangle shows

the locations from where snow spectra were extracted
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the reflectance of snow is higher in the visible region (blue

(B), green (G), and red (R) bands), while the reflectance of

the NIR bands is slightly lower, and the reflectance of the

selected Landsat 8 SWIR1, SWIR2 bands is completely

lower (Fig. 5).

The reflectance values of snow-covered areas, determined

by the FLAASH approach are higher in the visible range

(0.88, 0.89, and 0.9 for B, G, R, respectively) and compara-

tively lower inNIRwavelengths (0.83) as shown inFig. 5 and

Appendix 2, while QUAC technique exhibits lowest reflec-

tance values in the visible (B,G, R: 0.35, 0.39, 0.44), andNIR

(0.55) bands. Better snow spectral reflectance was also

observed using the SIAC (B, G, R: 0.85, 0.89, 0.89; NIR:

0.83) and 6SV (B, G, R: 0.87, 0.89, 0.89; NIR: 0.8) method

after FLAASH. Also, the snow spectral reflectance deter-

mined by DOS (B, G, R: 0.84, 0.84, 0.86; NIR: 0.81), COST

(B, G, R: 0.79, 0.79, 0.83; NIR: 0.8), DOS3 (B, G, R: 0.78,

0.78, 0.82; NIR: 0.81), and Aref (B, G, R: 0.84, 0.82, 0.89;

NIR: 0.85) are showing a decreased reflectivity (Appendix 2).

The snow spectral reflectance values calculated from

atmospherically corrected Landsat 8 OLI images are

compared with spectral libraries made available by ENVI

(Table 4). The correlation values of snow spectra between

the standard spectral library and the 6SV, SIAC, FLAASH,

DOS, and Aref derived spectra are very high (r2 = 1),

while the correlation values with COST, DOS3, and QUAC

Fig. 5 The snow-covered

spectral reflectance curve,

which was extracted from eight

different atmospheric correction

techniques

Table 4 The correlation of snow spectral values extracted from atmospherically adjusted images and standard spectral library. Their rank in the

order of correlation is also shown

S.No Correlation Aref COST DOS DOS3 FLAASH QUAC SIAC 6SV

1 Snow_Ref 1.00 0.99 1.00 0.99 1.00 0.90 1.00 1.00

2 Rank 4 6 3 7 2 8 5 1

Fig. 6 The spectral reflectance

curve of vegetation cover that

was estimated using eight

different atmospheric correction

methods
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are 0.99, 0.99, and 0.90, respectively, as shown in Table 4.

Thus, 6SV has the highest rank of 1 (Table 4), followed by

FLAASH with a rank of 2. The lowest ranks are obtained

for DOS3 and QUAC, with ranks of 7 and 8, respectively.

Vegetation Reflectance Curve

The averaged vegetation reflectance curve is displayed as a

function of wavelength. The vegetation spectral reflectance

values extracted from different atmospherically corrected

images are shown in 8 spectral profiles (Fig. 6).

The spectral profile of healthy green vegetation shows

‘‘crest’’ and ‘‘trough’’ variations which are commonly uti-

lized to compare the atmospheric correction methods. The

wavelength area visible (B, G, R), near-infrared (NIR), and

beyond shortwave infrared (SWIR) can all be examined

separately. In the visible region (0.4–0.7 lm), healthy

vegetation generally absorbs the electromagnetic energy,

while in the red/infrared boundary around 0.7 lm,

absorption drastically decreases, and reflection increases.

From 0.7 to 1.3 lm, the reflectance is almost constant, and

at longer wavelengths, it starts to decline as shown in

Fig. 6. Hence for further analysis spectral reflectance val-

ues at the NIR band were considered for comparison.

It is observed that the NIR wavelengths showed the

highest reflectance value (0.42) for vegetated areas when

corrected using FLAASH setting (Appendix 3), while the

lowest reflectance value (0.27) in the NIR band for the

same pixels is obtained in the QUAC corrected image, as

shown in Appendix 3 and Fig. 6. After that, the improved

vegetation spectral reflectance was seen with the SIAC

(0.41), DOS (0.40), and DOS3 (0.40) approaches. As seen

in Appendix 3, the spectral reflectance for vegetation areas,

as measured by Aref (0.39), COST (0.39), and 6SV (0.38),

has indicated decreased spectral reflectance.

The values of vegetation spectral reflectance derived

from atmospherically corrected Landsat 8 OLI images are

compared with spectral libraries made accessible by ENVI,

as shown in Table 5. Higher correlation values are obtained

for 6SV, SIAC, COST, DOS3, and Aref having r2 = 1,

whereas the correlation values for the FLAASH and QUAC

are, respectively, 0.99 and 0.87. In Table 5, it is evident

that COST has the highest rank, which is 1, followed by

6SV, which has a rank of 2. The DOS and QUAC represent

the lowest ranks with values 7 and 8 respectively as shown

in Table 5.

Statistical Analysis

The statistical mean (l) is derived from the snow reflec-

tance data for each atmospherically corrected Landsat 8

OLI image Table 6. The 6SV (l:0.61), SIAC (l:0.61), and
FLAASH (l:0.62) techniques have similar means. This

explains that the results of these three atmospheric cor-

rection techniques were comparable in terms of the infor-

mation content for the snow cover areas. Similarly, Table 6

shows that the mean snow reflectance generated by QUAC

has a lower mean value (0.32). The FLAASH, SIAC, and

6SV methods produce higher snow mean reflectance values

when compared to other image-based correction techniques

(Aref, COST, DOS, DOS3). This suggests that, when

compared to other atmospheric correction techniques,

FLAASH, SIAC, and 6SV approaches are better for

atmospheric correction and have a high possibility of

delivering true snow features from Landsat 8 OLI.

Similarly, the statistical mean (l) was obtained for the

vegetation reflectance value for each atmospherically cor-

rected Landsat 8 OLI image (Table 7). The higher mean

reflectance values for vegetation are observed for the 6SV

(l:0.21), FLAASH (l:0.20), and SIAC (l:0.19) methods.

This indicates that in terms of the information content of

the vegetation cover, the mean values of these three

atmospheric correction methods were similar. Table 7

demonstrates that the mean vegetation reflectance value

produced by QUAC is the lowest (0.13). In comparison to

other image-based correction methods (Aref, COST, DOS,

DOS3), as shown in Table 7, the FLAASH, SIAC, and 6SV

methods produce higher mean vegetation reflectance val-

ues. Thus, FLAASH, SIAC, and 6SV methods offer a high

chance of providing accurate vegetation information from

Landsat 8 OLI.

Normalized Difference Snow Index (NDSI)

NDSI is a semi-automated technique for extracting ice

(snow) from satellite images. For the Landsat 8 OLI band,

Table 5 The correlation of vegetation spectral values extracted from atmospherically adjusted images and standard spectral library. Their rank in

the order of correlation is also shown

S.No Correlation Aref COST DOS DOS3 FLAASH QUAC SIAC 6S

1 Vegetation_Ref 1.00 1.00 0.99 1.00 0.99 0.87 1.00 1.00

2 Rank 5.00 1.00 7.00 4.00 6.00 8.00 3.00 2.00
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it is the ratio of visible (Green) to SWIR1 band. The

spectral information available in the (Green, SWIR1) plays

an important role in using NDSI to map the snow area on

the earth’s surface. The following equation (Burns et al.,

2014) denotes the mathematical expression of NDSI for

Landsat 8 OLI:

NDSI ¼ Green� SWIR1ð Þ
Greenþ SWIR1ð Þ ð12Þ

Snow features had the highest reflectance in the visible

and NIR bands and the lowest reflectance in the SWIR1

and SWIR2 bands in all the atmospheric corrected images,

as illustrated in Fig. 5. This is extremely helpful in the

utilization of NDSI for snow cover mapping. It can also

reduce the effects of topography, allowing features beneath

high mountain shadows to be well distinguished. A

threshold on NDSI is applied to identify snow and non-

snow areas. NDSI thresholding is the most vital phase in

snow cover demarcation and mapping because it determi-

nes the most ideal value from the NDSI stated range. It is

the process of separating and segmenting continuous

(greyscale) data into discrete (thematic) data. In this study,

several threshold values were applied for extracting snow

from atmospherically corrected images that match the

earth’s surface. The histogram-based thresholding is useful

for identifying the spread of NDSI values (e.g., normal

distribution, negative or positively skewed distribution,

multimodal or uniform distribution). The histogram tech-

nique of NDSI thresholding is a standard way of seg-

menting and mapping snow and non-snow areas. The NDSI

was used to detect snow in snow-covered forest areas, with

the NDSI threshold value set to 0.4, based on the statistical

Table 6 The mean of the snow cover reflectance values that are obtained from all the atmospheric correction methods

Method Aref COST DOS DOS3 FLAASH QUAC SIAC 6S

Mean 0.58 0.57 0.58 0.56 0.62 0.32 0.61 0.61

Table 7 The mean of the vegetation cover reflectance values that are obtained from all the atmospheric correction methods

Method Aref COST DOS DOS3 FLAASH QUAC SIAC 6S

Mean 0.16 0.15 0.16 0.14 0.2 0.13 0.19 0.21

Fig. 7 The snow cover maps obtained from NDSI thresholding for eight different atmospheric correction methods. The red ellipse shows the

areas where changes are visible among all the output images
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results. The histogram threshold value is chosen to be[
0.4 of the calculated NDSI.

Snow Cover Maps (SCM)

The snow cover maps were prepared for various atmo-

spherically corrected reflectance images that categorize

into two classes, namely snow and non-snow areas repre-

sented by white and black, as shown in Fig. 7. The 6SV

atmospheric corrected image covered a greater snow area

(26.26%), followed by the SIAC (25.35%) and FLAASH

(24.98%) methods. The QUAC method of atmospheric

correction has shown a lesser snow cover area of 22.83% as

compared to other corrected reflected images as shown in

Fig. 7, while Aref, DOS, DOS3, and COST methods have

shown 23.79%, 23.71%, 23.71%, and 23.48% snow area,

respectively, which is less than the snow cover area cal-

culated by 6SV, SIAC, and FLAASH atmospheric correc-

tion methods. Some variations in the snow cover area are

seen in Fig. 7a–h, lower-right corner, which is denoted

with a red ellipse. This is the same area that is obscured by

a thin cloud cover as shown in Fig. 2. This indicates that

the 6SV, SIAC, and FLAASH method function satisfac-

torily, when compared to other methods, to extract the

snow area covered by a thin cloud cover and haze as shown

in Fig. 7, while other methods like Aref, DOS, DOS3,

QUAC, and COST do not perform well in extracting the

information that is obscured by thin cloud cover and haze

in the study area.

Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index (NDVI) is

commonly used to determine the area of vegetation cover

all over the world. The NDVI is the ratio of the difference

in reflectance in the Near-Infrared (NIR) and Red bands to

the sum of these two bands and is given as (Kaufman &

Holben, 1993):

NDVI ¼ NIR� REDð Þ
NIRþ REDð Þ ð13Þ

The value of NDVI varies from - 1 to 1, which is

generally classified as:

NDVI = - 1 to 0 represents water bodies that do not

reflect much in either red or NIR bands.

NDVI = - 0.1 to 0.1 represent barren rocks, sand, or

snow.

NDVI = 0.2 to 0.4 represent agriculture.

NDVI = 0.5–1 represents healthy vegetation (Crippen,

1990) due to very high reflectance in the NIR band.

NDVI clearly distinguishes vegetation from other fea-

tures in the satellite image even in the presence of thin

cloud cover, topography effects, and haze (Pettorelli,

2013). As shown in Fig. 6, the spectral reflectance curve of

healthy green vegetation exhibits a minimum reflectance in

the visible region (RGB) of the electromagnetic spectrum

due to the pigments in plant leaves. In the reflective near-

infrared region (NIR), reflectance increases a lot. There-

fore, in all atmospheric correction methods, vegetation

features had the lowest reflectance in the visible wave-

lengths and the highest reflectivity in the NIR band, as seen

in Fig. 6. For mapping vegetation cover, this is extremely

useful in generating NDVI.

After computing NDVI indices, the most crucial step in

delineating and mapping vegetation cover is NDVI

thresholding, which selects the most ideal value from the

NDVI given range. In this study, multiple threshold values

were applied for the extraction of vegetation cover from

atmospherically corrected images. Finally, a histogram

thresholding method based on mean NDVI values is chosen

for mapping vegetative cover from the various atmo-

spherically corrected reflected images.

Vegetation Cover Maps (VCM)

The study area was divided into two categories, i.e., veg-

etation and non-vegetation areas, represented as green and

black, respectively, while creating the vegetation cover

maps for various atmospherically corrected reflectance

images as shown in Fig. 8. It was observed that in the 6SV

atmospheric corrected image, larger area (35.79%) is cat-

egorized as vegetation as compared to that of SIAC

(35.73%) and FLAASH (34.09%) methods. In comparison

to other corrected reflected images, the Aref method cov-

ered the least vegetation area of 30.39%, as seen in Fig. 8,

whereas other methods like COST (34.92%), QUAC

(33.29%), DOS (30.64%), and DOS3 (31.86%) did cover

a lesser area as vegetation. There are certain areas where

changes in the vegetation cover area are seen, which are

highlighted in the red circle as shown in Fig. 8a–h. These

are similar locations where thin cloud is present as seen in

Fig. 2. This demonstrates that, when compared to other

methods, the FLAASH, SIAC, and 6SV methods accept-

ably extract the vegetation area covered by thin cloud

cover, and haze that other methods could not extract.
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Discussion

Many authors tried to compare the effects of different

atmospheric correction methods, including both image-

based and physics-based, with the field observed spectral

reflectance data. Different methods that have been

employed are DOS, COST, ELM, ATCOR, QUAC, 6SV,

and FLAASH (Nazeer et al., 2014; Mandanici et al., 2015;

Marcello et al., 2016; Peng et al., 2016; Eugenio et al.,

2017; Wang et al., 2018). In addition to similar work some

authors compared the results of atmospheric corrections

among themselves and with different indices such as

NDVI, NDSI, SAVI, etc. (Mandanici et al., 2015; Kaneko

et al., 2016; Lhissou et al., 2020; Moravec et al., 2021;

Jasrotia et al., 2022). In most of the published literature, it

was observed that physics-based atmospheric correction

methods outperforms the image-based atmospheric cor-

rection methods.

The results obtained from two physics-based methods

(FLAASH and 6SV) differ significantly from those of the

image-based methods (QUAC, DOS1), while they are in

good agreement with one another (Mandanici et al., 2015).

When using FLAASH and 6S atmospheric corrections

methods, very minor discrepancies were obtained (Mor-

avec et al., 2021). It was concluded that physics-based

atmospheric correction methods correctly corrected the

atmospheric disturbances (Eugenio et al., 2017; Wang

et al., 2018), mainly in the vegetation and soil areas from

several protected semi-arid environments (high mountain

and coastal areas) (Marcello et al., 2016); over Chinese

forest, grassland, and desert areas (Xie et al., 2010; Peng

et al., 2016). The main reason for better performance of

physics-based methods is precise estimation of path radi-

ance and precise recovery of the earth’s surface reflectance

than the image-based method, especially in vegetation

areas (Kaneko et al., 2016). As a result, the 6SV method of

atmospheric correction was closest to the ground spectral

reflectance values (Xie et al., 2010; Nazeer et al., 2014;

Peng et al., 2016). The spectral reflectance is overestimated

by the physics-based method throughout all spectral bands,

while it is significantly underestimated by the image-based

methods (empirical method), particularly in the visible

region of the electromagnetic spectrum (Mandanici et al.,

2015). In conclusion, physics-based methods, particularly

6SV, have showed better performance, achieving reflec-

tance estimations that are extremely close to the in-situ

data (Marcello et al., 2016). Similar results are obtained in

this work where physics-based atmospheric correction

methods showed better results than the image-based

atmospheric correction methods. Particularly, we observed

good results while using FLAASH, SIAC and 6SV method

in the mountainous region of Nepal Himalayas.

We observed that there is an increase of reflectivity in

the near-infrared region and decrease of reflectivity in the

Fig. 8 The vegetation cover maps obtained from NDVI thresholding for eight different atmospheric correction methods. The areas where

changes are visible are marked in red circle/ellipse
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visible region after applying several atmospheric correc-

tions methods on Landsat 8 OLI images. Similar pattern as

also observed for a study carried out in Spain using Sen-

tinel-2 satellite data (Valdivieso-Ros et al., 2021). The

changes in RED and NIR bands that are used for NDVI

calculation were observable, but their histogram shape was

similar to that of the top of the atmosphere image. How-

ever, we found that QUAC atmospheric corrected image

was the worst as also reported by Moravec et al., (2021).

They found that the surface reflectance of RED and NIR

bands was shifted for QUAC method in comparison to the

other atmospheric correction methods while applying the

correction methods on Sentinel-2 and Landsat 8 images

(Moravec et al., 2021). There were certain locations where

thin cloud was present in our study area which decreased

the NDVI and NDSI area for original and other image-

based correction methods. However, some of these snow

and vegetation areas were better represented using the

physics-based atmospheric correction methods mainly

FLAASH and 6SV followed by SIAC. Higher values for

maximum NDSI and NDVI were obtained in atmospheric

corrected Landsat 8 images of Jhelum Basin, Western

Himalaya (Jasrotia et al., 2022).

Conclusion

In this work, eight atmospheric correction methods,

including 5 image-based and 3 physics-based models, are

applied on Landsat 8 OLI satellite image to assess the best

model for mapping snow and vegetation covered areas. The

original Landsat 8 OLI was successfully corrected using

the DOS, DOS3, COST, Aref, QUAC, SIAC, FLAASH,

and 6SV atmospheric correction methods. The reflectance

values of the snow and vegetation covered 50 pixels were

extracted from all the corrected reflectance images. These

derived snow and vegetation reflectance spectra were

compared with the standard spectra from the ENVI soft-

ware’s spectral library. In comparison to all the applied

methods, the FLAASH (B, G, R: 0.88, 0.89, 0.9; NIR:

0.83), SIAC (B, G, R: 0.85, 0.89, 0.89; NIR: 0.83) and 6SV

(B, G, R: 0.87, 0.89, 0.89; NIR:0.8) methods determined

the better snow reflectance values. The 6SV technique

received the highest rank of 1 followed by FLAASH

method for best correlation of snow reflectance with the

standard reflectance, whereas DOS3 and QUAC methods

were the worst. In the NIR band, the FLAASH and SIAC

methods show greater vegetation reflectance values than

other methods. But in terms of rank while correlating the

extracted vegetation spectra with the standard spectra, the

COST technique has a rank of 1, which is the highest, and

6SV is ranked second, while DOS and QUAC obtained a

rank of 7 and 8. In this study, we found that when com-

pared to other image-based correction methods (QUAC,

Aref, COST, DOS, and DOS3), the FLAASH, SIAC, and

6SV methods generate higher snow and vegetation mean

reflectance values, thus having a high possibility of map-

ping true snow and vegetation features. The snow and

vegetation cover maps produced from all atmospherically

corrected reflected images demonstrated that, FLAASH,

SIAC, and 6SV methods could extract the underneath

information from the area covered by thin cloud cover, and

haze.

As QUAC, DOS, DOS3, and COST methods could

correct for hazy appearance caused by dark objects, they

depend on the accuracy of the system’s gain and offset as

well as the addition of a term to account for atmospheric

transmittance, which has a multiplicative effect rather than

an additive one, whereas FLAASH, 6SV, and SIAC, on the

other hand, are based on radiative transfer models and take

the radiation transmission process in the range of visible

light to the SWIR band into consideration. They describe

the state of the radiation source, the atmosphere (including

Rayleigh scattering, aerosol scattering, and vapor absorp-

tion), and the sensor’s geometrical parameters.

Appendix 1

See Table 8.

Table 8 The gain and bias value used during DN to radiance conversion

S.No Bands Gain Bias

1 Band 2-Blue 0.013 - 64.336

2 Band 3-Green 0.012 - 59.285

3 Band 4-Red 0.010 - 49.992

4 Band 5-Near-Infrared (NIR) 0.006 - 30.593

5 Band 6-Shortwave Infrared (SWIR) 1 0.002 - 7.608

6 Band 7-Shortwave Infrared (SWIR) 2 0.001 - 2.564
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Appendix 2

See Table 9.

Appendix 3

See Table 10.
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