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Abstract
Hyperspectral remote sensing technology has many applications in the fields of land cover classification and examination

of their changes. It seems necessary to use both spectral and spatial information in the hyperspectral image classification

due to recent developments and the availability of images at higher spatial resolution. In this study, a new approach for

object-based classification of hyperspectral images is introduced. In the proposed approach, first nine spatial features,

including mean, standard deviation, contrast, homogeneity, correlation, dissimilarity, energy, wavelet transform and Gabor

filter, are extracted from the neighboring pixels of the hyperspectral image. Then, the dimensions of the obtained features

are reduced using weighted genetic (WG) algorithm. Next, the hierarchical segmentation (HSEG) algorithm is applied to

the reduced features. Then, for the objects obtained from segmentation, nine spatial features, area, perimeter, shape index,

strength, maximum intensity, minimum intensity, entropy, relation and adjacency, are extracted. Finally, the classification

is performed using the multilayer perceptron neural network (MLP) algorithm. The proposed approach was implemented

on three hyperspectral images of Indiana Pine, Berlin and Telops. According to the experimental results, the proposed

approach is superior to the MLP classification method. This increase in the overall accuracy is about 12% for the Indiana

Pine image, about 11% for the Berlin image, and about 8% for the Telops image.

Keywords Hyperspectral imaging � Object-based classification � Spatial features � MLP � HSEG

Introduction

Hyperspectral remote sensing technology has made sig-

nificant progress in the last two decades. Although the

ability to produce data with high spectral, spatial and

radiometric features leads to better analysis, this is asso-

ciated with problems that are a new experience compared

to multispectral data (Chan et al., 2020). The first problem

is the relatively large volume of data, it is necessary to use

special hardware and software to process this large volume

of data. Another problem is the time required to process

this type of data (Homayouni & Roux, 2003). Nowadays,

most research on hyperspectral remote sensing technology

focuses on the classification of these images. Classification

or convert images to a subject map is a serious challenge

due to factors such as the complexity of the study area, data

selection, image processing, and the algorithm used and

may affect the success of classification (Acquarelli et al.,

2018; Gonzalez & Woods, 2002). The lack of labeled

samples in the classification process is due to the large

number of hyperspectral image bands. In fact, the most

important problem of hyperspectral data is that it contains

hundreds of close spectral bands that cause data redun-

dancy. On the other hand, spectral bands of hyperspectral

images usually have high dependence and different signal-

to-noise ratio, so the use of primary bands is not very

appropriate and has poor results. The large number of

spectral bands and the dependence between them cause the

Hughes phenomenon (Li et al., 2011). This phenomenon

means that when the training data do not change, the
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classification accuracy decreases with increasing spectral

bands. Reducing the number of bands is one of the solu-

tions to this problem. Various methods such as feature

extraction and feature selection have been proposed for this

purpose (Chang, 2003).

In general, methods for classifying hyperspectral images

are divided into two categories. The first category refers to

pixel-based classification methods in which each pixel is

assigned to a specific class using its own spectral infor-

mation without considering the information contained in

neighboring pixels (Vapnik, 1995). These methods include

support vector machines (SVM) and multilayer perceptron

(MLP) algorithms. The second category refers to spectral-

spatial classification methods that use information from

neighboring pixels in addition to spectral information of

pixels (Fauvel et al., 2013; Pan et al., 2020; Tarabalka

et al., 2010). One of these methods is the minimum span-

ning forest (MSF) algorithm (Tarabalka et al., 2010). Many

unknown signals are usually recorded in images due to the

high sensitivity of hyperspectral sensors, for which there is

no prior information. In particular, many of these signals

are related to objects that are small in size and cannot be

detected visually. Under these circumstances, it is not

possible to identify these targets by conventional classifi-

cation methods that use only spectral information, and in

addition, the processing must be performed using the spa-

tial features of the targets (Hong et al., 2020).

Benediktsson et al., in 2003, suggested the morpholog-

ical profiles method as one of the spatial information

extraction techniques (Benediktsson et al., 2003). The

morphological profiles consist of a combination of open-

ing, closing filters. Using the nearest neighbors is another

way to use spatial information (Richards & Jia, 2006).

Accordingly, Huang and Zhang, in 2009, used from the

gray level co-occurrence matrix (GLCM) to classify

hyperspectral data (Huang & Zhang, 2009). In their pro-

posed method first extracted texture features from the

GLCM matrix using the four measurements, the angular

second moment, contrast, entropy and homogeneity, then

the principal component analysis (PCA) algorithm was

applied to the obtained features. Segmentation methods are

another spatial information extraction method, in which

objects in the image (a set of pixels with the same features)

are identified based on features such as homogeneity

(Tarabalka et al., 2011). It provides accurate and complete

spatial information if an accurate map of objects is to be

created based on the spatial structures in the image. Mar-

ker-based segmentation is a common method for obtaining

accurate segmentation results, (Soille, 2003; Tarabalka

et al., 2011), in which one or more pixels are selected as the

marker for each spatial area of the image, then the markers

obtained in the segmentation process develop and lead to a

specific area in the segmentation map. In early studies,

markers were generally selected from homogeneous areas,

i.e., areas with the same pixel values or uniform texture

(Soille, 2003). In 2007, Gómez et al. selected pixels with

the same values as the marker using the image histogram

(Gómez et al., 2007). Tarabalka et al., in 2011, used a

marker-based hierarchical segmentation (HSEG) to extract

spatial information (Tarabalka et al., 2011). They chose

pixels with a high degree of belonging to each class as a

marker using the SVM classification map. For this purpose,

labeling of connected components was first analyzed on the

SVM classification map, then for large areas generated p%

of the pixels with the highest probability and pixels with a

probability degree higher than the specified threshold were

considered as marker for small areas. In 2017, Akbari

classified hyperspectral image using weighted genetic

(WG) and marker-based MSF algorithms (Akbari, 2017).

In this study, he used SVM classification and watershed

segmentation maps to select marker. In 2020, Akbari in

another study increased the accuracy of MSF classification

by an average of 8% by extracting two spatial features of

wavelet transform and Gabor filter before applying the WG

algorithm and considering the MLP classification map in

the selection of markers (Akbari, 2020).

The results of studies show that so far, segmentation

method and among different segmentation algorithms, the

HSEG algorithm has achieved the best results. Also,

reducing the dimensions of the spectral image and spatial

features extraction before applying the segmentation

algorithm has been able to increase the accuracy of the

results. Therefore, this study seeks to present a new

approach for spectral-spatial classification of hyperspectral

images using techniques for extracting spatial features and

reducing the dimensions of hyperspectral images. In the

proposed approach, first nine spatial features are extracted

from the primary bands of the hyperspectral image and

then the optimal spectral and spatial features are selected

using the WG algorithm. Then, the HSEG algorithm is

implemented on the obtained features. Next, nine spatial

features are extracted from segmentation map and the MLP

algorithm is used to classify them.

The Proposed Approach

Figure 1 shows the steps of the proposed spectral-spatial

classification approach.

As shown in the figure, nine spatial features were first

extracted from the neighborhood information of the image

pixels in the proposed approach. Various properties can be

extracted from image pixels as base pixel data and used to

classify (Gonzalez & Woods, 2002; Zhang & Tan, 2002).

The gray degree relationships of the pixels are transferred

from the image space to the co-occurrence matrix space by
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considering a neighborhood window of appropriate size

around each pixel and selecting one of the directions

(Barburiceanu et al., 2021; Haralick et al., 1973; Zhang

et al., 2003). Then, the values of known texture descriptors

in the GLCM space are measured according to the size of

the neighborhood window and the selected direction (Cir-

iza et al., 2017; Huang & Wang, 2006; Iqbal et al., 2021).

Table 1 shows these features along with their mathematical

relationships and explanations.

After extracting the spatial features, the spectral and

spatial properties are reduced by the WG algorithm.

Genetic algorithm is one of the metaheuristic optimization

techniques (Zhuo & Zheng, 2008). It is the most common

type of evolutionary algorithms for which there is no single

procedure and it has iterative procedures. In the binary

genetic algorithm, each chromosome has values of one and

zero (Zhuo & Zheng, 2008), while in the WG algorithm,

the weight values are between zero and one (Akbari, 2017).

This study uses the kappa coefficient of the MLP classifi-

cation to determine the value of each chromosome.

In the next step, the HSEG algorithm is applied to the

reduced features. The HSEG algorithm is based on area

growth method and hierarchical optimization and provides

the possibility of combining non-adjacent spatial regions

by the input parameter Swght (Tarabalka et al., 2011). Swght
indicates the relative importance of spectral clustering

against region growth. For Swght ¼ 0, the HSEG algorithm

combines only adjacent spatial regions with each other, and

for Swght ¼ 1; adjacent and non-adjacent regions have the

same weight in the composition, and finally for values

between zero and one, the composition of adjacent regions

compared to non-adjacent regions has a superiority of 1
Swght

.

This algorithm consists of three steps: In the first step, an

object is labeled to each pixel of the image independently,

then a dissimilarity criterion is calculated for each pair of

objects in the next step, and the pair of objects with the

smallest criterion are combined. The third stage is the

repetition of the second stage until there is no need to

combine objects (Tarabalka et al., 2011). After segmenta-

tion, nine spatial features were extracted from the object

information of the segmentation map (Chen, 2006; Li et al.,

2007; Nghi & Mai, 2008; Rajadell et al., 2009). Table 2

shows these features along with their explanations and

mathematical relationships. Finally, the MLP algorithm

was used to classify the objects obtained from

segmentation.

Experimental Results and Discussion

Hyperspectral Data

This study has used three hyperspectral images of Indiana

Pine, Berlin and Telops, which are part of benchmark

images in the field of hyperspectral remote sensing, to

evaluate the proposed approach. The specifications of these

images are summarized in Table 3. The images of Berlin

and Telops are related to the Berlin’s urban area in Ger-

many and Quebec in Canada, respectively, and the Indian

Pines image is related to an agricultural land in India.

Figure 2 shows the three hyperspectral images used. In

the Telops image, unlike the other two images, the pixel

values are equal to the radius values, so atmospheric cor-

rections must be made on the image before performing the

tests.

The classes that are specified in each image correspond

to the objects in that image. As can be seen in Fig. 2, the

objects of Berlin and Telops images, which are related to

an urban area, are different from the objects of Indiana Pine

image, which is related to an agricultural area. For each of

the classes in all three image data, about 10% of the labeled

samples were randomly selected as training data and the

rest, i.e., about 90% as test data.

Experimental Results

Table 4 shows the value of the parameters used in WG

algorithm, which are the same for the three data sets.

Fig. 1 Schema of the proposed approach
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The value of the parameter Swght was considered to be

0.2 in the tests performed for the HSEG algorithm, due to

the complexity of the hyperspectral images used (Tara-

balka et al., 2011). As mentioned earlier, if Swght ¼ 0, only

neighboring objects are allowed to combine with each

other, and if 0\Swght\1, non-neighboring objects are

allowed to combine, and if Swght ¼ 1, neighboring and non-

neighboring objects have the same weight in the compo-

sition. The MLP classification algorithm, with three hidden

layers including 4, 5 and 7 neurons, was implemented and

evaluated with 500 replications.

The proposed classification approach was compared

with MLP, Marker-based HSEG, the proposed method by

Tarabalka et al. (Tarabalka et al., 2011), and Extended-

MSF, the proposed approach by Akbari (Akbari, 2020). In

Marker-based HSEG algorithm, SVM classification map

and Gaussian radial basis kernel were used to select the

markers (Cristianini & Shawe-Taylor, 2000). The values of

two parameters of penalty parameter (C) and Gaussian

kernel (c) in SVM algorithm were determined using cross-

validation technique. Cross-validation is a standard tech-

nique for adjusting hyperparameters of predictive models.

In K-fold cross-validation, the available data S are parti-

tioned into K subsets S1; . . .; Sk. Each data point in S is

randomly assigned to one of the subsets such that these are

of almost equal size (Hastie et al., 2008). To choose C and

c using K-fold cross-validation, the available data are first

subdivided into K subsets. The cross-validation error is

then calculated using this split error for the SVM classifiers

using different values for C and c. Finally, C and c are

selected with the least cross-validation error and used to

train an SVM on the complete data set S. Thus, the final

Table 1 Spatial features extracted from hyperspectral image pixels

Spatial feature Mathematical equation Description

Mean

Haralick et al. (1973)
lx ¼

P
x
x�Nxð Þ2

M

ly ¼
P

y
y�Nyð Þ2
M

lx: Mean in the direction of the rows

ly: Mean in the direction of the columns

Nx: Total number of pixels in row x,

Ny: Total number of pixels in column y

M: Total number of pixel pairs

Standard deviationHaralick et al.

(1973) Sdx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x
x�Nxð Þ2

M � l2x

q

Sdy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

y
y�Nyð Þ2
M � l2y

r

Sdx: Standard deviation in the direction of the rows

Sdy: Standard deviation in the direction of the columns

Contrast Gonzalez and Woods

(2002)
C ¼

P

x

P

y
x� yð Þ2Pd x; yð Þ Pd x; yð Þ: The (x; y)th element of the normalized

symmetric GLCM

Homogeneity Huang and Wang

(2006)
H ¼

P

x

P

y

Pd x;yð Þ
1þ x�yj j

CorrelationHaralick et al. (1973) Co ¼ 1
rxry

P

x

P

y
x� lxð Þ y� ly

� �
Pd x; yð Þ lx, ly, rx, ry, mean and variance, respectively,Pd xð Þ;

PdðyÞ
Pd xð Þ ¼

P

y
Pd x; yð Þ

Pd yð Þ ¼
P

x

Pd x; yð Þ

DissimilarityGonzalez and

Woods (2002)

Dis ¼
P

x

P

y
x� yj jPd x; yð Þ

Energy

Gonzalez and Woods (2002)

SM ¼
P

x

P

y

Pd x; yð Þ2

Wavelet transform

Mallat (1999)

Wð Þwf a; bð Þ ¼ f xð Þ;wa;b xð Þ
� �

¼ r f xð Þwa;b xð Þdx f(x): A original signal

wa;b xð Þ ¼ aj j�
1
2w x�b

a

� �

rw tð Þdx ¼ 0

a and b, frequency range and signal time, respectively

Gabor filter Shaw and Manolakis

(2002) f realmn x; yð Þ ¼ 1

2pr2m
exp � x2 þ y2

2r2m

� �

� cos 2p umx cos hn þ umy sin hnð Þð Þ

f imagmn x; yð Þ ¼ 1

2pr2m
exp � x2 þ y2

2r2m

� �

� sin 2p umx cos hn þ umy sin hnð Þð Þ

m and n are the scale and direction indicators,

respectively

um central frequency of the scale

rm is the scale parameter or standard deviation of

Gaussian envelope

hn is a specific orientation

1764 Journal of the Indian Society of Remote Sensing (September 2022) 50(9):1761–1771

123



values of the above parameters for Indiana Pine image are

equal to C = 100, c = 0.001, Berlin image equal to

C = 200, c = 0.01 and Telops image equal to C = 256 and c
= 0.1. Then, the labeling of the connected components was

analyzed based on eight neighborhood pixels in the SVM

classification map, and for areas with more than 20 pixels,

5% of the pixels most likely to belong to a class were

selected as marker pixels. For small areas, less than 20

pixels, pixels with a probability of more than one threshold

were selected as the marker pixels. The selected threshold

is equal to the lowest probability among 2% of the highest

probabilities of the whole image. In the Extended-MSF

algorithm, for each object in the watershed segmentation

map, the class-related pixels with the largest population of

SVM and MLP classification maps are kept, and then

pixels with the same class are maintained, and pixels in

Table 2 Spatial features extracted from segmentation map objects

Spatial feature Description Mathematical equation

Area

Chen (2006)

The number of pixels containing each object

Perimeter

Li et al. (2007)

The number of pixels containing the boundary distance of each object

Shape Index

Li et al.( 2007)

The ratio of the square of the area to the perimeter of each object SI ¼
ffiffi
S

p

P

S Area

P Perimeter

Strength

Li et al. (2007)

The ratio of area to the number of pixels of the smallest rectangle containing each

object

Maximum intensity

Chen (2006)

The amount of pixels with the highest intensity in each object

Minimum intensity

Chen (2006)

The amount of pixels with the lowest intensity in each object

Entropy

Rajadell et al. (2009)

The amount of irregularity of each object entropy ¼ �
PL�1

i¼0 P zið Þlog2PðziÞ
L Number of gray levels

p (i) Normalized gray surface

histogram

Relation

(Nghi & Mai, 2008)

The relationship of an object to the objects around it

Adjacency (Chen,

2006)

Left, right, or at a certain distance from an object

Table 3 Characteristics of hyperspectral images used

Data set Indian Pines Berlin Telops

Sensor AVIRIS HyMap Hyper-Cam LWIR

Spectral range

(lm)
0.2–4.5 0.4–2.5 7.8–12.5

Spatial

dimensions

(Pixel)

145*145 300*300 795*564

Spatial

resolution (m)

20 3.5 1

Number of bands 200 114 84

Number of

classes

16 5 6

Further details https://engineering.purdue.edu/*biehl/

MultiSpec/hyperspectral.html

German Aerospace Centre (DLR)

http://www.dlr.de

Telops Inc. (Québec,Canada) http://

www.telops.com/
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each object with the highest degree of belonging to a class

are selected as marker.

In order to evaluate the accuracy of the tests performed,

first, the error matrix was formed using reference map, then

the parameters of overall accuracy (OA), kappa coefficient

(K) and producer accuracy related to each class were

extracted (Tarabalka et al., 2010).

a) Indiana Pine Image

The classification maps obtained using the MLP, Marker-

based HSEG, Extended-MSF and the proposed approach

are shown in Fig. 3. As shown, the map obtained from the

proposed approach has less noise compared to other

algorithms.

Figure 4 and Table 5 show the values of the accuracy

parameters of the classification maps obtained from the

hyperspectral image of Indiana Pine. As shown, the pro-

posed approach increases the kappa coefficient parameter

by about 13, 8 and 5% compared to MLP, Marker-based

HSEG and Extended-MSF algorithms, respectively. Also,

the accuracy of all classes has been increased by the pro-

posed approach and has reached over 90%.

b) Berlin Image

Figure 5 shows the classification maps for the Berlin

hyperspectral image. As can be seen, the proposed

approach map contains homogeneous regions compared to

other algorithms. This shows the importance of using

spatial information in the classification process.

The values of the accuracy parameters of the classifi-

cation maps obtained from the Berlin hyperspectral image

are shown in Fig. 6 and Table 6. In this image, the pro-

posed approach has also increased the accuracy. This

increase in kappa coefficient parameter by 11, 8 and 3% is

compared to MLP, Marker-based HSEG and Extended-

MSF algorithms, respectively. Also, in all classes except

soil class, the classification accuracy of the proposed

approach is higher than the accuracy of Extended-MSF.

This decrease in soil class can be due to the small number

and high dispersion of its pixels, that it can reduce the role

of spatial information in the classification process. The

spectral complexity of the Berlin image can also be

effective in reducing the accuracy of the soil class. In the

case of two classes of Build-up and Impervious, which had

low accuracy, their accuracy was increased by 17 and 13%

using the proposed approach compared to the MLP algo-

rithm, which emphasizes the importance of using spatial

information in these two classes.

c) Telops Image

Figure 7 shows the classification maps and the reference

map of the Telops hyperspectral image. As shown, the

proposed map consists of homogeneous regions with less

noise than other algorithms.

The values of the accuracy parameters of the classifi-

cation maps obtained from the Telops hyperspectral image

are shown in Fig. 8 and Table 7. In this image, like two

images of Indiana Pine and Berlin, the proposed approach

increases the accuracy by 8, 5 and 3% in the kappa coef-

ficient parameter compared to the MLP, Marker-based

HSEG and Extended-MSF algorithms, respectively. Also,

the accuracy of the classes in the proposed approach is

increased compared to other algorithms.

Fig. 2 Color-false combination a Indiana Pine image b Berlin image c Telops image

Table 4 WG parameter values

used in the three data sets
Parameters Value

Population 100

Crossover probability 80%

Mutation probability 0.9%

K-tournament 2

K-elitism 2
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Quantitative and qualitative results obtained from tests

performed on three hyperspectral images emphasize the

importance of information extracted from neighborhood

pixels and segmentation map objects. Of course, the role of

dimensional reduction in this study cannot be ignored. For

classification of hyperspectral images, a large number of

bands sometimes cause intense computational load and

produce inaccurate results. In the proposed approach, the

WG algorithm was used for subspace analysis of hyper-

spectral images and spatial features. WG algorithm uses the

information of all bands, by assigning a value between zero

and one in each band, as the weight of the band. In fact, a

population is created with a group of individuals created

randomly with the weight between zero and one. In WG

algorithm, the bands with less information are allocated

less weight.

The proposed framework was able to take advantage of

spectral and spatial information simultaneously for an

accurate classification of hyperspectral images. The

method yields reliable results for different data sets.

Despite having reliable results for the classification of

homogeneous regions, the proposed approach has a draw-

back similar to almost all the spectral-spatial techniques: It

produces a smooth classification map in comparison with

pixelwise classifications. Therefore, it risks impairing

results near the borders between regions where mixed

pixels are often encountered. Spectral unmixing techniques

can be potentially used for an accurate analysis of border

regions.

Conclusions

Hyperspectral sensors capture images in hundreds of nar-

row spectral channels. The detailed spectral signatures for

each spatial location provide rich information about an

image scene, making it easier to distinguish physical

materials and objects from one another. Although pixel-

(c)(b)(a)

Grass-trees

Grass-pasture 

Hay-windrowed 

Oats 
Wheat   

 Woods 

 Buildings-Grass-Trees-Drives

 Stone-Steel-Towers

Corn-notill

Corn-mintill

Corn
Soybean-notill

Soybean-mintill

Soybean-clean 

Alfalfa
Grass-pasture-mowed

(e)(d)

Fig. 3 Indiana Pine data set; a MLP classification map, b Marker-based HSEG classification map, c Extended-MSF classification map,

d Proposed approach classification map, e Reference map

70
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)
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Fig. 4 Comparison of the values of the two parameters of overall

accuracy and kappa coefficient for the classification algorithms used

in Indiana Pine image
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based classification techniques have resulted in high clas-

sification accuracy rates when using hyperspectral data, the

incorporation of the spatial context into classification

procedures yields even better accuracy rates. This study has

introduced a new approach for spectral-spatial classifica-

tion of hyperspectral images. The three factors of

Table 5 Accuracy values

obtained for the Indiana Pine

image

MLP Marker-based HSEG Extended-MSF Proposed approach

OA (%) 84.8 88.5 90.1 96.4

j (%) 81.7 86.1 89.1 94.3

Corn-notill 80.2 90.8 92.4 94.5

Corn-mintill 83.0 90.3 90.6 92.8

Corn 79.4 83.7 92.0 93.3

Soybean-notill 84.8 90.5 92.4 94.4

Soybean-mintill 95.3 96.0 97.2 98.2

Soybean-clean 96.0 97.2 98.8 99.7

Alfalfa 88.9 93.1 92.9 95.4

Grass-pasture-mowed 92.5 99.4 98.6 99.9

Grass-trees 68.0 82.0 89.0 91.0

Grass-pasture 80.3 94.7 94.5 98.4

Hay-windrowed 72.2 90.9 90.0 91.6

Oats 87.7 94.0 98.1 98.4

Wheat 91.5 96.8 97.5 99.9

Woods 82.8 89.1 92.0 94.3

Buildings-Grass-Trees-Drives 88.5 92.4 96.1 97.5

Stone-Steel-Towers 90.5 97.8 97.8 98.2

Bold values indicate the highest accuracies in each category

(c)(b)

(f)(e)

(a)

Vegetation

Build-up

Impervious
Soil

Water

Fig. 5 Berlin data set; a MLP classification map, b Marker-based HSEG classification map, c Extended-MSF classification map, d Proposed

approach classification map, e Reference map
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Fig. 6 Comparison of the values of the two parameters of overall

accuracy and kappa coefficient for the classification algorithms used

in the Berlin image

Table 6 Accuracy values

obtained for the Berlin image
MLP Marker-based HSEG Extended-MSF Proposed approach

OA (%) 86.6 90.1 95.0 97.4

j (%) 84.2 87.1 92.9 95.5

Vegetation 91.4 94.9 97.9 99.2

Build-up 80.2 92.2 96.3 97.9

Impervious 80.6 84.2 91.9 93.7

Soil 86.9 79.9 91.8 86.0

Water 94.1 90.3 97.5 98.1

Bold values indicate the highest accuracies in each category
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Fig. 7 Telops data set; a MLP classification map, b Marker-based HSEG classification map, c Extended-MSF classification map, d Proposed

approach classification map, e Reference map
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Fig. 8 Comparison of the values of two parameters of overall

accuracy and kappa coefficient for classification algorithms used in

Telops image
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extracting information from pixels, reducing dimensions

and extracting information from segmentation map objects

were used in the proposed approach, which is based on the

HSEG algorithm. For this purpose, nine features of mean,

standard deviation, contrast, homogeneity, correlation,

dissimilarity, energy, wavelet transform and Gabor filter

were extracted from the initial hyperspectral image as the

information of the nearest neighbors. Then, the WG algo-

rithm was used to reduce the dependence between the

spectral and spatial features obtained. The HSEG algo-

rithm, which is one of the most accurate spatial information

extraction algorithms in hyperspectral images, was used to

segment the image. Then, nine features of area, perimeter,

shape index, strength, maximum intensity, minimum

intensity, entropy, relation and adjacency were extracted

from the segmentation map objects to classify the obtained

objects. The proposed approach was implemented on three

hyperspectral images of the Indiana Pine, Berlin and Tel-

ops. According to the results of practical experiments, the

proposed approach has a quantitative and qualitative

advantage over the MLP algorithm. This advantage is 13,

11 and 8% in the kappa coefficient parameter in Indiana

Pine, Berlin and Telops images, respectively. The reason

for the greater increase in the accuracy of the Indiana Pine

image compared to the other two images can be the com-

plexity of the image, the presence of noise bands and the

high dependence of the Indian Pines image bands, which

indicates the need to use the band reduction process before

classification. Also, the accuracy of the classes in the

proposed approach in all three images has increased com-

pared to other algorithms. The only exception is the soil

class in the Berlin image, which could be due to its small

number and high dispersion of its pixels. Future studies

will investigate the effect of different spatial properties on

each of the classes in the image, in which special spatial

features to each class can be used to classify them to reduce

computation time.
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