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Abstract
The high spatial resolution of satellite data and the capability of physics-based approaches are considered highly suit-

able for testing the integration of remote sensing technologies into the water quality monitoring of small and medium-sized

inland lakes. This research thus aimed to investigate an operational algorithm for chlorophyll-a (Chla) estimation based on

China’s recently launched high-spatial-resolution GF-1 satellite data for Lake Dianshan, a eutrophic lake in Shanghai city,

eastern China. For the calibration of the empirical model, an enhanced three-band model and an improved four-band model

(IFB) developed by model derivation and statistical analysis based on in situ water sampling and satellite reflectance data

were proposed. The IFB model could account for more than 90% of the Chla variation in the GF-1 satellite data. For the

calibration of the semi-empirical model, the performance of DU and an improved NCI model (NCI’) were analyzed and

validated with field spectral measurements and GF-1 satellite data. The corresponding GF-1 satellite DU model and NCI’

model reached high estimation accuracies of R2 = 0.80 and 0.76, respectively. The good estimated results indicate that the

established GF-1 satellite models are promising and applicable to estimating Chla in small and medium-sized eutrophic

inland lakes.
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Introduction

The eutrophication of inland lake water has become a

significant environmental problem, which leads to many

restrictions on water resource utilization (Zhou et al.,

2014). The chlorophyll-a (Chla) concentration is one of the

most important water quality parameters (WQPs) for

measuring the trophic state of lake water (Arabi et al.,

2016; Schalles, 1998). For the remote estimation of Chla in

small and medium-sized inland lakes, the spatial resolution

of satellite data should be the first factor to be considered

because of the limited lake area and the variation in WQPs

(Fichot et al., 2016; González Vilas et al., 2011; Kloiber

et al., 2002).

At present, high-spatial-resolution satellite imagery has

been widely used in many study areas, such as land use

classification, atmospheric pollution monitoring, and

archaeological investigations (Lin et al., 2015; Myint et al.,

2011; Sarris et al., 2013). However, there is a lack of relevant

studies on high-spatial-resolution satellite data, such as those

from RapidEye, Ikonos, and QuickBird, applied to water

quality monitoring of small to medium-sized inland lakes

(Choe et al., 2015; Ekercin, 2007; Wu & Cheng, 2010).

GaoFen-1 (GF-1), the first Chinese high-spatial-resolu-

tion satellite system, was launched on April 26, 2013, and

March 31, 2018; it consists of four satellites, which are

equipped with two 2 m panchromatic/8 m multispectral

cameras and four 16 m-wide field-of-view imagers (WFV).

The swath width of the 16 m WFV reaches to 800 km,

which makes this sensor a good choice for water quality

monitoring of small and medium-sized inland lakes, and

enables it to monitor several water bodies at the same time
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(Yang et al., 2015). Additionally, the revisit time is only

four days, and the GF-1 satellite data are available free of

charge and can thus meet the requirements of routine water

quality monitoring for similar studies. Until now,

researchers have tried to build several kinds of models for

estimating Chla, TSS, transparency, and eutrophication

indexes with GF-1 satellite data (Li et al., 2015; Tian et al.,

2016; Wu et al., 2015). However, the model accuracy still

needs improvement to enable the use of such multiband

high-spatial-resolution satellite data, and powerful and

sufficiently accurate algorithms that can explore the great

potential of GF-1 satellite data for water quality monitoring

should be investigated.

In general, the algorithms used for Chla estimation in

water bodies with remote sensing technology can be divi-

ded into three classes: (1) The empirical approach is based

on the development of bivariate or multivariate regressions

between Chla concentrations measured in situ and remote

sensing data (i.e., satellite band reflectance, band ratio or

other band combinations) (Allan et al., 2015). (2) The bio-

optical algorithm, with the principle of retrieving the Chla

concentration based on the inherent optical properties of

water, claims to be more universal for water quality

monitoring; however, it requires more situ physical

parameters which are difficult to obtain for researchers

(Dall’Olmo and Gitelson 2005; Giardino et al., 2014; Zhou

et al., 2015). (3) The semi-empirical algorithm is essen-

tially a simplified bio-optical model in which the spectral

characteristics of the WQPs of interest are known. Statis-

tical analysis is included to determine the appropriate

wavelengths within a well-chosen spectral range (Feng

et al., 2015; Watanabe et al., 2016; Zhou et al., 2014). The

superiority of the semi-empirical model is expressed in its

satisfactory accuracy and easily obtained parameters,

which is suitable for GF-1 satellite data.

The objective of this study was to investigate an oper-

ational model for estimating the concentration of Chla in

small and medium-sized lakes based on GF-1 satellite

imagery. The specific aims were to build satellite estima-

tion models through formula derivation and statistical

analysis and compare the accuracy and sensitivity of the

established models that attained satisfactory model accu-

racy. In addition, spatial analysis of the Chla concentra-

tions was conducted based on the satellite-derived

estimation in Lake Dianshan, China.

Study Area and Data Processing

Study Area

Lake Dianshan (30� 120–31� 040 N and 120� 540–121� 010

E) was selected as the case study area. It is located in the

upper catchment of the Huangpu River, Shanghai, an

international metropolis of China (Fig. 1). It is a eutrophic

and shallow freshwater lake, the average depth is 2.11 m,

and the surface area covers approximately 62 km2 (Zhou

et al., 2013). As the most important water source of the

Huangpu River, Lake Dianshan supplies more than 60% of

the domestic water and industrial water for Shanghai city.

Additionally, Lake Dianshan plays an important role in

climate regulation, farmland irrigation, and water trans-

portation (Zou et al., 2013). Since the end of the last

century, the concentrations of nitrogen and phosphorus in

the lake have continuously increased (Xiong et al., 2017).

In the summer of 2007, an algal bloom extended to more

than 80% of the lake area. In recent years, the eutrophic

conditions in Lake Dianshan also pose a large risk to

human health and the safety of the residents of Shanghai

city (Liu et al., 2014).

Field Data and Laboratory Analysis

Based on the direction of water flow and the need for a

uniform distribution of sampling points, 13 routine sam-

pling sites were set up in the lake. The spatial distribution

of the sampling points is shown in Fig. 1; site 9 and site 1

were the main inlet and outlet of the lake water, respec-

tively. Thirty-nine samples were collected on December

4rd, 2013; May 8th, 2014; and January 9th, 2015 (13

samples per day) when the GF-1 satellite passed over at

10:30 A.M. in sun synchronous orbit. To synchronize the

data measured in situ with the satellite data, the water

samples and field spectral measurements were collected

from 10:00 to 12:00 A.M. local time. The latitude and

longitude of each sample site were determined by handheld

high-precision GPS.

Field spectral reflectance was measured with an ASD

FieldSpec Spectroradiometer. This instrument has a sen-

sitivity range from 350 to 1075 nm and a spectral resolu-

tion of 1.5 nm. During the field measurements, the

instrument was held with a field view of 25�, approxi-

mately 1 m above the water surface (Zhou et al., 2015).

The angle between the instrument observation and the

plane of the incident radiation from the sun was maintained

at 90�–135�, so that most of the direct sunlight was elim-

inated and the impact of the ship’s shadow was minimized.

The spectra in each sampling station were measured at least

ten times, and a mean value was taken as the result. In this

study, 30 field spectral measurements were obtained in

Lake Dianshan on Sept. 7th–8th, 2010. The lake is a typ-

ical case-2 water body, and it showed a low water trans-

parency (average\ 0.5 m) in the field measurement. Thus,

spectral measurements are unlikely to be influenced by the

reflectance from the lake bottom (Zhou et al., 2014).
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The water samples were collected from a depth of 50 cm

to the water surface, and the water sample collection and

storage were in full accordance with the standards (HJ493-

2009) issued by the Chinese Environmental Protection

Administration (http://www.mee.gov.cn/). The concentra-

tion of Chla was measured in the laboratory using the

spectrophotometric method. First, the 1 L water samples

were filtered through 0.45 lm GF/C filters, left at 4 �C for

24 h in the dark, and then extracted by 95% acetone. After

centrifugation, a UV-2501 spectrophotometer was used to

measure the extinction values at 630 nm, 645 nm, 663 nm,

and 750 nm. Finally, the concentration of Chla was cal-

culated using equations from the Scientific Committee on

Oceanic Research-United Nations Educational, Scientific

and Cultural Organization (Gons, 2005). The Chla con-

centrations of the 30 samples used to calibrate the field

spectral semi-analytical model ranged from 5.53 to

100.3 lg/L, with an average of 27.74 lg/L. Moreover, the

Chla concentrations of the 39 water samples used for the

satellite modeling ranged from 1.51 to 39.80 lg/L, with an

average of 17.34 lg/L, as shown in Table 1.

GF-1 Satellite Data and Image Preprocessing

GF-1 Satellite Data

GF-1 satellite images were acquired from the website of

the China Centre for Resources Satellite Data and Appli-

cation (http://www.cresda.com/CN/). In our study, three

temporal GF-1 WFV2 satellite images for satellite model-

ing were obtained on December 4th, 2013; May 8th, 2014;

and January 9th, 2015. The spectral range of the GF-1

WFV2 sensor covers from 450 to 890 nm (Table S1),

including four broadband channels: 450–520 nm (B1),

520–590 nm (B2), 630–690 nm (B3), and 770–890 nm

(B4).

Image Preprocessing

(1) Geometric correction

A preliminary geometric correction based on the pro-

vided rational polynomial coefficients (RPC) was carried

out for the GF-1 satellite images. Then, the satellite images

were further geometrically rectified with a topographic

map (1:50,000) using Exelis Visual Information Solutions

(ENVI, version 5.2) software. Nearest-neighbor interpola-

tion was used to avoid disturbance in the original radio-

metric values. The root mean square error (RMSE) of the

satellite images was within 0.5 pixels after the geometric

correction processes (Sun et al., 2013).

(2) Radiometric calibration

The purpose of radiometric calibration is to transform

the GF-1 satellite sensor observation values (DN) to the

corresponding physical-based radiometric intensity values

(Han et al., 2014; Yang et al., 2015). ENVI software 5.1

was used to achieve the by-band calibration based on the

absolute calibration coefficients of each band. The equation

used is shown in Eq. (1).

Lr ¼ Gain � DN þ Bias ð1Þ

In this equation, Lr is the radiometric value, Gain and

Bias represent the gain coefficient and bias value of each

band, respectively, and the unit of Lr is

W � m�2 � sr�1 � lm�1. All gain coefficients and bias coef-

ficients can be found on the China Centre for Resources

Satellite Data and Application website (http://www.cresda.

com/CN/Downloads/dbcs/ index.shtml).

Fig. 1 a Geographical location of the study area (The vector map is downloaded from the website of National Geomatics Center of China: https://

www.webmap.cn/). b Spatial locations of the sampling sites in Lake Dianshan (The arrow represents the direction of water flow in the lake)
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(3) Atmospheric correction

The GF-1 satellite images were atmospherically cor-

rected using the MODTRAN-based FLAASH procedure in

ENVI 5.1 software to obtain satellite reflectance values

(Choe et al., 2015; Wu et al., 2015). The input parameters

for the FLAASH module included the information of the

GF-1 WFV sensor itself, Greenwich Mean Time of the

image acquisition, the average digital elevation of the

sensor, visibility, atmospheric model, and aerosol model.

In this procedure, the height of the GF-1 sensor was

approximately 645 km, and the solar elevation angle and

solar azimuth angle were read from the header file of the

GF-1 satellite data. Atmospheric visibility data were

obtained from the Shanghai Meteorological Bureau. The

atmospheric model used was based on the imagery date; for

example, the midlatitude summer atmospheric model with

an urban aerosol type was used for the image acquired on

May 8th, 2014.

Chla Estimation Methods

In this study, empirical and semi-empirical models were

investigated to estimate the Chla concentrations in Lake

Dianshan based on GF-1 satellite reflectance and field

spectral measurements. For the satellite data modeling, the

Chla measured in 3 days were sorted, and the 39 samples

were divided into two parts: 2/3 of the samples were used

for model calibration, and the other 1/3 of the samples were

used for model evaluation.

The Enhanced Three-Band (ETB) Model

The typical three-band model has been widely used due to

its high model accuracy (Chen et al., 2013; Duan et al.,

2010). Because the band setting of the GF-1 WFV2 sensor

cannot fully meet the requirements of the three-band

model, the three-band model cannot be directly applied.

Studies have shown that the third band (459–479 nm) and

the fourth band (545–565 nm) of the MODIS satellite

could explain the variance in TSS and CDOM (Hu et al.,

2004). To improve the accuracy of the three-band model

for GF-1 satellite data, the product of the blue band (450–

520 nm) and the green band (520–590 nm) of the GF-1

satellite was selected as a substitute for k2 to decrease the

influence of TSS and CDOM. Therefore, the ETB model of

GF-1 satellite data takes the following form:

Chla / R�1 B3ð Þ � R�1 B1 � B2ð Þ
� �

� R B4ð Þ ð2Þ

The Improved Four-Band (IFB) Model

The newly developed four-band model makes full use of

the information from four different bands and shows good

estimation accuracy (Le et al., 2009). However, the

wavelength used in the four-band model does not fall

within the coverage of the four GF-1 bands. Considering

the band setting of GF-1 satellite data, an optimal four-

band model (IFB model) was investigated, because the

estimations of this model generated the highest correlation

with the Chla concentrations measured in situ (Feng et al.,

2015; Ma & Dai, 2005).

Chla / R�1 B1ð Þ þ R�1 B2ð Þ
� �

= R�1 B3ð Þ þ R�1 B4ð Þ
� �0:5

ð3Þ

DU Model

Hu et al. (2004) proposed a Chla retrieval model based on

MODIS satellite data for water quality monitoring in

Tampa Bay:

D/ ¼ R k555ð Þ � R k859ð Þ½ �= R k469ð Þ � R k859ð Þ½ �
R k555ð Þ � 0:0145½ �= R k645ð Þ � 0:008½ � ð4Þ

In terms of the band setting of GF-1 satellite sensors, we

attempt to apply the DU model for the estimation of Chla in

our study area to further explore the applicability and

accuracy of this model. Therefore, the specific form of the

DU model based on GF-1 satellite data is shown as follows:

Table 1 GF-1 satellite data and field spectral measurements

Remote sensing data In situ measurements Date of GF-1 images Number Chla (lg/L)

Min Max Mean

GF-1 satellite data 20,131,203 20,131,204 13 1.51 10.70 4.53

20,140,505 20,140,508 13 5.53 32.90 18.36

20,150,108 20,150,109 13 10.50 39.80 30.19

Field spectral measurements 20,100,908 – 17 10.06 70.53 30.29

20,100,907 – 13 5.53 100.3 24.41
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D/ ¼ R B2ð Þ � R B4ð Þ½ �= R B1ð Þ � R B4ð Þ½ �
R B2ð Þ � 0:0145½ �= R B3ð Þ � 0:008½ � ð5Þ

The NCI’ Model

For case-2 water bodies, Cheng et al. (2013) developed an

NCI model and applied it to estimate Chla in Taihu Lake.

The model was formulated as NCI ¼ R k690ð Þ=R k550ð Þ½
�R k675ð Þ=R k700ð Þ�= R k690ð Þ=R k550ð Þ þ R k675ð Þ=R k700ð Þ½ �.
Moreover, the NCI model has been adapted for satellite

retrieval of Chla in optically complex water bodies, and

the model has shown high accuracy and stability com-

pared with the typical three-band model or four-band

model.

To further improve the applicability of the NCI model

for GF-1 satellite data, based on the band reflectance

characteristics of the GF-1 satellite sensor, the band dif-

ference of R B4ð Þ � R B1ð Þ showed a high correlation with

the in situ Chla concentrations and was selected to set up

the NCI’ model. Therefore, the NCI’ model that is suit-

able for GF-1 satellite data can be shown as follows:

NCI0 ¼ R B3ð Þ=R B2ð Þ � R B4ð Þ � R B1ð Þ½ �
R B3ð Þ=R B2ð Þ þ R B4ð Þ � R B1ð Þ½ � ð6Þ

Model Accuracy Assessment

Four indexes were used to evaluate model performance: the

coefficient of determination (R2), relative error (RE), mean

absolute percentage error (MAPE), and RMSE (Chen et al.,

2013; Watanabe et al., 2015). The indexes are defined by

Eqs. (7–10):

RE ¼ Chlaest � Chlain situ

Chlain situ

����

���� � 100% ð8Þ

MAPE ¼
Pn

i¼1 Chlaest � Chlain situð Þ=Chlain situj j
n

� 100%

ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Chlaest � Chlain situð Þ2

n

s

ð10Þ

where n is the number of samples, Chlaest is the estimated

concentration of Chla, and Chlainsitu is the Chla concen-

tration measured in situ.

Results and Analysis

Field Spectral Characteristics

Figure 2 shows the field reflectance spectra measured in

the Dianshan Lake on Sept. 7th–8th, 2010. According to

the band setting of the GF-1 satellite data, the wavelengths

that are sensitive to Chla are mainly included by the band

locations of the GF-1 satellite data. The low reflectance

is between 450 and 520 nm, corresponds to band 1 of

the GF-1 WFV sensor (Ma & Dai, 2005). The spectra are

much higher at approximately 560 nm, which locates at the

center of band 2 of GF-1, as a result of minimum absorp-

tion by pigments and high backscattering by inorganic

suspended matter (Zhou et al., 2014). Moreover, the strong

absorption by Chla generates a significant reflectance

trough around 675 nm corresponding to band 3 of the GF-1

sensor. In the NIR region of the spectrum located at band 4

of GF-1, reflectance is mostly controlled by the scattering

of all particulate matters (Carter & Knapp, 2001; Gitelson

et al., 2008).
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Fig. 2 The field spectra were measured with an ASD FieldSpec

Spectroradiometer and the band locations of the GF-1 satellite data

R2 ¼
Pn

i¼1 Chl � ain situ � Chl � ain situ

� �2�
Pn

i¼1 Chl � ain situ � Chl � aestð Þ2

Pn
i¼1 Chl � ain situ � Chl � ain situ

� �2
ð7Þ
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Model Calibration

The modeling results of the ETB model based on GF-1

images are shown in Fig. 3a. The coefficient of determi-

nation of the ETB model reached 0.87, which is higher than

that of the band ratio model (R2 = 0.63). Therefore, the

ETB model is acceptable for the quantitative estimation of

the Chla concentration. In contrast, the Chla concentrations

estimated by the IFB model are shown in Fig. 3b. The

coefficient of the IFB model reached 0.96, which indicated

significant performance.

Figure 4a shows the modeling result of the linear DU
model constructed by using GF-1 satellite data. The

satellite DU model had a good fitting degree, and the

coefficient of the determination reached 0.80, which indi-

cates a good reflection of the relationship between the

satellite reflectance and the concentration of Chla. Fig-

ure 4c shows the modeling result of the field spectral DU
index. Strong relationships (R2 = 0.75) also exist between

the hyperspectral index and Chla concentration.

As shown in Fig. 4b, the satellite NCI’ model could

explain 76% of the total Chla variance, and the RMSE

decreased to 6.38 lg/L. The R2 of the NCI’ model based on

field spectral data (Fig. 4d) exceeded 0.8, which was higher

than that of the satellite NCI’ model, showing the validity

of the established NCI’ model and that this model has

sufficient accuracy for practical Chla concentration

estimation.

A comparison of the results of the four models reveals

that all models showed good correlation between the Chla

concentration and the spectral index derived from GF-1

data, and the precision of the IFB model, with a determi-

nation coefficient up to 0.96, was higher than that of the

other models, while the R2 of the ETB and DU models were

both above 0.80.

Model Validation

For evaluating the accuracy and stability of the established

models, the assessment indexes of the GF-1 validation

model used included the RE, MAPE and RMSE. A com-

parison between the satellite-estimated values and the

values measured in situ is shown in Fig. 5. The estimated

values of the ETB model were all adjacent to the diagonal

lines, and the RMSE was less than 7.42 lg/L (Fig. 5a),

which suggests that the model can perform well for Chla

estimation in our study area. Figure 5b shows the valida-

tion results for the IFB model using GF-1 satellite data.

The coefficient of determination reached 0.85, and the

RMSE was only 5.20 lg/L, reflecting the highest model

accuracy and stability.

For the semi-empirical model, the estimated results

based on the field spectral data were better than those based

on the satellite data. The validation accuracy of the DU
model was R2 = 0.94 (Fig. 6a). Figure 6b shows the vali-

dation result of the NCI’ model based on field spectral data,

and the accuracy of the model exceeded 0.91. In contrast,

Fig. 6c shows the validation result of the DU model based

on GF-1 satellite data. The R2 of the model exceeded 0.67,

and the estimated values of Chla were higher than the

values measured in situ. Figure 6d shows the result of the

validation of the NCI’ model using GF-1 satellite data. The

coefficient (R2) of the model exceeded 0.66. The four

models produce most of their error at low Chla values

because suspended matter or other organic matter has a

significant impact on the satellite reflectance of the lake

water (Zhou et al., 2014). The IFB index based on the

model calibration and validation with field spectra and GF-

1 satellite data showed sufficient model accuracy and sta-

bility for the operational monitoring of the inland lake

water. Therefore, the IFB model could be used to estimate

Fig. 3 The calibration of multiband combined model based on GF-1 satellite data: a calibration of the ETB model; b calibration of the IFB model
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Fig. 4 The calibration of semi-analytical models based on GF-1 data and field spectra data: a calibration of the DU model; b calibration of the

NCI’ model; c calibration of the field spectral DU model; d calibration of the field spectral NCI’ model

Fig. 5 The validation of the four-band combined model based on GF-1 satellite data: a Validation of the ETB model; b validation of the IFB

model
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and analyze the spatial distribution of Chla in our study

area.

Spatial Analysis of the Chla Concentrations
in Lake Dianshan

The IFB model was used to calculate the spatial distribu-

tion of the Chla concentration in Lake Dianshan for the

typical days in years 2013–2017. As shown in the spatial

distribution maps (Fig. 7), the Chla values were generally

low in the middle of the lake and high in the northeast area

and the coastal zone. This phenomenon mainly occurred

because the inlets of the lake are located in the southwest,

which leads to long-term deposition of nutrients in the

northeast area of the lake (Liu et al., 2014; Wang et al.,

2015). On the other hand, the main types of pollution in

Lake Dianshan are domestic stockbreeding pollution and

agricultural nonpoint source pollution. A large amount of

cultivated land and many residential buildings are located

in the northeast area of the lake, which has led to higher

concentrations of nitrogen, phosphorus and Chla in that

area (Wang et al., 2015). In total, the results estimated from

the GF-1 satellite data were consistent with the syn-

chronous Chla concentrations measured in situ (Xiong

et al., 2017). Therefore, using the well-established IFB

model of this paper, the spatial distribution of Chla con-

centrations can be explicitly described by the GF-1 high-

spatial-resolution satellite data.

The proportions of the lake with different levels of Chla

were analyzed based on the estimated Chla concentrations

in 2013–2017. As shown in Fig. 8, we could distinguish

and deduce the trophic state of the lake water. The lowest

concentration of Chla occurred on December 4th, 2013,

when the Chla concentration in the southwest lake area was

below 2 lg/L and the proportion of the lake with a Chla

concentration less than 10 lg/L was 79.49%. The propor-

tion of the lake with a Chla concentration from 10 to 20 lg/

Fig. 6 The validation of the four-band combined model based on GF-1 satellite data: a validation of the field spectral DU model; b validation of

the field spectral NCI’ model; c validation of the DU model; d validation of the NCI’ model

cFig. 7 Remote sensing estimation of the Chla concentration in Lake

Dianshan based on the linear IFB model on typical days between

2013 and 2017
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L was only 18.74% and was concentrated in the northeast

part of the lake, which implies that Lake Dianshan was in a

state between oligotrophic and mesotrophic. On June 14th,

2014, the concentration of Chla in most lake areas was

higher than 20 lg/L, and the proportion of the lake area

with this concentration exceeded 81%, which indicated that

the lake water was at a status between mesotrophic and

eutrophic. The highest concentration of Chla appeared on

August 6th, 2015, when almost all Chla concentrations in

the lake were higher than 35 lg/L. Moreover, lake areas

with a concentration of Chla higher than 70 lg/L accoun-

ted for 67.21% of the total area, which indicates serious

eutrophication and the potential for an algal bloom.

According to the estimated results calculated by using GF-

1 satellite data for the years 2013–2017, it can be con-

cluded that water quality needs to be controlled, and con-

tinuous monitoring is thus essential for this lake (Xiong

et al., 2017). Furthermore, we can see that high Chla events

always occurred in May–October, which indicated that the

variation in the Chla concentration had obvious seasonal-

ity. This was because the values of TN, TP, and other

nutrients reached to the threshold and the water tempera-

tures exceeded 20 �C during the summer months, which

promoted and accelerated the increasing of the Chla (Xu

et al., 2015).

Discussion

Analysis and comparison of the estimated results of the

model based on the GF-1 satellite data revealed that the

accuracy of the four models all exceeded 76%, which

indicates that these models can effectively infer the con-

centration of Chla in the study area (Table 2). As far as the

validation results of the model are concerned, the values

estimated by each model are basically evenly distributed on

both sides of the diagonal lines in the comparison, and all

of them have good stability. However, there were still

differences in the estimation by the different models. The

modeling accuracy of the NCI’ model and DU model was

slightly unstable, with R2 = 0.67 and 0.66, respectively. In

summary, according to the GF-1 satellite data, the IFB

model has the best model accuracy and stability, which is

equivalent to the estimation accuracy (R2 = 0.737) of the

GSM algorithm recommended by IOCCG (Lee, 2006). It

indicates that the new IFB model could be applied to GF-1

satellite data with satisfactory model accuracy.

The GF-1 satellite imagery integrated with semi-em-

pirical methods such as the DU algorithm used to retrieve

Chla concentrations should be further developed (Chao

Rodriguez et al., 2014; Pyo et al., 2016), probably because

of the complexity involved in modeling the radia-

tion transfer equation in water (Arabi et al., 2016; Tilstone

et al., 2011). However, empirical models require statistical

analysis techniques only, which are easier to handle and

Fig. 8 Proportion of the lake

area with different

concentrations of Chla and

average Chla concentrations

based on GF-1 satellite data

from 2013 to 2017
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may give results as good as those of the semi-analytical

models, even though the empirical results sometimes lack

consistency and frequently need in situ data to correct the

model (Ma & Dai, 2005).

In terms of the accuracy of each model, differences

between the models built using the GF-1 data and the field

hyperspectral measurements existed for two reasons. One

is that the GF-1 WFV sensor can detect the spectral

reflectance in only the four bands and cannot cover the

specific spectral regions sensitive to the variance in the

Chla concentration (Li et al., 2015). The other is that the

results of the atmospheric correction (Fig. S1) and the

geometric correction determine the accuracy of the spectral

reflectance derived from the GF-1 satellite imagery (Wu

et al., 2015). Further studies will explore the specific

impacts of atmospheric corrections on the IFB index. The

GF-1-derived Chla concentration closely followed the field

records. However, challenges remain in validating the

algorithm for universal application to different study areas.

Note that the water in different lakes may have different

inherent optical properties, and more field measurements

and remote sensing data from different study areas are

necessary to investigate potential improvements to the

model.

The result has shown that GF-1 satellite data can be used

quantitatively to estimate the concentrations of Chla, and

further applications of the GF-1 data will allow the hind-

casting of biophysical parameters in small ponds and lakes.

The GF-1 historical archives are helpful in tracing the

eutrophic status of lake water and may produce some

useful time series of environmental information (Liu et al.,

2014). From the time series of the spatial distribution of

Chla in Lake Dianshan, we could discover the detailed

local changes in the Chla concentration and the Chla

evolution in the lake; this will be useful for the prediction

of a lake’s trophic status and the possibility of algal

blooms.

Conclusions

In this research, high-resolution GF-1 satellite data and

field spectra were used to construct an operational model to

estimate the Chla concentration in Lake Dianshan and to

deeply investigate the applicability of high-spatial-resolu-

tion satellite data in the field to water quality retrieval for

small and medium-sized inland lakes. For the IFB model

based on GF-1 satellite data, the RE of the estimated Chla

concentration was 29.26% on average, and the RMSE was

only 2.69 lg/L. The high accuracy indicates that the IFB

model can be applied to the estimation of the Chla con-

centration in small inland lakes. Validation models based

on a different dataset also verified the accuracy and prac-

ticability of the established models. It was shown that the

GF-1 satellite data could be effectively used to estimate the

concentration of Chla. Because of the high spatial and

temporal resolution of the GF-1 satellite, which serves as

the key factor for inland water quality assessment, GF-1

satellite data may have a great potential in small to med-

ium-sized inland water body monitoring.
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González Vilas, L., Spyrakos, E., & Torres Palenzuela, J. M. (2011).

Neural network estimation of chlorophyll a from MERIS full

resolution data for the coastal waters of Galician rias (NW

Spain). Remote Sensing of Environment, 115, 524–535.

Han, Q. J., Fu, Q. Y., Zhang, X. W., & Liu, L. (2014). High-frequency

radiometric calibration for wide field-of-view sensor of GF-1

satellite. Optics & Precision Engineering, 22, 1707–1714.

Hu, C., Chen, Z., Clayton, T. D., Swarzenski, P., Brock, J. C., &

Muller-Karger, F. E. (2004). Assessment of estuarine water-

quality indicators using MODIS medium-resolution bands:

Initial results from Tampa Bay, FL. Remote Sensing of
Environment, 93, 423–441.

Kloiber, S. M., Brezonik, P. L., & Bauer, M. E. (2002). Application of

landsat imagery to regional-scale assessments of lake clarity.

Water Research, 36, 4330–4340.

Le, C., Li, Y., Zha, Y., Sun, D., Huang, C., & Lu, H. (2009). A four-

band semi-analytical model for estimating chlorophyll a in

highly turbid lakes: The case of Taihu Lake, China. Remote
Sensing of Environment, 113, 1175–1182.

Lee, Z. (2006). Remote sensing of inherent optical properties:

Fundamentals, tests of algorithms and applications. Reports of

the International Ocean-Colour Coordination Group, no. 5,

IOCCG, Dartmouth, Canada.

Li, J., Chen, X., Tian, L., Huang, J., & Feng, L. (2015). Improved

capabilities of the Chinese high-resolution remote sensing

satellite GF-1 for monitoring suspended particulate matter

(SPM) in inland waters: Radiometric and spatial considerations.

ISPRS Journal of Photogrammetry and Remote Sensing, 106,

145–156.

Lin, C., Li, Y., Yuan, Z., Lau, A. K. H., Li, C., & Fung, J. C. H.

(2015). Using satellite remote sensing data to estimate the high-

resolution distribution of ground-level PM2.5. Remote Sensing of
Environment, 156, 117–128.

Liu, X., Wu, Z., Xu, H., Zhu, H., Wang, X., & Liu, Z. (2014).

Assessment of pollution status of Dalianhu water sources in

Shanghai, China and its pollution biological characteristics.

Environmental Earth Sciences, 71, 4543–4552.

Ma, R., & Dai, J. (2005). Investigation of chlorophyll-a and total

suspended matter concentrations using Landsat ETM and field

spectral measurement in Taihu Lake, China. International
Journal of Remote Sensing, 26, 17.

Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng,

Q. (2011). Per-pixel vs. object-based classification of urban land

cover extraction using high spatial resolution imagery. Remote
Sensing of Environment, 115, 1145–1161.

Pyo, J. C., Ha, S. H., Pachepsky, Y. A., Lee, H., Ha, R., Nam, G.,

Kim, M. S., Im, J., & Cho, K. H. (2016). Chlorophyll-

concentration estimation using three difference bio-optical

algorithms, including a correction for the low-concentration

range: The case of the Yiam reservoir, Korea. Remote Sensing
Letters, 7, 407–416.

Sarris, A., Papadopoulos, N., Agapiou, A., Salvi, M. C., Hadjimitsis,

D. G., Parkinson, W. A., Yerkes, R. W., Gyucha, A., & Duffy, P.

R. (2013). Integration of geophysical surveys, ground hyper-

spectral measurements, aerial and satellite imagery for archae-

ological prospection of prehistoric sites: The case study of
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