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Received: 24 September 2021 / Accepted: 10 February 2022 / Published online: 28 February 2022
� Indian Society of Remote Sensing 2022

Abstract
Satellite remote sensing products are becoming increasingly important in water resources management. Monitoring water

availability and demand within a basin is a primary requirement of effective and sustainable river basin management. In

this study, monthly and annual water budget components of the Kizilirmak River Basin were estimated from satellite

observations and GLDAS-2.1 Noah and CLSM models for the hydrological years 2014 and 2015. Precipitation (P),

evapotranspiration (ET), terrestrial water storage (TWS), and runoff (R) datasets were taken from different sources (GPM

IMERG, CHIRPS, MODIS, SSEBop, GRACE, CLSM, Noah, and streamflow gauge). Since R is not directly available

from remote sensing observations, it was inferred from the water balance equation as a residual. The datasets were

processed, analyzed, and intercompared. The performance of satellite remote sensing in water budget estimation was

evaluated, and the consistency of spatial patterns between satellite data and earth system-modeled data was analyzed. As a

result of the analysis, remotely sensed P showed good consistencies; however, ET and TWS change showed large

uncertainties. Inferred runoff from remote sensing and model outputs showed significant differences from the observed

streamflow measurements; nevertheless, Noah demonstrated better consistency with the gauge observations. Our study

revealed the strengths and limitations of satellite-based remote sensing and GLDAS-2.1 CLSM and Noah models in

estimating water budget. Caution should be exercised when using remote sensing and modeled data in ungauged regions

because human influence is not included in such datasets. Despite the uncertainties in GLDAS and remote sensing datasets,

such data can be quite useful for evaluating seasonal and interannual changes in water components and river basin

management, particularly in data-sparse regions.

Keywords Earth observation � GLDAS-2.1 CLSM and Noah � Remote sensing (GPM IMERG, GRACE, MODIS) �
River basin monitoring � Water budget estimation

Introduction

River basin management is crucial for water allocation and

distribution within a country or among several countries in

transboundary river basins (Bai et al., 2016; Gao et al.,

2010). Monitoring water availability and demand within a

basin is a primary requirement of effective and sustainable

river basin management, in which water availability mainly

depends on the hydrology and ecology of the basin (Lak-

shmi et al., 2018). Water availability in a basin is signifi-

cantly influenced by climate change (Bai et al., 2016;

Moghim, 2018). Changes in streamflow considerably

impact ecological systems and human societies (Bai et al.,

2016; Mohammed et al., 2018b; Deliry et al., 2020). River

basin management requires accurate delineation of
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watersheds and their stream channels based on the basin’s

terrain. For basin water budget estimation, information on

soil, vegetation, and water budget components (i.e., pre-

cipitation, evapotranspiration, runoff, and surface and

groundwater storage) is required.

Precipitation can be measured directly using in situ

observations (rain gauges) and remote sensing techniques

such as satellite sensors and weather radars (Tang et al.,

2016; Shen et al., 2020). In gauge-based observations,

given sufficient gauge density, spatial variations can be

resolved (Gao et al., 2010); however, since gauge-based

observations are point-based, uncertainty in precipitation

values increases by increasing distance from the measuring

station (Kidd et al., 2017; Shen et al., 2020). In addition, in

regions with sparse gauge stations, especially over moun-

tainous areas, point-based rainfall observation leads to the

uneven spatial distribution of gauge data. Ground-based

rainfall observation is generally challenging due to high

costs and unavailability in remote areas (Gao et al., 2010).

Spatial variability is generally high in measuring evapo-

transpiration and terrestrial water storage change at large

scales via in situ methods (Gao et al., 2010; Lakshmi et al.,

2018; Lv et al., 2017; Pan et al., 2020; Yin et al., 2019).

Evapotranspiration is the sum of evaporation from the land

surface and transpiration from plants, which depends on

many variables (i.e., solar radiation at the surface, land and

air temperatures, surface winds, humidity, soil conditions,

and vegetation cover and types). Terrestrial water storage

(TWS) is a key component of the hydrological cycle,

which includes all forms of surface and subsurface water

(Syed et al. 2008). Runoff variability can be monitored

using hydrological stations; however, many basins in the

world suffer from a lack of hydrological stations or sparse

stations (Gao et al., 2010; Lakshmi et al., 2018).

Land surface models (LSMs) that simulate surface-at-

mosphere interactions have been efficient tools for study-

ing the terrestrial water budget and projection and

prediction of the land surface dynamics (Rodell et al.,

2004; Gao et al., 2010; Bai et al., 2016; Fisher & Koven,

2020). Coupled water, energy, and carbon fluxes between

the earth’s surface and atmosphere can be solved using

mathematically represented models (Fisher & Koven,

2020). LSMs are the most sophisticated tools that can be

used for global climate change studies because spatial and

temporal variability of water and energy cycles can be

characterized using LSMs (Bai et al., 2016). Global land

data assimilation system (GLDAS), provided by the

National Aeronautics and Space Administration (NASA),

offers uniform and frequent information about water and

energy components (Rui et al., 2020). GLDAS integrates

remote sensing and ground-based observations and pro-

vides quantities (e.g., evapotranspiration, runoff, and snow

water equivalence) that cannot be directly observed by

satellites (Rui et al., 2020) or provided by simple models.

Despite the availability of advanced LSMs such as

GLDAS, simulation of human-induced alterations within a

large basin is still a challenge (Gao et al., 2010; Oliveira

et al., 2014; Bai et al., 2016; Wang et al., 2016; Lv et al.,

2017; Qi et al., 2020). Nevertheless, due to their high

spatial resolution, hydrological models at smaller scales

(microscale models) might be suitable for closing the water

budget.

Satellite remote sensing products are becoming

increasingly important in water resources management.

Satellite remote sensing provides global coverage and

spatially uniform data compared to ground-based non-

uniform measurements. Satellite observations can provide

reliable precipitation estimates on a global scale with fine

spatial and temporal resolution; offering precipitation data

over data-sparse regions is one of the distinct advantages of

earth-observing satellites (Kidd et al., 2017). Recently, the

performance of satellite-based rainfall estimates has been

studied by many researchers (Funk et al., 2015; Le et al.,

2018; Hosseini-Moghari & Tang, 2020; Shen et al., 2020;

Hsu et al., 2021), which promising results have been

reported and remotely sensed precipitation products have

been recommended as an alternative in terms of time and

space for data-scarce areas. However, in regions with ele-

vation variations, high spatial variability is expected in

satellite-based precipitation estimations (Jia et al., 2020).

Remotely sensed evapotranspiration can be calculated

based on geophysical parameters observed by satellite

sensors. Similarly, the potential of evapotranspiration

products retrieved from space-borne remote sensing data

have been evaluated by several researchers (Velpuri et al.,

2013; Long et al., 2014; Du & Song, 2018; Dzikiti et al.,

2019; Chen et al., 2020; Senay et al., 2020); despite

uncertainties, the studies have revealed the advantages of

satellite-based evapotranspiration products compared to

expensive conventional methods. Although runoff cannot

be obtained directly from satellite data, it can be inferred as

a residual of the water budget (Sheffield et al., 2009; Gao

et al., 2010; Lv et al., 2017). Some individual components

of TWS such as surface water and soil moisture can be

measured using different satellite data; however, integrated

measurement of TWS using remote sensing technique is

only possible from Gravity recovery and climate experi-

ment (GRACE) satellite mission (Jia et al., 2020; Syed

et al., 2008). Global water mass changes can be inferred

from changes in gravity using GRACE data, which was not

possible before the launch of GRACE satellites (Yin et al.,

2019; Jia et al., 2020; Rzepecka & Birylo, 2020). GRACE

TWSC includes all aspects of change in water storage,

including human alterations (Gao et al., 2010; Lakshmi

et al., 2018).
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Despite some limitations, the potential for satellite

remote sensing to estimate the water budget is high and

uncertainties vary from basin to basin (Long et al., 2014;

Lakshmi et al., 2018; Yin et al., 2019); thus, more studies

over different basins can better reveal the potential of

satellite-based water budget estimation. This paper presents

estimates of the Kizilirmak River Basin terrestrial water

budget from remote sensing and GLDAS-2.1 model out-

puts and intercompares the results. Assessments are made

for the water years 2014 and 2015. The main objective of

this paper is to evaluate the performance of satellite remote

sensing in water budget estimation and to analyze and

compare the consistency of spatial patterns between satel-

lite data and earth system-modeled data. We take precipi-

tation data from two satellite-based remote sensing

products (GPM IMERG and CHIRPS and two models,

GLDAS-2.1 CLSM and Noah. Evapotranspiration products

are taken from Terra MODIS satellite data and three

models (SSEBop, CLSM, and Noah). Total water storage is

taken from GRACE satellite data and model outputs. Since

no explicit runoff retrievals are made from satellite remote

sensing, we infer runoff from remote sensing estimations

based on water balance and compare with runoff data taken

from streamflow observations and two model outputs. We

use the observed runoff data as a target to assess water

budget closure feasibility from remote sensing data for

ungauged rivers. We first process each data in the ArcGIS

environment and evaluate each of the remotely sensed

water budget components against data taken from GLDAS-

2.1 model outputs and other satellite datasets. We then

calculate the total water budget and runoff as a residual of

the water budget and compare them with the model outputs

and gauge measurements. Finally, we evaluate the uncer-

tainties and discuss barriers in the water budget closure

using remote sensing data.

Materials and Methods

Study Area

The Kizilirmak River, with a length of approximately 1355

km, is Turkey’s longest river that originates and ends

within the country. The river rises from the eastern part of

Central Anatolia; it first flows to the west and south-west,

then forms an arc and flows into the Black Sea as a delta

(Fig. 1). The river collects water from many rivers as it

passes through the provinces of Sivas, Kayseri, Nevsehir,

Kirsehir, Kirikkale, Ankara, Aksaray, Cankiri, Corum, and

Samsun, respectively. Its main tributaries are Delice River,

Devrez and Gokirmak. Central Anatolia is a region where

drought is intense; since it is surrounded by mountains, the

region is under the influence of a continental climate with

hot and dry summers and cold and snowy winters, where

the average air temperature is 13.7 �C (Yüce & Ercan,

2015). The Kizilirmak river is fed by rain and snow, and it

has the lowest flow in September and reaches its peak in

April (Harmancioglu & Altinbilek, 2020). The Kizilirmak

basin has ten major sub-basins; in some areas of the basin,

the valley widens and turns into a plain. The drainage area

is 82197 km2; the annual average precipitation, evapo-

transpiration, and runoff are 451 mm, 243 mm, and

74.46 mm, respectively (Harmancioglu & Altinbilek,

2020; Selek & Aksu, 2020). There are 11 dams on the river

(Ozturk & Sesli, 2015); the river supplies water to Ankara.

Model Description

The NASA Global Land Data Assimilation System

(GLDAS) project provides optimal fields of land surface

states (e.g., soil moisture, temperature) and fluxes(e.g.,

evapotranspiration, runoff) by incorporating satellite- and

ground-based observational data products as well as data

assimilation techniques (Rodell et al., 2004; Rui et al.,

2020). By integrating a huge amount of global observation

data, multiple Land Surface Models (LSMs) are driven by

GLDAS. Currently, four LSMs are driven by GLDAS (Rui

et al., 2020), namely Noah (Chen et al., 1996), Catchment

Land Surface Model (CLSM; Koster et al., 2000), the

Community Land Model (CLM; Dai et al., 2003), and

Variable Infiltration Capacity (VIC; Liang et al., 1994,

1996).

In this section, the reprocessed data products of GLDAS

Version 2 (hereafter, GLDAS-2) are discussed, which has

three components: GLDAS-2.0, GLDAS-2.1, and GLDAS-

2.2 (Rui et al., 2020). GLDAS-2.0 provides time-series

data from 1948 to 2014, which is temporally consistent and

forced completely with the Princeton meteorological input

data (Sheffield et al., 2006). GLDAS-2.1 provides data

from 2000 to present, which is forced with a combination

of observation and model data from the NOAA/GDAS

(Global Data Assimilation System; Derber et al., 1991),

GPCP (Global Precipitation Climatology Project; Huffman

et al., 2001; Adler et al., 2003), and the AGRMET (Air

Force Weather Agency’s AGRicultural METeorological

modeling system). GLDAS-2.0 and GLDAS-2.1 products

are publicly available and do not include data assimilation,

whereas GLDAS-2.2 includes data assimilation from

Gravity Recovery and Climate Experiment (GRACE) and

provides data from 2003 to present (Li et al.,

2019a, 2019b, 2019c). Basically, the temporal resolutions

for these products are 3-hourly and daily; the GLDAS-2

monthly products are generated from the 3-hourly products

through the temporal averaging method. The monthly

model outputs include three categories of data: water bal-

ance (such as rainfall rate, snowfall rate, surface and
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subsurface runoff, evapotranspiration, and soil moisture),

energy balance (such as latent heat net flux, sensible heat

net flux, and ground heat flux), and forcing parameters

(such as temperature, wind speed, and short- and long-

wave radiation). For a complete specification of the

GLDAS-2 products, the reader is referred to (Rui et al.,

2020).

The Noah LSM was developed in 1993 by collaborating

researchers from public and private institutions, initiated by

the National Centers for Environmental Prediction (NCEP;

Chen et al., 1996; Ek et al., 2003), and has been used

operationally for climate predictions since 1996 (Bai et al.,

2016). The Noah model continues to evolve by adding new

functions and enhancing the existing equations of land

surface processes (Cai et al., 2014). The Noah model for

hydrological modeling has a multilayer soil structure that

simulates the freezing and thawing of soil water in all

layers. The Noah model describes soil water movement

using the Richards equation and calculates the surface and

subsurface runoffs based on a water balance

scheme (Schaake et al., 1996; Bai et al., 2016).

The catchment LSM (Koster et al., 2000) was designed

and is constantly being developed in NASA’s Global

Modeling and Assimilation Office (GMAO; GES DISC,

2021). In the traditional LSMs, a grid cell is used as the

land surface element, while CLSM uses a topographically

derived hydrological catchment as the model’s basic

computational unit (Xia et al., 2017). Groundwater is also

included in the CLSM by associating the spatial distribu-

tion of water table depth to the catchment’s topography

statistics (Koster et al., 2000; GES DISC, 2021). In the

CLSM, three non-traditional bulk moisture variables (the

catchment deficit, the surface layer excess, and the root

zone excess) are used to represent the catchment moisture

conditions—equilibrium conditions related to the distribu-

tion of water table and non-equilibrium conditions near the

surface (Koster et al., 2000).

Data

In this study, remote sensing and earth system-modeled

datasets (see Table 1) were used for estimating the water

budget in the Kizilirmak River basin for the water years

2014 and 2015 (October 01, 2013 to September 30, 2015).

A Digital Elevation Model (DEM) with 1 arc-sec (* 30 m)

grid resolution was obtained for the study area from the

Shuttle Radar Topography Mission (SRTM). The DEM

was used to delineate the basin and its stream network.

GLDAS-2.1 Noah (Li et al., 2020b) and CLSM (Li et al.,

2020a) models were selected to use their Level-4 monthly

output data for relative comparisons because of their ability

in representing groundwater as well as the high perfor-

mance of the data assimilation framework (Getirana et al.,

2017; Jung et al., 2019). The GLDAS-2.1 Noah and CLSM

Fig. 1 Study area
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data products are available in 0.25� and 1� spatial resolu-

tions, respectively. Monthly averaged Precipitation (P),

Evapotranspiration (ET), Surface Runoff (R), and Terres-

trial Water Storage (TWS) data outputs of the two models

were downloaded from NASA’s Goddard Earth Sciences

Data and Information Services Center (https://daac.gsfc.

nasa.gov). Satellite-based hydrological datasets were

obtained from different sources to evaluate the water

budget estimation using only remote sensing data by

comparing them with the model outputs and in situ

observations.

Methods

To achieve the study aim, first, the basin and its stream

network were delineated from the DEM data using Arc

Hydro Tools in the ArcGIS software environment. Then

image pre-processing was performed on the hydrological

raster data to make them ready for analysis. Next, the

variable units were converted to mm/month using the

Raster Calculator function. Subsequently, monthly basin-

averaged values were extracted from each variable using

Zonal Statistics. For calculating the basin water budget, the

monthly data were accumulated, and the calculations were

performed based on the general water balance equation

(Gao et al., 2010; Lakshmi et al., 2018; Yin et al., 2019).

Finally, the yearly accumulated components were multi-

plied by the basin area to obtain total annual quantities. The

general equation of water balance is given below.

P ¼ ETþ Rþ DS ð1Þ

where P is precipitation, ET is evapotranspiration, R is

runoff, and DS ¼ ds
dt

is change in surface and subsurface

water storage.

It is worth noting that water quantities used for irrigation

or other domestic uses are not explicitly included in Eq. 1

because of the lack of a globally consistent method for

estimation of such quantities (Lakshmi et al., 2018). Before

and after launching earth observation satellites and intro-

ducing new products, studies are usually conducted to

ensure the accuracy and quality of observations. Validation

studies can be conducted by comparing the results with the

in situ measurements, remotely sensed data, as well as

model outputs. All the data used in this study have been

extensively validated using in situ studies and other

methods. Remotely sensed precipitation datasets such as

TRMM and GPM have been independently evaluated by

many researchers (Nicholson et al., 2003; Huffman et al.,

2007; Xu et al., 2017; Hosseini-Moghari & Tang, 2020).

MODIS retrieved evapotranspiration has been assessed in

several studies (Mu et al., 2007; Kim et al., 2012; Velpuri

et al., 2013; Gemitzi et al., 2017). GLDAS outputs and the

forcing data have also been validated in numerous studies

(Lohmann et al., 2004; Luo et al., 2007; Zaitchik et al.,

2010; Rodell et al., 2011; Chen et al., 2013; Wang et al.,

2016; Bai et al., 2016).

This study focuses on the comparison of remotely

sensed water budget components with model outputs and

in situ observations to analyze their spatial patterns and the

correlation between them. For this purpose, water budget

components from satellite observations were compared

with that of GLDAS-2.1 Noah and CLSM outputs and

Table 1 List of hydrological variables used in this study

Variable Product Spatial resolution Temporal resolution Time span Website

Precipitation GPM IMERG V6 0.1� Monthly 06/2000-Present https://giovanni.gsfc.nasa.gov

CHIRPS V2.0 0.05� Monthly 01/1981-Present https://earlywarning.usgs.gov

GLDAS-2.1 Noah output 0.25� Monthly 01/2000-Present https://daac.gsfc.nasa.gov

GLDAS-2.1 CLSM output 1� Monthly 01/2000-Present https://daac.gsfc.nasa.gov

Evapotranspiration MOD16A2 500 m 8-day 12/1999-Present https://lpdaac.usgs.gov

SSEBop model output 1000 m Monthly 01/2000-Present https://earlywarning.usgs.gov

GLDAS-2.1 Noah output 0.25� Monthly 01/2000-Present https://daac.gsfc.nasa.gov

GLDAS-2.1 CLSM output 1� Monthly 01/2000-Present https://daac.gsfc.nasa.gov

TWS GRACE 1� Monthly 03/2002-Present https://grace.jpl.nasa.gov

GLDAS-2.1 Noah output 0.25� Monthly 01/2000-Present https://daac.gsfc.nasa.gov

GLDAS-2.1 CLSM output 1� Monthly 01/2000-Present https://daac.gsfc.nasa.gov

Runoff GLDAS-2.1 Noah output 0.25� Monthly 01/2000-Present https://daac.gsfc.nasa.gov

GLDAS-2.1 CLSM output 1� Monthly 01/2000-Present https://daac.gsfc.nasa.gov

Streamflow gauge Monthly 1959-2015 https://www.dsi.gov.tr
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available station observations. Precipitation data were

compared with remote sensing and integrated station and

remote sensing data (IMERG, CHIRPS). Evapotranspira-

tion was compared with the MOD16 ET and actual ET

from the SSEBop model. Modeled runoff data were eval-

uated with the stream gauge observation and inferred

runoff from the water balance equation. For evaluating

TWSC, comparisons were made between the GRACE and

GLDAS model data. Relative comparisons were per-

formed, and the coefficient of determination (R2) was used

to as a metric to assess agreement between the model and

remote sensing data. Coefficient of determination is the

square of correlation coefficient, which shows percentage

variation and ranges between 0 and 1; the higher the better.

Results and Discussion

Remote sensing data products and GLDAS-2.1 model

outputs were used for estimating water budgets in the

Kizilirmak River Basin for the water years 2014 and 2015.

Quantities of precipitation, evapotranspiration, runoff, and

terrestrial water storage change were calculated for each

year. This section evaluates satellite-based water budget

components by comparing them with model outputs and

measured data.

Precipitation

Figure 2 shows the spatial distribution of total precipitation

over the water years 2014 and 2015 from remote sensing

observation (GPM IMERG) and GLDAS model outputs

(Noah and CLSM). Since GLDAS outputs have low spatial

resolution, extracting raster by mask can lead to data loss;

considering this issue, the shape extent coordinates were

used, and then the area average values were extracted using

the Zonal Statistics tool in ArcGIS software. From Fig. 2, it

can be seen that GPM IMERG underestimates precipitation

over the southeastern regions, while both models overes-

timate in the eastern regions and underestimate over the

northern (coastal) areas.

Figure 3 compares monthly basin-averaged precipitation

datasets. The comparison of four datasets illustrates that

satellite-based remotes sensing observation (GPM IMERG)

and rain gauge and satellite observation (CHIRPS) provide

lower precipitation rates; however, both GLDAS models

present higher rates. The differences between the datasets

can be due to using different forcing data in the models.

Scatter plots show a strong linear correlation between the

GLDAS CLSM and Noah precipitation datasets (see

Fig. 3c). Figure 3a shows higher consistency between the

GPM IMERG and CHIRPS compared to model outputs.

Pairwise comparison of GPM IMERG and CHIRPS shows

a positive correlation with a value of R2 = 0.79 (Fig. 3b),

while better linear association (R2 [0.85) can be seen

between the GPM IMERG and GLDAS models (see

Fig. 3d, e). Compared to CHIRPS, GPM IMERG tends to

overestimate the amount of precipitation ranging from 2%

to 50%; this is consistent with the results of (Hosseini-

Moghari & Tang, 2020). CHIRPS datasets are reliable

gridded precipitation datasets available globally because

these datasets are from rain gauge and satellite observa-

tions and validated in several studies (Dinku et al., 2018;

Haghtalab et al., 2019; Katsanos et al., 2016). Alejo and

Alejandro (2021) reported that CHIRPS showed adequate

performance in their validation study, and they recom-

mended using this data in water resources planning of

regions with data scarcity and sparse weather monitoring

networks. On the other hand, Hsu et al. (2021) showed that

IMREG performed slightly better than CHIRPS in their

study area. Precipitation is one of the most complex pro-

cesses in the hydrologic cycle; thus, diverse inputs and

retrieval algorithms lead to different estimates, especially

over mountainous regions.

Evapotranspiration

Figure 4 illustrates the annual area-averaged total evapo-

transpiration for the water years 2014 and 2015 from

remote sensing observation (MOD16) and the Noah and

CLSM models. The figure shows that the MOD16 product

underestimates ET compared to the model outputs.

Although the spatial resolutions of ET maps derived from

the model outputs are very low, the patterns show some

similarities.

Monthly basin-averaged evapotranspiration derived

from satellite data (MOD16) and the output of the three

models (SSEBop, GLDAS Noah, and GLDAS CLSM) are

shown in Figure 5. The figure shows a high correlation

between the Noah and CLSM, which both provide the

highest ET throughout the water years. The ET values from

the SSEBop model, especially during the wet seasons, are

the lowest. According to Alemayehu et al. (2017), since

land surface temperature retrieved from remote sensing

data is the primary forcing data for the SSEBop model, the

weak performance of SSEBop model is mainly associated

with the use of constant calibration coefficient for deter-

mining the cold reference temperature. Remote sensing

product shows lower values ranging from 40 to 60% of

modeled (GLDAS) ET. Depending on basin characteristics,

MOD16 ET may have significant uncertainties (Velpuri

et al., 2013; Du & Song, 2018; Dzikiti et al., 2019; Souza

et al., 2019). Since ET is essential component in the water

budget estimation and it is difficult to obtain in situ ET

measurements, for better comparison, we also added the

SSEBop model ET product, which is based on satellite
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thermal data and assimilated weather fields (Senay et al.,

2013). In the study conducted by Kim et al. (2012),

MOD16 actual ET showed reasonable accuracy. Velpuri

et al. (2013) evaluated MOD16 and SSEBop ET data. The

researchers reported that MOD16 ET was effective in their

study; nonetheless, they indicated that both MOD16 and

SSEBop have their advantages and limitation in different

land cover classes. Because of the lack of data, the

ensemble mean ET from LSMs is usually used for esti-

mating water budget (Jimenez et al., 2011; Mueller et al.,

2011; Lv et al., 2017; Yao et al., 2017; Wartenburger et al.,

2018; Pan et al., 2020).

Terrestrial Water Storage Change

Terrestrial water storage is a key component of the water

cycle. Estimates of TWSC derived from GRACE and

GLDAS models were calculated by taking the difference of

monthly TWS over the study period. Change in TWS

derived from two model outputs and GRACE product are

shown in Fig. 6. Inconsistencies between the model outputs

and GRACE TWSC are seen over most of the regions.

Figure 7 compares monthly basin-averaged TWSC values

of models and remote sensing data. Some months are

missing in the GRACE archive (missing months for our

study period are Feb-2014, Jul-2014, Dec 2014, Jun-2015,

and Oct 2015). Data gaps in GRACE happens in many

years since 2011 due to the active battery management of

the aging satellite batteries (Cooley & Landerer, 2021).

For filling the gap for those missing months, we took the

average of five previous years because the interpolation

method using adjacent two months recommended by Lv

et al. (2017) showed higher variations from the mean. Lv

et al. and Long et al. (2015) recommended interpolation

methods using the adjacent two months for filling the

missing monthly data. Therefore, for some months (e.g.,

Jan-2014, Feb-2014, Jun-2014), significant variations

between GRACE and modeled values are observed

(Fig. 7). In addition to the data gap, the differences could

be due to many reasons, which details can be found in the

GRACE L-3 Product User Handbook (Cooley & Landerer,

2021). Due to the coarse resolution of GRACE (330 9 330

km), spatial signal-leakage from surrounding areas is pos-

sible, especially at the sea boundary (Gao et al., 2010; Yin

et al., 2019; Cooley & Landerer, 2021). When the orbit is

close to an exact repeat, the monthly grids have more

considerable inaccuracies, resulting in inaccurate gravity

field calculations (Cooley & Landerer, 2021).

Furthermore, uncertainties in P, ET, and R lead to

uncertainties in TWSC. Another explanation for the dis-

crepancies between the model and GRACE TWSC might

be due to the lack of consideration of lake and river

modules in the GLDAS model (Gao et al., 2010; Xia et al.,

2017; Lakshmi et al., 2018). Considering the low spatial

resolution of the GRACE and GLDAS data, comparable

TWSC results may be obtained over a large basin

([ 150,000 km2) because the effective spatial resolution of

GRACE is around 150 km2 (Li et al. 2019a, 2019b).

GRACE data have been used in many studies related to

water balance for obtaining TWS anomalies for a given

time period (Rodell et al., 2007; Landerer & Swenson,

2012; Ouma et al., 2015; Xiao et al., 2015; Jia et al., 2020;

Rzepecka & Birylo, 2020). Nevertheless, the data gap in

the GRACE archive is a crucial challenge for estimating

monthly TWSC (Li et al. 2019c; Wang et al., 2021).

Moreover, due to the coarse sensor resolution, GRACE

data is not practical for basins at smaller scales (Lakshmi,

2016; Lakshmi et al., 2018), which is the major limitation

of GRACE and GRACE-FO. For small watersheds, total

water change can be estimated using remote sensing P and

ET data and surface runoff from observation stations.

Ensemble mean TWSC from LSMs is also used for

reducing uncertainties when using model data (Li et al.

2019c).

3.4 Runoff

Figure 8 shows annual total runoff from the Noah and

CLSM models and the calculated residual (P-ET-TWS)

from the water balance equation for the water years 2014

and 2015. Since R cannot be obtained directly from

satellite data, we calculated the residuals to see if we can

interpret those values as runoff in the basin. The aim of this

study is not to close the water balance but to examine the

behavior of each component over the Kizilirmak Basin. For

this, residuals were also calculated from the model data to

see the changes from the actual R. Figure 8 compares the

annual accumulated runoff with the residuals from the

water balance equation. The figure indicates that even from

model output residuals, the exact R values cannot be

obtained. Figure 9 compares monthly modeled runoff

values with the stream gauge flow rates.

Figures 8 and 9 show significant differences in R values

derived from the Noah and CLSM models. There are also

considerable variations between the modeled R and stream

gauge observation data. GLDAS simulates runoff, which is

not directly comparable to observed streamflow at basin

outlet; for obtaining more accurate R, comparable to

streamflow, river routing models are used (Li et al., 2013;

Bai et al., 2016). Since streamflow routing is not included

in the GLDAS-2.1 simulations, the errors in the modeled

R are quite large as compared with the observed values.

The results show that modeled R values significantly vary

from the observed streamflow; the difference in R values is

consistent with the results from the previous studies (Bai

et al., 2016; Lv et al., 2017; Pan et al., 2017; Yin et al.,
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2019; Liu et al., 2020; Qi et al., 2020). Nevertheless, Noah

runoff seems to be closer to the in situ values compared to

the CLSM. From Fig. 8e, it can be seen that inferred runoff

is greatly overestimated; thus, it is difficult to consider the

inferred R from the water balance equation residual as

discharge. However, since obtaining streamflow records

over regions with sensitive water issues is challenging,

particularly over transboundary river basins, the residual

value will be effective to reach an approximate calculation

of the runoff over a basin. Although modeled runoff data

have limitations such as ignorance of water management

practices due to their low spatial resolution, these data are

useful because of their temporal resolution and global

coverage.

Comparison of P-ET-R and TWSC

Figure 10 represents area-averaged monthly P-ET-R and

water storage change from the GLDAS CLSM model.

Since runoff cannot be obtained directly from remote

sensing observations, and TWSC from GRACE has data

gaps, the comparison was made using the GLDAS model

output to see the variations. Figure 10a shows that both P-

ET-R and TWSC show temporal variability of water

equivalent thickness anomaly because increase and

decrease in water storage are reflected by both (P-ET-R and

TWSC). A positive P-ET-R value corresponds to a positive

value of TWSC and vice-versa. Figure 10b shows the

correlation between P-ET-R and TWSC from GLDAS

CLSM outputs.

The amount of groundwater withdrawal in a basin can

be obtained from the difference between P-ET-R and

DS (Lakshmi et al., 2018), but the dynamic of withdrawal

is quite complicated. For determining the actual dynamics,

extensive analysis needs to be done at the sub-basin level.

Considering the results from the GLDAS CLSM model, if

GRACE data with no gap is available for the study period,

runoff can be inferred from the water balance equation.

However, R and TWSC inferred from the water balance

equation are subject to uncertainties, which differ from

basin to basin (Long et al., 2014; Lakshmi et al., 2018; Yin

et al., 2019). Lakshmi et al. (2018) studied the correlation

between P-ET-R and TWSC over the world’s major river

basins; their results showed R2 values ranging from 0.35 to

0.9. The authors concluded that human activities affect the

water system in a basin because basins with less human

activities (e.g., the Amazon River Basin) showed less

uncertainty in total water change. Surface water (lakes and

reservoirs) and melting of snow can be another factor for

variations in TWS.

Fig. 2 Average annual total precipitation for 2014 and 2015 from a and d GPM IMERG (remote sensing observation), b and e GLDAS Noah,

and c and f GLDAS CLSM
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Evaluation of Satellite-Based Water Budget
Estimation

Figure 11 shows basin-averaged water budget components

in billion cubic meters for the water years 2014 and 2015.

Figure 11 compares total annual P, ET, R, and TWSC

from the GLDAS models and remote sensing observations.

The figure shows that the amount of total P in 2015 is much

higher than in 2014, where the differences are approxi-

mately 21% for CLSM, 22% for Noah, and 21% for remote

sensing (GPM IMERG). Likewise, total ET shows higher

values in 2015 than in 2014, where the variations are about

26% for CLSM, 13% for Noah, and 20% for remote

sensing (MOD16). In the same manner, Modeled R shows

about 62% and 50% increases in the water year 2015 from

CLSM and Noah, respectively. Except for Noah, TWSC

from the CLSM and GRACE is in agreement with pre-

cipitation for both years. From the results in Fig. 11, we see

a consistency in the hydrological cycle with respect to the

water balance in both years. The annual average precipi-

tation for the Kizilirmak basin was estimated as 689 mm,

690 mm, and 613 mm from CLSM, Noah, and Remote

Fig. 3 Comparison of a monthly basin-averaged precipitation and pairwise scatter plots of b GPM IMERG versus CHIRPS, c CLSM versus

Noah, d GPM IMERG versus Noah, and e GPM IMERG versus CLSM

Journal of the Indian Society of Remote Sensing (July 2022) 50(7):1191–1209 1199

123



Sensing, respectively, which corresponds to 55.7, 55.8, and

49.5 m3 of water, respectively. The average values of total

P and ET were compared, which ET losses account for

over 75% from model products and about 50% from

remote sensing data. In a study conducted by Selek and

Aksu (2020), they reported the average ET loss of 49% for

entire Turkey and 54 % for the Kizilirmak basin. This

shows a good agreement of the MOD16 ET in this study

with the results achieved by Selek and Aksu.

Numerous studies have been conducted to examine

water budget closure using satellite remote sensing data by

comparing with the in situ or model data, which most of

Fig. 4 Average annual total evapotranspiration for 2014 and 2015 from a and d MOD16 (remote sensing observation), b and e GLDAS Noah,

and c and f GLDAS CLSM

Fig. 5 Comparison of monthly basin-averaged evapotranspiration extracted from remote sensing data and products of the three models
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them agree with our study. Sheffield et al. (2009) per-

formed a study over the Mississippi River Basin; they

found a great overestimation of R due to high bias in

P. Gao et al. (2010) studied water budget estimation using

remote sensing data over major US river basins. They

reported considerable spatial variations in ET and TWS

and significant inconsistencies among P products. The

authors also indicated that inferred R (as a residual of the

water balance equation) values from satellite data were

overestimated. Sahoo et al. (2011) estimated the water

budget from satellite data over ten global river basins, but

water budget closure was not achieved. Similarly, other

researchers evaluated the water budget closure over various

river basins in the world using satellite data (Oliveira et al.,

2014; H. Wang et al., 2014; Penatti et al., 2015; Lv et al.,

2017). Overestimation of R and underestimation of ET

Fig. 6 Annual total terrestrial water storage change over the years 2014 and 2015

Fig. 7 Comparison of monthly basin-averaged TWSC derived from the GLDAS model outputs and remote sensing data product
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have been observed as common barriers in water budget

closure. Although water budget closure was not achieved in

any of the above studies, the authors concluded that

satellite data is quite useful in evaluating trends and

assessing changes in water balance.

In summary, water budget closure at the basin scale

based on satellite data alone is still not possible. In addition

to spatial and temporal discrepancies, instrumental errors

and using different retrieval algorithms and parameteriza-

tions are the barriers to closing the water budget. However,

satellite-based data can be extremely useful for hydrolog-

ical modeling, basin management, and predictions in the

data-scarce regions. For example, Mohammed et al.

(2018a) developed a regional hydrological decision support

system based on multiple satellite earth observations along

with the soil and Water assessment tool (SWAT), which

showed promising results over the Mekong River Basin.

Conclusions

In this study, major water balance components (P, ET, R,

and TWSC) were examined based on GIS analysis over the

Kizilirmak River Basin using publicly available monthly

satellite data and GLDAS model output products for the

water years 2014 and 2015. For water years 2014 and 2015,

amounts of precipitation, evapotranspiration, runoff, and

terrestrial water storage change were calculated from GPM

IMERG, MODIS, GRACE, and GLDAS-2.1 Noah and

CLSM products. The results revealed the monthly and

yearly changes of the overall water budget components

over the basin. For the water years 2014 and 2015, annual

precipitation and evapotranspiration obtained from remote

sensing observations and GLDAS-2.1 CLSM showed dif-

ferences ranging from approximately 11% and 12% for

precipitation, and 47% and 51% for evapotranspiration,

respectively. Similarly, annual differences between the

Fig. 8 Average annual total

runoff for 2014 and 2015 from

a and c GLDAS Noah and water

balance equation residual, b and

d GLDAS CLSM and water

balance equation residual, and

e GRACE water balance

residual
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Fig. 8 continued
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remote sensing observations and GLDAS-2.1 Noah were

11% and 12% for precipitation and 48% and 43% for

evapotranspiration. Since ET showed significant uncer-

tainties, we also calculated the total ET from the SSEBop

model product, which is produced based on satellite data.

The differences between the SSEBop ET and GLDAS

CLSM ET were 47% for 2014 and 53% for 2015. The

largest uncertainty was observed in estimating the change

Fig. 9 Comparison of monthly basin-averaged modeled runoff with the runoff obtained from gauge observation

Fig. 10 Comparison of a time series and b scatter plot of P-ET-R and TWSC from GLDAS CLSM outputs
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in terrestrial water storage. There were large differences

between the modeled runoff products; however, Noah

showed a better correlation with the in situ streamflow

observations. The differences between the runoff obtained

from the Noah model and stream gauge observations were

around 58% and 6% for the years 2014 and 2015, respec-

tively. Exact runoff cannot be obtained from remote

sensing; nonetheless, we examined the indirect approach—

interpreting the residual from the water balance equation

(P-ET-TWSC) as runoff. The residual quantities were

compared with the modeled runoff values in which the

results showed significant discrepancies.

Closing water balance continues to be a challenge due to

a variety of uncertainties such as the low resolution of

GRACE & GRACE-FO and significant errors in MODIS

evapotranspiration. There are constraints in calculating the

total water budget using GLDAS model outputs and

satellite-based remote sensing data due to limitations in

modeling/observing all the water components in a basin.

For example, streamflow, irrigation, groundwater pumping,

and other anthropogenic influences are not included. The

advantage of estimating the water budget based on GLDAS

model products is the consistency of spatial resolution in

all components. However, lakes and reservoirs are not

included, which leads to uncertainties. This study demon-

strated the strengths and limitations of satellite-based

remote sensing and GLDAS-2.1 CLSM and Noah models

in estimating water budget. Although CLSM has a lower

resolution (1�) compared to the Noah model (0.25�), the
TWS component is included in this model as output.

Contrarily, in the Noah model, the TWS needs to be cal-

culated based on soil moisture, snow water equivalent, and

canopy water variables. Water budget components esti-

mated from satellite remote sensing data come from dif-

ferent datasets with different resolution and error

characteristics; therefore, the quantities are not absolute.

Even if we obtain long-term remote sensing data, it will be

difficult to close the water budget because of the lack of

explicit runoff information. Ensemble modeling approach

using remote sensing and in situ data, and streamflow

routing simulation would yield better estimates. In spite of

the uncertainties in GLDAS and remote sensing data, such

data can be quite useful for evaluating seasonal and inter-

annual changes in water components and river basin

management, particularly in data-sparse regions. More-

over, remote sensing and LSM datasets can be used as

ancillary data for calibrating and validating regional

hydrological models.
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