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Abstract
Image classification used to organize pixels of an image into specific land-cover classes. There are various algorithms for

classifying images. Fuzzy c-Means (FCM) is one of the essential fuzzy classifiers, but it does not consider the neigh-

borhood pixel information. In this paper, the MRF model is applied in the FCM classifier to enhance the output of image

classification. FCM classifier with MRF Model (DA(H1), DA(H2), DA(H3), DA(H4), and SP) has been studied with

different distance measures and parameters to identify which parameter combination provides the best result. This best

algorithm was identified by classifying the Dense Forest, Eucalyptus, Riverine sand, Water, Wheat, and Grassland classes

applying the multispectral image of Landsat-8 and Formosat-2 of the Haridwar area. These classified image’s Overall

Accuracy (OA) are calculated using the FERM (Fuzzy Error Matrix) technique. It was observed that Mean Absolute

Difference distance measures at m = 1.1, k = 0.9, and c = 0.5 for DA (H1) using the base FCM classifier yield the highest

overall accuracy (82.06%) irrespective of the classifier.
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Introduction

Image classification discovers the characteristic of an

object concerning the pixels in an image. Image classifi-

cation accuracy mainly depends on the training data set,

analysis problem, and classification algorithms (Singha

et al., 2015). The classification algorithm utilizes spectral

reflectance information for locating the pixel to the corre-

sponding class (Lillesand et al., 2014). Conventional

classification assumes that pixels are found in pure form

means one pixel represents only one class. But, in a real

scenario, due to the restricted spatial resolution of the

sensor and dissimilarity between pixels and class boundary,

one pixel may represent more than one class known as

mixed pixels. Presence of mixed pixels in the data yields

less accuracy in classification (Singh & Garg, 2017). A

fuzzy based method is utilized in order to reduce crispness

in classification (Singh & Garg, 2014). J. Zhang and Foody

(2001) proposed adapting fuzziness in classification tech-

niques to classify the mixed pixels, which comes under the

advanced classification technique as fuzzy classification. In

this technique, membership of individual pixel may level

with partial and multiple classes. Bezdek et al. (1984)

introduced a fuzzy-based clustering algorithm. The purpose

of this algorithm was to classify the mixed pixel by allo-

cating membership values to individual classes. But, Fuzzy

c means (FCM) (Bezdek et al., 1984) fails to provide

spatial contextual information. The spatial contextual

information refers to the relationship between neighboring

pixels. The spatial context of a pixel is the occurrence of

respective class labels at neighboring pixels (Schistad

Solberg et al., 1996).

In order to overcome the problem associated with FCM,

Markov random field (MRF) models were introduced,

which is the advanced way to consider spatial contextual

information (Geman & Geman, 1984). MRF approach uses

the spatial interaction between pixels in the satellite ima-

ges. MRF, Smoothness Priors (SP) Model contains the

contextual information property and considers smoothness

is everywhere in the image (Li, 1995), but discontinuity
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occurs at the edges or boundaries. Discontinuity Adaptive

(DA) (Li, 1995)models were introduced to overcome the

over smoothing. The developed MRF models were used for

specific purposes; the DA is mainly used for edge

enhancement, whereas the SP model does the smoothing

applied to remove the noise. There are several applications

where these models were used distinctly to extract the

required information. MRF models concentrated on edge

preservation of class boundaries and smoothing the clas-

sified output. Earlier various studies have been conducted

related to MRF for improving image classification, such as

Baysian Image classification (Berthod et al., 1996), adap-

tive Bayesian contextual classification (Jackson et al.,

2002), image Fusion (Xu et al., 2011). Still, different

parameters and distance measures have not been consid-

ered in previous studies. This paper introduces Disconti-

nuity adaptive (DA) MRF models and Smoothing prior

(SP) MRF models in FCM as a base classifier to improve

image classification concerning different parameters and

distance measures. The FCM MRF model is used in clas-

sification application in different fields such as medical,

urban planning, and geohazards(Ahmadvand & Daliri,

2015; Gong et al., 2014; Hao et al., 2013).

This study aimed to show the effect of the MRF model

within an FCM classifier concerning different parameters

(lambda (k), beta (b), gamma (c), and fuzziness factor(m))

and distance measures to obtain the best algorithm. The

fuzzy Error Matrix (FERM) proposed by (Binaghi et al.,

1999) has been used to calculate the Overall Accuracy of

the classified output. Here, Parameter k varies 0.2–0.9 with

an interval of 0.1, b varies 1–9 with a period of 1, c varies

0.1–0.9 with an interval of 0.1, and m is equal to 1.1–3 with

an interval of 0.2. Bray Curtis, Canberra, Chessboard,

Correlation, Cosine, Euclidean, Manhattan, Mean Absolute

Difference, Median Absolute Difference, and Normalized

Square Euclidean are used as distance measures which are

described in Sect. 3.

Formulation of FCM and MRF model

Fuzzy c – means (FCM)

Fuzzy c-means (FCM) (Bezdek et al., 1984)is an essential

clustering method that works on the principle of fuzzy set

theory (Ichoku & Karnieli, 1996). The method allows the

pixel to contain partial membership of one or more than

one class (Kaymak & Setnes, 2000). Its objective function

is described in Eq. (1)

Jm ¼
XN

i¼1

XC

j¼1

umij dij
2; 1\m�1 ð1Þ

In this algorithm, the following condition should satisfy.

XC

j¼1

uij ¼ 1; uij 2 0; 1½ �; 0� uij � 1

XN

i¼1

lij [ 0

Here, m = Fuzziness Factor (it contain any real value

greater than 1),uij= Degree of membership represents of ith

pixel for cluster j,dij= distance measures, N = total no of

data, and C = Number of classes.

Smoothing Prior (SP)

Smoothing Prior of MRF gives contextual information

while using information about the pixel and its neighboring

pixel. The smoothness hypothesis was introduced mathe-

matically by prior further probability, described as energy

(Li, 1995). The general form of the regularizers is defined

in Eq. (2), and smoothing prior standard regularizers are

employed in Eq. (3).

UðFÞ ¼
XN

n¼1

Un fð Þ ¼
XN

n¼1

kn

Zb

n

g f n xð Þð Þdx ð2Þ

U(f) = prior energy, which represent the nth order reg-

ularizer,kn=weighting factor, where(kn[ = 0)and

gðf n xð ÞÞ ¼ potential function.

gðf n xð Þ ¼ nð Þ ¼ g2 ð3Þ

Discontinuity Adaptive (DA)

Discontinuity Adaptive (DA) is a robust algorithm of MRF,

which preserves boundaries and edges. The necessary

condition for a regularizer to be discontinuity adaptive is

given as Eq. (4)(Smits & Dellepiane, 1997).

lim
n!1

g0 gð Þj j ¼ lim
n!1

2gh gð Þj j ¼ c ð4Þ

c = constant (ce[0,!]).

Four DA model described as in equation (5-8).

g1c gð Þ ¼ �ce
g2

c ð5Þ

g2c gð Þ ¼ �c

1þ g2

c

ð6Þ
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g3c gð Þ ¼ c ln 1þ g2

c

� �
ð7Þ

g4c gð Þ ¼ c gj j � c2 ln 1þ gj j
c

� �
ð8Þ

Mathematical Formula of Similarity
and Dissimilarity Measures

This study was focused to show the effect of different

distance measures on FCM based MRF model; considering

this, eight dissimilarity measures such as Braycurtis, Can-

berra, Chessboard, Euclidean, Manhattan, Mean Absolute

Difference, Median Absolute Difference, Normalized

Square Euclidean, and two similarity measures Cosine and

Correlation have been used. Various similarities and dis-

similarities measures studied in FCM classifier as distance

criteria to be generated to identify unknown vectors belong

to which class. The frequently used distance measures in

different applications were selected for analysis in this

study. The different distance measures were used to vali-

date and assess the models and examine how different

distance measures affect the FCM based MRF model

parameters. Mathematical expressions of all dissimilarity

and similarity measures are given below. Here x and v

represent the vector pixel, c is the mean value, and b rep-

resents the no of bands.

Dissimilarity Meaures

Braycurtis

Braycurtis (Bray & Curtis, 1957) dissimilarity measures

are frequently applied to calculate the relationship between

environmental sciences, ecology, and related field. The

equation of Braycurtis is given in Eq. (9);

D x; yð Þ ¼
Pn

i¼1 xi � yij jPn
i¼1 xi þ yij j ð9Þ

Here y is the sample, and n represents the no of data

points.

Canberra

Canberra (Agarwal et al., 2009) was introduced in 1966.

This measure is mainly applied for positive values. This

measure has been used for comparing ranked lists. The

equation for Canberra distance measures is given in

Eq. (10);

D xj; vi
� �

¼
xj1 � vi1
�� ��

xj1
�� ��þ vi1j j

þ
xj2 � vi2
�� ��

xj2
�� ��þ vi2j j

þ � � � þ
xjb � vib
�� ��

xjb
�� ��þ vibj j

ð10Þ

Chessboard

Chessboard (Baccour and John 2015) distance measures

represent a vector space to calculate the distance between

any co-ordinate dimensions, which is the greatest of the

distances along two vectors. It is also known as Chebyshev

distance. The equation for chessboard distance is given in

Eq. (11);

D xj; vi
� �

¼ Max xj1 � vi1
�� ��; xj2 � vi2

�� ��; . . .::; xjb � vib
�� ��� �

ð11Þ

Euclidean

Euclidean (Hasnat et al., 2013) distance is the distance

between two points in the Euclidean space. It calculates the

square root of the sum of the squares of the difference

among parallel data points values. The equation of Eucli-

dean distance measures is given in Eq. (12);

D x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
xi � yij j2

q
ð12Þ

Manhattan

Manhattan (Hasnat et al., 2013) distance measure is used to

compare images. Manhattan distance among two data

points is the sum of the difference of their parallel element.

Manhattan distance measures equation is given in Eq. (13);

D xj; vi
� �

¼ xj1 � vi1
�� ��þ xj2 � vi2

�� ��þ � � � þ xjb � vib
�� ��

ð13Þ

Mean Absolute Difference

Mean Absolute Difference (Vassiliadis et al., 1998) is a

statistical measurement of depression. It is defined as the

addition of the absolute difference and the variable of two

items with a similar location of the same place and divided

by the entire number of bands. Mean Absolute Difference

distance measures equation is given in Eq. (14);

D xj; vi
� �

¼ 1

b
xj1 � vi1
�� ��þ xj2 � vi2

�� ��þ � � � þ xjb � vib
�� ��� �

ð14Þ

Journal of the Indian Society of Remote Sensing (July 2022) 50(7):1177–1189 1179

123



Median Absolute Difference

Median Absolute Difference (MAD) (Scollar et al., 1984)

may use in place of Mean Absolute Difference to reduce

the effect of impulse noise on the calculated measures.

MAD is mathematically defined as calculating the differ-

ence between the absolute intensities of the similar pixels

of two images, and after that, we take the median of data.

MAD distance measures equation is given in Eq. (15);

D xj; vi
� �

¼ Median xj1 � vi1
�� ��; xj2 � vi2

�� ��; . . .::; xjb � vib
�� ��� �

ð15Þ

Normalized Square Euclidean

Normalized Square Euclidean (NSE) (Hasnat et al., 2013)

obtains the NSE distance between two vectors. It requires

normalization of the pixel’s intensities before computing

the addition of squared difference between the pixels of

two images. NSE distance measures equation is given in

Eq. (16);

Similarity Measures

Cosine

Cosine (Senoussaoui et al. 2014) similarity measures

determine the angle’s cosine along two vectors contained

in an inner product space. It gives the measurement of two

vectors with respect to each other. The mathematical

equation of cosine is given in Eq. (17);

D xj; vi
� �

¼ 1�
xj1vi1þxj2vi2þ...þxjbvibffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xj1
�� ��2 þ � � � þ xjb

�� ��2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vi1j j2 þ � � � þ vibj j2
q

ð17Þ

Correlation

Correlation (M. Zhang et al., 2008) similarity is a calcu-

lation of obtaining the correlation along two vectors. The

similarity along the two vectors is obtained by applying the

Pearson-r correlation. The mathematical formula of cosine

is given in Eq. (18);

D xj; vi
� �

¼

xj1 þ 1
b
�xj1 � xj2 � � � � � xjb
� �

� vi1 þ 1
b
vi1 þ vi2 þ � � � þ vibð Þ


 �2
���

���þ � � �

þ xjb þ 1
b
�xj1 � xj2 � � � � �xjb
� �

� vib þ 1
b
vi1 þ vi2 þ � � � þ vibð Þ


 �2
���

���

2

xj1 þ 1
b
�xj1 � xj2 � � � � � xjb
� �
 �2

���
���þ � � � þ xjb þ 1

b
�xj1 � xj2 � � � � � xjb
� �
 �2

���
���

þ vi1 þ 1
b
�vi1 � vi2 � � � � �vibð Þ


 �2 þ � � � þ vib þ
1

b
�vi1 � vi2 � � � � �vibð Þ

� 2
�����

�����

2

664

3

775

ð16Þ

D xj; vi
� �

¼ 1�

xj1 þ
1

b
�xj1 � xj2 � � � � � xjb
� �� 

vi1 þ
1

b
ð�vi1 � vi2 � � � � vib

� 
þ � � � þ

xjb þ
1

b
�xj1 � xj2 � � � � � xjb
� �� 

vib þ
1

b
ð�vi1 � vi2 � � � � vib

� 

2
664

3
775

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj1 þ 1

b �xj1 � � � � xjb
� �� �2���

���þ � � � þ xjb þ 1
b �xj1 � � � � xjb
� �� �2���

���
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi1 þ 1

b �vi1 � � � � vibð Þ
� �2���

���þ � � � þ vib þ 1
b �vi1 � � � � vibð Þ

� �2���
���

r

ð18Þ
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Study Area and Data Used

The religious city Haridwar is situated in the foothills of

Himalaya and on the bank of River Ganga in Northern

Indian state Uttrakhand. Shivalik ranges of Himalaya have

covered the Haridwar city in the Northern side; part of

Haridwar was taken as a study area in this work. The

temperature in Haridwar varies from 35 to 45 �C in the

months of summer and 10–30 �C in winters, and the

average rainfall is 1174.3 mm. The study area lies in the

flood plains of the Ganga River; this area mainly consists

of Water, Wheat, Dense Forest, Eucalyptus, Grassland, and

Riverine Sand. Diversity is the main reason to select the

area; due to diversity, mixed pixels are possible, which

helps in examining the various method base fuzzy classifier

methods. In this study, a remotely sensed image of Land-

sat-8 was selected for soft classification purposes, and

Formosat-2 was selected as soft classified reference data.

Table 1 shows the specification of Formosat-2 and Landsat-

8 sensors. The study area maps were prepared using Arc-

GIS 10.5 tool shown in Fig. 1.

Methodology

The main objective of this paper is to study the effect of

different distance measures and as well as spatial contex-

tual information through two types of MRF models like

DA(H1, H2, H3, and H4) models and SP using the base

classifier FCM. DA (H1, H2, H3, H4) and SP are MRF

Table 1 Specification of

Landsat-8 and Formosat2

sensors

Specification Landsat-8 Formosat-2

Spatial Resolution (m) 30 m 8 m

Spectral Resolution (lm) B1: 0.450–0.515 lm (Blue)

B2: 0.525–0.600 lm (Green)

B3: 0.630–0.680 lm (Red)

B4: 0.845–0.885 lm (Near Infrared)

B1: 0.45–0.52 lm (Blue)

B2: 0.52–0.60 lm (Green)

B3: 0.63–0.69 lm (Red)

B4: 0.76–0.90 lm (Near Infrared)

Revisit Period Repeat every 16 days Daily

Fig. 1 Study area

Pre Processing
(Geo Registration)

Formulate Objective Function 
and Parameter Optimization

Obtained Fraction Image (Soft 
reference)

Formosat-2 ImageLandsat-8 Image

Pre Processing
(Geo Registration)

MRF Model (Soft Classification)
1.) Smoothing Prior
2.) Discontinuity Adaptive

a.) H1
b.) H2

c.) H3
d.) H4

Image (Formosat-2) to image 
(Landsat-8) accuracy 

Assessment on Fraction Image

Fig. 2 Methodology adopted
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Fig.3 Comparison of overall accuracy in discontinuity adaptive prior (DA) (H1) Fig. 3 (a–h) where DA (H2) Fig. 3 (i–p) using base classifier

FCM for applying different distance measures and m = 1.1

1182 Journal of the Indian Society of Remote Sensing (July 2022) 50(7):1177–1189

123



models which consist of contextual spatial information; in

this paper, FCM is used as a base classifier to combine the

contextual spatial information with spectral information in

MRF based FCM model. Here, Landsat-8 fraction output

images are used as classified data, and Formosat-2 fraction

output images are used as a reference dataset.

The methodology adopted for this paper is shown in

Fig. 2. Different parameters such as k (0.2–0.9) with an

Fig. 4 Comparison of overall accuracy in discontinuity adaptive prior (DA) (H3) Fig. 4 (a–h) where DA (H4) Fig. 4 (i–p) using base classifier

FCM for applying different distance measures and m = 1.1
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interval of 0.1, c (0.1–9) with a period of 0.1, m (1.1–3)

with an interval of 0.2, and b (1–9) with an interval of 1 are

used. For DA k, c and m parameters are used, while for SP

b, c and m parameter are used. Various distance measures

are Bray Curtis, Canberra, Chessboard, Correlation,

Cosine, Euclidean, Manhattan, Mean Absolute Difference,

Median Absolute Difference, and Normalized Square

Euclidean.

Fig. 5 Comparison of overall accuracy in smoothing prior (SP) using base classifier FCM for applying different distance measures and m = 1.1
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Step 1: Classified the image applying MRF Model as

DA (H1, H2, H3, and H4) and SP where m = 1.1,k, c, b,
and different distance measures.

Step 2: Overall Accuracy of the classified image has

been calculated to get the optimized parameter.

Step 3: The optimized parameter has been used in the

MRF model to classify the image where m varies 1.1 to 3

with an interval of 0.2.

Step 4: Finally, Accuracy Assessment is calculated,

which gives the optimized algorithm in terms of parameters

and distance measures.

Results and Discussion

To determine the optimized parameters of DA (H1, H2,

H3, H4) and SP using base classifier FCM, graphs were

plotted between parameters like (k, b, c) and Overall

Accuracy (OA) for different distance measures. DA(H1,

H2, H3, H4) depended on the parameter k,c, and m,

whereas the SP on parameters k,b, and m. The value of

parameter k varied in the range of (0.2–0.9), c(0.1–0.9)
with an interval of 0.1, b (1–9) with a period of 1, and a

value of m = 1.1. Overall Accuracy is determined for

DA(H1, H2, H3, H4) and SP using base classifier FCM for

different parameter values and distance measures. Fig-

ure 3–5 shows the various technique as DA(H1, H2, H3,

H4) and SP using FCM as a base classifier to find the

optimized parameter in different distance measures.

DA(H1, H2, H3, H4) and SP using FCM as a base classifier

in result section defined as simply DA(H1), DA(H2),

DA(H3), DA(H4), and SP, respectively.

From Fig. 3a–h: For the DA (H1) technique, Bray Curtis

distance measures provided the highest OA for k = 0.3 and

c = 0.1. Chessboard and Manhattan distance measure gave

the maximum OA for k = 0.5 and c = 0.6. The Canberra

distance measure offered the highest OA for k = 0.8 and

c = 0.3. The Correlation and Cosine distance measures

provided the highest OA for k = 0.6 but c = 0.1 and 0.7,

respectively. Euclidean distance measure gave the highest

OA for k = 0.7 and c = 0.8. Mean Absolute Difference

provided the most increased OA for k = 0.9 and c = 0.5.

Median Absolute Difference provided the most increased

OA for k = 0.5 and c = 0.7. Normalized Square Euclidean

gave the highest OA for k = 0.8 and c = 0.1.

From Fig. 3i–p: For the DA (H2) algorithm, Bray Cur-

tis, Canberra, Cosine, Euclidean, Manhattan, Mean Abso-

lute Difference, Normalized Square Euclidean gave the

maximum OA for k = 0.9 and c = 0.9. Chessboard, Cor-

relation, and Normalized Square Euclidean provided the

highest OA at k = 0.9 and c = 0.8.

From Fig. 4a–h: For DA (H3) technique, Bray Curtis,

Canberra, Chessboard, Correlation, Cosine, Euclidean,

Manhattan, Mean Absolute Difference, Median Absolute

Difference, and Normalized Square Euclidean gave the

maximum OA for k = 0.9. At the same time, c has been

different which are as follows 0.9, 0.9, 0.8, 0.8, 0.8, 0.8,

0.8, 0.8, 0.8 and 0.8, respectively.

From Fig. 4i–p: For the DA (H4) algorithm, Bray Curtis

and Canberra gave the maximum OA for k = 0.9 and

c = 0.6. Chessboard, Cosine, Manhattan, and Median

Absolute Difference provided the OA for k = 0.9 and

c = 0.7. Correlation showed the highest OA for k = 0.9

and c = 0.8. Median Absolute Difference and Normalized

Square Euclidean gave the maximum OA at k = 0.9 and

c = 0.7.

From Fig. 5: For SP technique, Bray Curtis, Canberra,

Chessboard, Correlation, Cosine, Euclidean, Manhattan,

Table 2 Maximum overall accuracy of H1, H2, H3, H4 and Smoothing Prior (SP) using base classifier FCM for various distance measures and

parameters (k, c, and b) where ‘m’ = 1.1

Maximum Bray

Curtis

Canberra Chessboard Correlation Cosine Euclidean Manhattan Mean

Absolute

Difference

Median

Absolute

Difference

Normalized

Square

Euclidean

Overall

Accuracy

H1 (k/ c) 0.3/0.1

- 81.31

0.8/0.3

- 79.39

0.5/0.6

- 77.42

0.6/0.1

- 64.74

0.6/0.7

- 69.5

0.7/0.8

- 78.99

0.5/0.6

- 80.45

0.9/0.5

- 82.06

0.5/0.7

- 76.9

0.8/0.1

- 72.85

H2 (k/ c) 0.9/0.9 0.9/0.9 0.9/0.8 0.9/0.8 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.8 0.9/0.9

- 65.14 - 61.97 - 60.39 - 41.49 - 53.84 - 55.92 - 63.99 - 63.19 - 56.11 - 53.63

H3 (k/ c) 0.9/0.9 0.9/0.9 0.9/0.8 0.9/0.8 0.9/0.8 0.9/0.8 0.9/0.8 0.9/0.8 0.9/0.8 0.9/0.8

- 67.71 - 68.23 - 64.28 - 49.72 - 57.11 - 61.87 - 72.28 - 68.08 - 63.36 - 58.33

H4 (k/ c) 0.9/0.6 0.9/0.6 0.9/0.7 0.9/0.8 0.9/0.7 0.9/0.7 0.9/0.7 0.9/0.9 0.9/0.7

(56.17)

0.9/0.9

- 64.08 - 63.39 - 61.98 - 44.76 - 53.7 - 60.43 - 64.96 - 63.47 - 57.82

SP (k/ b) 0.9/8 0.9/8 0.9/8 0.9/9 0.9/8 0.9/8 0.9/9 0.9/8 0.9/9 0.9/8

- 54.46 - 53.55 - 53.24 - 39.13 - 50.09 - 51.23 - 56.21 - 57.41 - 49.37 - 49.79
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Fig. 6 Comparison of overall accuracy in discontinuity adaptive prior

(DA) (H1, H2, H3, H4), Smoothing Prior (SP) and FCM, respectively,

for different m(1.1–3.0) and distance measures a Bray Curtis

b Canberra c Chessboard d Correlation e Cosine f Euclidean

(g) Manhattan (h) Mean Absolute Difference (i) Median Absolute

Difference (j) Normalized Square Euclidean
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Mean Absolute Difference, Median Absolute Difference,

and Normalized Square Euclidean gave the maximum OA

for k = 0.9. At the same time, b had been different, as

follows 8, 8, 8, 9, 8, 8, 9, 8, 9, and 8, respectively.

Table 2 gives the maximum overall accuracy of DA(H1,

H2, H3, H4) and Smoothing Prior (SP) using base classifier

FCM for various distance measures and parameters (k, c,
and b) where ‘m’ = 1.1.

Figure 6 was plotted between m and overall accuracy

(OA) for different distance measures. The m value in the

range of (1.1–3) with an interval of 0.2 was considered.

Figure 6 shows the various techniques as FCM, DA(H1,

H2, H3, H4), and SP using FCM as a base classifier to

obtain the best algorithm for m value and distance mea-

sures, where DA (H1, H2, H3, H4) and SP algorithms used

an optimized parameter value of k, c, and b concerning

distance measures, respectively.

In Fig. 6a, Bray Curtis distance measures, DA(H1),

FCM gave the best OA for m = 1.1, whereas for another

rest method (DA(H2), DA(H3), DA(H4), and SP), m = 1.3

gave the best result.

In Fig. 6b, Canberra distance measures, DA(H1), FCM,

and DA(H4) gave the highest OA for m = 1.1, while for

other methods, at m = 1.3, gave the highest OA.

In Fig. 6c, Chessboard distance measures with FCM,

DA(H1), DA(H3), and D(H4) gave the highest OA for

Table 3 Maximum overall accuracy of different algorithms using

FCM and FCM based DA and SP Algorithm

Algorithm m Distance Measures Overall Accuracy (%)

DA(H1) 1.1 Mean Absolute Difference 82.06

DA(H2) 1.3 Euclidean 70.29

DA(H3) 1.1 Manhattan 72.28

DA(H4) 1.3 Manhattan 68.26

SP 1.3 Manhattan 67.16

FCM 1.3 Euclidean 64.09

Table 4 Classified classes concerning the algorithms

Classified 
classes 

Classified image by FCM 
classifier 

Classified image by  DA 
(H1)using FCM as base 

classifier 

Classified 
classes 

Classified image by FCM 
classifier 

Classified image by  DA 
(H1)using FCM as base 

classifier 

 Dense forest 
Riverine 

sand 

Eucalyptus Water 

Grassland Wheat 
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m = 1.1. DA(H2) provided the best OA for m = 1.3, while

SP gives the most increased OA for m = 1.5.

In Fig. 6d, when Correlation distance measures used

with DA(H1) gave the highest OA for m = 1.1. DA(H2)

and SP provide the best for m = 1.7, while other methods

at m = 1.5 provided the highest.

In Fig. 6e, Cosine distance measures with DA(H1) gave

the best OA for m = 1.1. SP provided the highest for

m = 1.9, while m = 1.5 gave the highest OA for other

distance measures.

In Fig. 6f, for Euclidean distance measures with FCM,

DA(H1), DA(H2), DA(H3), DA(H4), and SP gave the best

OA for m = 1.3, m = 1.1, m = 1.7, m = 1.5, m = 1.3, and

m = 1.9, respectively.

In Fig. 6g, at Manhattan distance measures with FCM,

DA(H1) and DA(H3) provided the highest OA for m = 1.1.

DA(H2), DA(H4), and SP gave the best OA for m = 1.3.

In Fig. 6h, for Mean Absolute Difference distance

measures, FCM, DA(H1), and DA(H3) gave the highest

OA for m = 1.1. At the same time, m = 1.3 provided the

highest OA for the rest method.

In Fig. 6i, When Median Absolute Difference distance

measures are used, FCM and DA(H1) provided the highest

OA for m = 1.1, while m = 1.3 gave the most increased

OA for another method.

In Fig. 6j), Normalized Square Euclidean distance

measures, FCM, DA(H1), DA(H2), DA(H3), DA(H4), and

SP gave the best OA for m = 1.5, m = 1.1, m = 1.5,

m = 1.5, m = 1.3, and m = 1.7, respectively.

Table 3 gives the overall accuracy of the different

algorithms concerning various distance measures and ‘m’

values studied.

Table 4 shows the compared outputs after classifying the

Landsat-8 images for six different classes (Dense Forest,

Eucalyptus, Grassland, Riverine Sand, Water, and Wheat)

applying two methods. The first method is the FCM clas-

sifier involving Euclidean as distance measures; in contrast,

the second method is the DA (H1) FCM based classifier

using the Mean Absolute Difference measures. It was

observed from the classified outputs that DA (H1) FCM

based classifier given precise mapping of classes, better

patches, and favorable outputs.

Conclusion

The conventional classification technique did not provide

any information about mixed and neighborhood pixels. In

contrast, the MRF model technique takes care of the

information of neighborhood pixels to reduce the noisy

pixel effect. This study used different MRF models as DA

(H1, H2, H3, and H4) and SP to find the best algorithm

considering the different parameters (k, b, c, and m) and

distance measures. DA (H1), the algorithm has yielded a

maximum overall accuracy of 82.06% for Mean Absolute

Difference distance measures with m = 1.3, k = 0.9, and

c = 0.5. This study will help to select the Distance Mea-

sures and parameters (k, c, b, and m) for Discontinuity

Adaptive Prior (H1, H2, H3, H4) and SP using base clas-

sifier FCM to classify the images accurately and achieve

the highest accuracy.
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