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Abstract
The watershed prioritization of soil erosion-affected areas is an utmost requirement to formulate management and con-

servation practices. In this study, a geospatial framework integrated with multivariate statistical techniques such as

principal component analysis and hierarchical clustering was used to prioritize the fragile ecosystem, i.e., the upper

Ghaggar watershed. It is one of the least studied seasonal river watersheds in northern India, which carry substantial

monsoon flows. The drainage characteristics were inferred using the interferometrically derived Sentinel 1A/1B digital

elevation model (spatial resolution-13.96 m). The study area was further divided into 92 sub-watersheds (32 fourth and 60

third-order) using ArcSWAT. Twenty-seven linear, areal, and relief aspect parameters were exploited to study the

watershed’s hydrological, lithological, and geomorphological characteristics. The categorization and correlation of these

parameters were attempted using principal component/factor analysis, which resulted in five components having an

eigenvalue greater than 1. The factor analysis resulted in magnitude, relief, drainage composition, and dissection intensity

factor, which accounted for percentage variance of 39.96, 27.70, 10.32, and 9.80%, respectively, which account for 87.78%

of the total variance. Finally, the morphometric parameters were grouped into three priority clusters in which 29, 46, and 17

sub-watersheds fall in high, medium, and least priorities clusters, respectively. The methodology adopted in this study

provides vital information for watershed characterization and prioritization, which can serve as a criterion for the decision-

makers in sustainable planning and management of the resources prevalent within the watershed.
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Introduction

Globally, an estimated 1965 million hectares of land is

subjected to one or other kind of degradation, out of which

soil erosion by water and wind accounts for 1643 million

hectares (Oldeman, 1991). According to the studies con-

ducted by Rao (2000), annually, 6000 million tons of soil

are lost in India. According to the Ministry of Agriculture

(Soil and Water Conservation Division), 175 million hec-

tares of vegetative land are degraded in some form or other.

In India, 29.30% of the total geographical area, equivalent

to 96.43 million hectares of land, is severely affected by

varied land degradation (SAC, 2016). According to Singh

et al. (1992), areas such as Shivalik Hills, northwestern

Himalayan regions, Western Ghats, and parts of peninsular

India are most severely affected by soil erosion, i.e., about

20 Mg/ha/year.

Due to increased environmental degradation with

deforestation, the material carried by rivers has risen from

9.30 billion tons to 23 billion tons in a year in the last

50 years. Further, the situation becomes worse, noting that

15 billion tons a year is being contributed by Asian rivers

to the ocean. Narayana and Babu (1983) observed that the

Indian rivers carry and transport about 1572 million tons of

soil to sea. Further, about 480 million tons of soil are
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deposited into reservoirs, reducing their storage capacity by

1–2%.

There has been a similar increase in the water scarcity

problems with much severity in most parts of the world.

India receives 4000 BCM (Billion Cubic meter) in form of

precipitation (including snowfall and rainfall); out of this,

1869 BCM accounts for the available water. The utilizable

water from available surface and groundwater accounts for

690 BCM and 490 BCM, respectively. As per the water

stress index given by Falkenmark and Lindh (1976), the

countries with less than 1700 cubic meters of annual per

capita water availability are considered water-stressed.

Similarly, when this per capita water availability goes

below 1000 cubic meters, the country is declared water

scarce. As per studies of the Central water commission, per

capita average annual water availability in India for the

year 2010 was 1588 m3/year but by 2025 and 2050, it is

going to drop to 1434 m3/year and 1140 m3/year, respec-

tively (Dadhwal et al., 2012).

The watershed is considered the most viable planning

unit to conserve these resources (F.A.O, 1985). The

rational utilization of land and water resources, ensuring its

sustainable and optimum production, and at the same time

exerting minimum pressure on natural resources and the

environment calls for the concept of Integrated Watershed

Management. This watershed-based methodology has been

logical since the land and water resources have concordant

effects when developed on a watershed basis. Various

techniques have evolved for watershed prioritization, out of

which quantitative morphometric analysis has given

promising results. Morphometry is defined as the quanti-

tative analysis of the earth’s shape, its configuration, and

various landforms. It has evolved as an essential tool for

identifying and prioritizing highly eroded watersheds

(Nautiyal, 1994). The in-situ monitoring of soil erosion for

large watersheds is very costly. Hence the geomorphome-

tric analysis is mainly carried out using the geographical

information systems approach. The regionalization of the

hydrologic models is implemented effectively using these

geomorphologic studies. The linear, areal, and relief

characteristics have played a significant role in under-

standing the watershed’s hydrological nature (Chow, 1964;

Strahler, 1964). Due to the acceleration of watershed

management programs for conservation, development, and

beneficial use of natural resources such as soil and water,

the demand for timely and updated information on water-

shed runoff and sediment yield has grown enormously in

the last decade (Gajbhiye & Mishra, 2012; Meshram &

Sharma, 2017; Mishra et al., 2013).

Several researchers use the conventional approach of

compounding different morphometric factors for watershed

prioritization and the sustainable conservation and man-

agement of the soil and water resources (Abdeta et al.,

2020; Chandniha & Kansal, 2017; Nookaratnam et al.,

2005; Thakkar & Dhiman, 2007; Waiyasusri & Chotpan-

tarat, 2020). But it has been noticed that morphometric data

is inherently multivariate (Mather & Doornkamp, 1970).

Therefore, the traditional statistical approaches cannot

simultaneously address the similitude between the mor-

phometric parameters. Globally, researchers have started

implementing principal component analysis, factor analy-

sis, and hierarchical clustering analysis based on multi-

variate techniques. They are utilizing the inherent

multidimensional data of morphometry to reveal its

underlying structure. Bothale et al. (1997) delineated 135

watersheds from the Bajaj Sagar dam catchment of the

Mahi basin. The authors used the data reduction technique

of principal component analysis (PCA) for reducing the

data redundancy. The PCA resulted in 12 components,

grouped lately by hierarchical cluster analysis resulting in

50 eco watersheds having similar characteristics. Gopinath

et al. (2016) analyzed the watershed management planning

activities for the Kuttiyadi river basin, Kerala. The basin is

susceptible to flood and inundation and exhibits high run-

off. The authors used a multi-criteria decision-making

approach to identify the integrated effects of morphometric

parameters on soil erosion. Mangan et al. (2019) utilized

the correlation matrix to assess the interrelationship

between the Nanganji river basin’s morphometric param-

eters situated in Tamil Nadu. The authors implemented

factor analysis and grouped the parameters into three fac-

tors, i.e., shape, magnitude, and runoff factors. Jhariya

et al. (2020) prioritized the Bindra watershed in Chhattis-

garh by implementing the analytical hierarchical process

(AHP) based on multi-criteria decision analysis. The author

delineated 16 watersheds and categorized them into very

high, moderate, and low priority zones using various fac-

tors such as soil loss, land capability classification, runoff,

and sediment yield in a GIS environment. Arefin et al.

(2020) delineated seventeen fifth-order and three sixth-

order watersheds using SRTM DEM. They utilized 16

morphometric parameters and implemented principal

component analysis (PCA) for watershed prioritization.

The drainage density, circularity index, elongation ratio,

and bifurcation ratio were compounded for final priority.

Prieto-Amparán et al. (2019) performed the quantitative

multivariate geomorphic characterization of the Conchos

River basin, Mexico. They delineated 31 watersheds for

prioritization purposes and utilized principal component

analysis (PCA), group analysis (GA), and the compounded

parameter ranking methodology. The 31 watersheds were

grouped into five groups based on their erosion suscepti-

bilities potential.

All the prior studies are based on open-source digital

elevation models (DEM) such as shuttle radar terrain

mapping (SRTM) and advanced spaceborne thermal
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emission and reflection radiometer (ASTER) onboard Terra

satellite having a spatial resolution of 30 m. These existing

datasets are relatively older, and morphometric phenomena

are dynamic. Therefore, in this study, interferometrically

generated Sentinel 1A/1B based on DEM was used to

prioritize the upper Ghaggar watershed, which forms the

part of one of the most fragile ecosystems in Lower

Shivaliks having highly erodible soils which are lost at an

alarming rate of 0 to 20,119 tones/hectare/year (Chauhan

et al., 2020a). The principal component analysis (PCA) was

used to reduce the parameters into five components or

factors. The agglomerative hierarchical clustering tech-

nique by implementing Ward’s method was used to create

three priority clusters for the upper Ghaggar watershed

finally.

Study Area

The study area chosen for the present study is the upper

Ghaggar watershed having its confluence with the Med-

khali river. It is part of India’s fragile ecosystems apart

from the Western and Eastern Ghats. The basin area

extends from 76.86252 E and 30.61292 N to 77.21258 E

and 30.90755 N and covers an area of 559.14 km2 (Fig. 1).

It covers Panchkula, Solan & Sirmaur, and Sahibzada Azad

Singh Nagar districts of Haryana, Himachal Pradesh, and

Punjab. The upper Ghaggar watershed has a hilly topog-

raphy ranging from 249 to 1869 m. The Ghaggar river

originates from the Dagshai village near Shimla, Himachal

Pradesh, and is one of the most prominent ephemeral

streams of the Lower Shivaliks. The river has tributaries

such as the Vedic river Saraswati, Medkhali, Markanda,

Tangri, and Chautang. The Ghaggar River, while flowing

southwest, demarcates the boundary of Haryana and Pun-

jab in the north. The soils of the upper Ghaggar watershed

are classified into three classes, i.e., Eutric Cambisols

(54.98%), Eutric Regosols (33.15%), and Eutric Fluvisols

(11.88%). The study area’s climate is humid subtropical

and characterized by hot to sweltering summers and cool to

mild winters. The average annual rainfall of the study area

is 1260 mm calculated for the period ranging from 1969 to

2016. The Landuse/Landcover change analysis of the upper

Ghaggar watershed conducted by Chauhan et al., (2020b)

revealed that the built-up, shrubland and barren land have

increased by 157.5 ha/year, 131.5 ha/year and 10.77 ha/

year, respectively in the last 30 years (1985–2015) while

the deciduous forest, evergreen forest and agriculture were

reduced at a rate of 167.4 ha/year, 46 ha/year and 66 ha/

year, respectively. The temperature of the study area varies

from 4� to 37 �C. The study area also exhibits tremen-

dously dry summers accompanied by dust storms. The

geological structure of the study area is mainly composed

of sandstone and conglomerate rocks.

Dataset and Software Used

All-weather, day and night capability Sentinel 1A of spatial

resolution 5 m in range direction and 20 m in azimuth

direction of 06.01.2016 and 13.01.2016 (Table 1) was used

to generate the DEM (Digital Elevation Model). The pre-

processing of the pair of single look complex (SLC)

products acquired in interferometric wide (IW) mode was

performed in sentinel application platform (SNAP) soft-

ware (version 6.0). Sentinel images were co-registred to

create a stack by utilizing the precise orbit ephemerides

(POE) orbit files. One image was used as master and the

other as slave, and pixel values of the slave images were

moved to align with the master dataset to attain a sub-pixel

accuracy to ensure the same range and azimuth was con-

tributed by each ground object. The complex conjugate of

the master image was multiplied with the slave image for

the generation of the interferogram. The process of terrain

observation with progressive scans (TOPS) Deburst and

TOPS Merge led to the formation of the seamlessly merged

single image file. The speckle filtering algorithms and

Goldstein Phase Filtering (Goldstein et al., 1988) incor-

porated within the SNAP software were used to decrease

the speckle, simultaneously maintaining radiometric

information. With the implementation of Statistical-cost,

Network-flow, Algorithm for Phase Unwrapping (SNA-

PHU), the resultant phase was generated as a result of

unwrapped filtering (Chen & Zebker, 2000). The unwrap-

ped phase was imported using the NEXT European space

agency (ESA) synthetic aperture radar (SAR) toolbox

(NEST) software, and DEM was prepared from it. The

resultant DEM was of 13.96 m resolution against the tra-

ditional 30-90 m DEM from SRTM and was updated

topographically as compared to SRTM. Its vertical accu-

racy was 10 m when compared with the spot heights

available on the Survey of India (SOI) toposheet.

Methodology

Watershed Delineation and Drainage Analysis

The Sentinel 1 DEM was further used to generate the

streams (Fig. 2) and delineate 92, i.e., sixty-third-order and

thirty-two fourth-order sub-watersheds (Fig. 3), using the

ArcSWAT 10.5 extension of ArcGIS 10.5. The area of

individual 32 fourth-order sub-watersheds ranges from

2.749 (SW-4) to 25.862 km2 (SW-94) while that of indi-

vidual 60 third-order sub-watersheds ranges from 0.515
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(SW-11) to 8.881 km2 (SW-84). The ordering of the

extracted streams is based on the nomenclature proposed

by Strahler (1964). The linear, areal, and relief morpho-

metric parameters analyzed during this study were calcu-

lated based on the formula shown in Table 2.

Morphometric Analysis

The linear aspects extracted for these sub-watersheds are

stream order (SOu), stream length, stream number (SNu),

mean stream length (MSLu), Mean Stream Length Ratio

(MSLRu), Bifurcation ratio (Rb), and Rho Coefficient (q).
Basin area (A), basin length (Lb), basin perimeter (P),

Lemniscate’s value (Lk), form factor (Ff), elongation ratio

(Re), ellipticity index (Ic), and circularity ratio (Rc) are the

areal aspects extracted for these sub-watersheds. Drainage

density (Dd), drainage texture (Dt), stream frequency (Sf),

infiltration number (If), and drainage intensity (Di) are the

drainage characteristics extracted for the sub-watersheds.

The relief characteristics of a basin represent the areal,

volume, and altitudinal aspects of the basin landscape. The

relief characteristics of morphometric analysis investigated

in the study are absolute relief (Ra), dissection index (Dis),

relative relief ratio (Rhp), relative relief (Rr), Ruggedness

number (Rn), and slope (S).

The MSLu acts as an essential parameter for the calcu-

lation of drainage density. The MSLu helps in revealing the

bedrock hydrological characteristics and extent of the

Fig. 1 Study area

Table 1 Details of the Sentinel 1 data used

Sr.

no

Data/product ID Date Source

1 S1A_IW_SLC__1SSV_20160106T125527_20160106T125554_009374_00D90B_8F3F 06.01.2016 https://scihub.copernicus.eu/

dhus2 S1A_IW_SLC__1SSV_20160130T125526_20160130T125553_009724_00E32D_AC02 13.01.2016
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basin. The MSLRu is an indicator of the geomorphological

development stage of a basin. Horton (1945) explained that

the Rb value ranges from 2 for flat or rolling basins and

may go up to 3–4 for highly dissected or mountainous river

basins. Strahler (1964) inferred from his study that the Rb

values between 3 to 5 for the watersheds indicate that the

basin’s geological development is ineffective in altering

the drainage patterns. The basins with higher Rb values

produce a low but extended peak flow, whereas basins with

lower Rb have a sharp peak flow (Strahler, 1964). The q
helps in determining the relation of drainage composition

and physiographic development of a sub-basin. The low

value of q is indicative of low water storage during flood

periods. It has a high erosion effect, while the higher value

is indicative of higher hydrologic storage during floods and

thus reduces erosion effects at peak discharges. The Lk

values drastically control the shape of the drainage basin.

The Lk values are one for circular basins, and as its value

increases, the shape of the drainage basins becomes more

and more elongated. An elongated basin is less effective in

runoff discharge than a circular basin (Singh & Singh,

1997). The Ff is an indicative morphometric parameter of

the flood-regime of the stream in the case of long and

elongated drainage basins (Horton, 1932). The value of Ff

varies from 0 for highly elongated basins to unity, i.e., 1 for

perfectly circular shaped basins. Re acts as an imperative

index for basin shape analysis, and the areas having higher

values possess high infiltration capacity and low surface

runoff. The Ie provides a close relationship between mor-

phometry and hydrology (Stoddart, 1965). Lower Ie values

indicate a quick runoff draining basin because of which the

stream channels might swell or overflow, resulting in

downstream flooding in case of heavy rainfall. Rc defines

the circularity of the basin and is a dimensionless entity. Rc

values range from 0 to 1 with zero value given to basins

having a highly elongated shape to one value given to

circular basins.

Dd acts as a permeability indicator of the drainage basin

surface. High Dd is pertinent to the regions having imper-

vious subsurface with weak structure resulting in more

runoff. In contrast, low Dd is associated with highly

resistant subsurface covered by vegetation and areas with

low relief, resulting in lower runoff (Prasad et al., 2008).

Singh (1976) defined the drainage texture based on the

Fig. 2 Drainage map of upper Ghaggar watershed
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relative spacing of the streams. Dt is an indicator of the

infiltration capacity, rock permeability, and relief aspect.

The fine texture is prevalent in areas having low perme-

ability and less resistance to erosion, and in the case of

coarse texture areas, it is vice-versa. Sf shows a positive

correlation with the drainage density and is, therefore, a

similar indicator of infiltration capacity, rock permeability,

and basin relief. High Sf values in hilly regions are asso-

ciated with steep slopes and more significant rainfall, while

in plain areas, lesser surface flow and low permeability

result in low Sf value. Faniran (1968) defined the If of a

drainage basin as the product of Dd and Sf. The higher

values of If contribute to lower infiltration rates and result

in higher runoff. Di was defined by Faniran (1968) as the

ratio of the Sf to the Dd. It is an indicator of the extent to

which the denudational agents depress the surface under

drainage density and stream frequency effect.

Ra defines the maximum elevation of a basin area. This

parameter helps in determining the rate of erosion con-

cerning the recent summit or hilltops of a basin. Higher Ra

is associated with high erosional activities. Smith (1935)

coined the term Rr to the highest and lowest altitude points

of a particular area. Rr plays a vital role in calculating

average slope, dissection determination, and assessing the

terrain development stages. Melton (1958) gave the Rhp as

the ratio of the Rr and P of the area. Rhp ratio acts as an

indicator of the relative velocity of the vertical tectonic

movements. The lower values of Rhp pertain to the less

resistive rocks. Dis is the ratio of Rr to Ra of an area. It acts

as a vital parameter for developing an understanding of the

degree of dissection and evolution of landform develop-

ment stages in any given physiographic region.

The values of Dis range from 0, which implies a theo-

retical value as there is no region in nature that is passive to

erosion to 1. Rn measures the structural complexity of the

terrain. It is a dimensionless property calculated as a pro-

duct of Rr and Dd of a given basin area having the same

units. Patton and Baker (1976) discussed that the regions

having higher ruggedness numbers accompanied with fine

drainage texture and minimalistic length of overland flow

on steep slopes have the expectancy of potential flash

flooding. These morphometric parameters combination

may lead to higher flood peaks for an area having a low

ruggedness number even for the equivalent of rainfall

Fig. 3 Ninety-two sub-watersheds of upper Ghaggar watershed
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Table 2 Methods used to calculate the morphometric parameter

Sr.

no

Parameter Formula References

1 Stream order SOu = Hierarchical rank Strahler (1957)

2 Stream number SNu ¼ SN1 þ SN2 þ � � �SNn

Where SN1 = Stream number of first order and so on and

SNu = Total no. of stream segments of order ‘u’

Horton (1945)

3 Stream length (SLu) SLu ¼ SL1 þ SL2. . .. . .SLn

Where SL1 = Stream length of first order and so on and

SLu = Total stream length of order 1 to n

Strahler (1964)

4 Mean stream length (MSLu)
MSLu ¼

PN

i¼1
SLu

SNu

Where SLu = Total stream length of order ‘u’ and SNu = Total

no. of stream segments of order ‘u’

Strahler (1964)

5 Mean stream length ratio

(MSLRu)
MSLRu ¼ MSLu

MSLu�1

Where MSLu = Mean stream length of a given order and

MSLu-1 = Mean stream length of next lower order

Horton (1945)

6 Weighted mean stream

length ratio (WMSLRu)
WMSLRu ¼

Pn

i¼1
MSLRu�SLIRuPn

i¼1
SLIRu

Where MSLRu = Mean Stream Length ratio of a given order

SLIRu = Stream length involved in the ratio

Strahler (1952)

7 Bifurcation ratio (Rb) Rb ¼ SNu

SNuþ1

Where SNu = Stream number of given order

SNu?1 = Stream number of next higher order

Strahler (1964)

8 Weighted mean bifurcation

ratio (WMRb)
WMRb ¼

Pn

i¼1
Rb�SNRbPn

i¼1
SNRb

Where Rb = Bifurcation ratio, SNRb = Total number of Streams

involved in the ratio

Strahler (1953)

9 Rho coefficient (q) q ¼ MSLRu

Rb

Where MSLRu is stream length ratio,

Rb is bifurcation ratio

Horton (1945)

10 Basin area (A) ArcGIS/DEM Schumm (1956)

11 Perimeter (P) ArcGIS/DEM

12 Basin length (Lb) Lb ¼ 1:312A0:568

Where A = Basin Area

Schumm (1956), Gardiner (1975),

Nookaratnam et al., (2005) and

13 Lemniscate’s value (Lk) Lk ¼ L2
b
p

4A

Where Lb = Basin Length, A = Basin Area

Chorley et al., (1957)

14 Form factor (Ff) Ff ¼ A
L2

b

Where Lb = Basin Length, A = Basin Area

Horton (1932)

15 Elongation ratio (Re) Re ¼ 1
Lb
�

ffiffiffiffi
4A
p

q

Where Lb = Basin Length, A = Basin Area

Schumm (1956)

16 Ellipticity index (Ie) Ie ¼ pVL2

4A

Where VL = Valley Length, A = Basin Area

Stoddart (1965)

17 Circularity ratio (Rc) Rc ¼ 4pA
P2

Where P = Basin Perimeter (km), A = Basin Area (km2)

Miller (1953)

18 Drainage density (Dd) Dd ¼
P

SLu

A

Where
P

SLu = Total Length of all stream segments, A = Total

area of the basin

Horton (1932)
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events. The slope is an invariable relief morphometric

parameter related to the infiltration capacity and runoff of

an area. It is inversely proportional to the infiltration

capacity. The mean values of linear, areal, and relief

morphometric parameters for 92 sub-watersheds are given

in Online Resource 1 (ESM_1.docx).

Principal Component Analysis
of the Morphometric Parameters

The interrelationship between the different morphometric

parameters was analyzed using a correlation matrix. To

further strengthen the correlation matrix analysis results

and give a clearer insight, a data reduction or factor anal-

ysis of the above-given parameters was done using the

principal component analysis (PCA) in statistical package

for the social sciences (SPSS) software version 25.

Principal component analysis (PCA) is a multivariate data

dimensionality reduction technique, which reduces the data

into fewer factors but represents the entire dataset. The

factors having an eigenvalue larger than one were used to

maintain the significance of the contributing factor, and as

a result, only five components were used. A normalized

varimax rotation was applied on the resultant matrix to

compute the factor loadings between the original geomor-

phic parameters and the final components/factors. The

factor loading governs the correlation’s strength, i.e., a

higher factor loading value means stronger correlation and

vice versa. All the score factors of the 92 sub-watersheds

were divided into four factors, i.e., magnitude, relief,

drainage composition, and dissection intensity factors

depending on the morphometric aspects, which define

87.8% of the total variance.

Table 2 (continued)

Sr.

no

Parameter Formula References

19 Drainage texture (Dt) Dt ¼ 1

t þ Pð Þ=2

t ¼
t1 þ t2ð Þ=2ffiffi

2
p

P ¼ P1þP2þP3þP4

4

Where

t1 & t2 = number of intersections between the drainage network

and grid diagonal

P1 to P4 = number of intersections between the drainage

network and grid edges

Horton (1945) and Singh (1976)

20 Stream frequency (Sf)
Sf ¼

PK

i¼1
SNu

A

Where
P

SNu = Total number of all stream order, A = Total

area of the basin

Horton (1945)

21 Drainage intensity (Di) Di ¼ Sf

Dd

Where Sf = Total number of all stream order, Dd = Drainage

density

Faniran (1968)

22 Infiltration number (If) If ¼ Dd � Sf

Where Sf = Total number of all stream order, Dd = Drainage

density

Faniran (1968)

23 Relative relief (Rr) Rr ¼ Max. Elevation�Min. Elevation Smith (1935)

24 Relative relief ratio (Rhp) Rhp ¼ 100� Rr

Perimeter of the basin

Where Rr = Ralative Relief

Melton (1958)

25 Dissection index (Dis) Dis ¼ Rr

Ra

Where Rr = Relative relief, Ra = Absolute relief

Nir (1957)

26 Ruggedness number (Rn) Rn ¼ Rr � Dd

Where Rr = Relative relief, Dd = Drainage density

Strahler (1964)

27 Slope ArcGIS/DEM
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Watershed Prioritization Using Hierarchical
Clustering Analysis

In the study, agglomerative Hierarchical Cluster Analysis

using Ward’s method (Ward, 1963) was applied for iden-

tifying the natural grouping within a given dataset for

watershed prioritization. The more related data come

together to form a homogeneous group while the dissimilar

data become part of some other contrasting group. Ward’s

method (Ward, 1963) is also called the minimum variance

method because of its ability to create even-sized compact

clusters but is computationally intensive. It offers the

advantage of separating the cluster if the variance among

the cluster is higher than the defined threshold. The squared

Euclidean distance was used as the distance parameter to

assess the distance between the respective cluster.

Results and Discussion

Morphometric Analysis

The morphometric analysis of the upper Ghaggar water-

shed reveals that it is a seventh-order watershed. It consists

of 3483 first, 737 s, 160 third, 32 fourth, 9 fifths, 3 sixth,

and 1 seventh order stream, suggesting that these stream

channels generate a significant surface runoff and sediment

yield (Bhat et al., 2019; Obeidat et al., 2021). The stream

length of the basin is higher for its first order and decreases

with an increase in stream order. Any deviation of this

trend is due to inherent variations of topography and slope.

The upper Ghaggar watershed’s stream lengths for its 1st,

2nd, 3rd, 4th, 5th, 6th, and 7th orders are shown in Table 3.

The Upper Ghaggar watershed’s mean stream length for its

1st, 2nd, 3rd, 4th, 5th, 6th, and 7th orders are shown in

Table 4. Rai et al. (2017) indicated in their study that low

values of MSLu are mostly associated with the mountain-

ous environment. The low values of MSLu represent the

high erosion potential and younger geomorphological

development of the landscape. The general trend of MSLu

increases as the stream order increases, but any abnor-

malities in this suggest changes in the underlying slope and

geology, which affects the flow characteristics. The

MSLRu of the upper Ghaggar watershed displays an

increasing trend from smaller order to higher order indi-

cating their matured geomorphological development stage

as against the sub-watersheds displaying abrupt changes

between the orders indicating the late youth stage of geo-

morphological development. The MSLRu of the upper

Ghaggar watershed for 1st to 2nd, 2nd to 3rd, 3rd to 4th,

4th to 5th, 5th to 6th, and 6th to 7th, respectively are shown

in Table 5. Mean Rb values for the upper Ghaggar water-

shed for 1st to 2nd, 2nd to 3rd, 3rd to 4th, 4th to 5th, 5th to

6th, and 6th to 7th, respectively are shown in Table 6. The

inconsistent values across the orders are due to the strong

geological and lithological impact over the basin area. The

Rho coefficient value of the upper Ghaggar watershed is

0.56, indicating less water storage and high erosion during

the flood.

The Lk, Ff, Re, and Ie values of the upper Ghaggar

watershed are 3.20, 0.25, 0.56, and 2.27, respectively,

displaying its elongated shape. The higher values of Lk

suggest a potentially high erosive nature of the basin. The

low Ff represents a flatter peak of flow for a longer dura-

tion, which facilitates groundwater percolation. The elon-

gated basins are less effective in runoff discharges because

of their high elevation and steep gradient (Rai et al., 2018).

The Dd of the upper Ghaggar watershed is 3.15 (km/km2),

having a medium drainage density. The upper Ghaggar

watershed is having a coarser Dt (0.62), higher Sf (11.59),

poor Di (3.94), and higher If (39.04), resulting in a higher

runoff.

The average Ra and Rr of the upper Ghaggar watershed

are 902.48 m and 221.56 m, respectively. The average Rhp

of the upper Ghaggar watershed is 0.11 indicator of less

resistive rocks resulting in a higher runoff. The average Dis

of the upper Ghaggar watershed is 0.22. A moderately high

Rn (0.62) is shown by the upper Ghaggar watershed with a

higher potential for flash flooding. The average S value of

the upper Ghaggar watershed is 15.84, which indicates a

steep slope representing high erosion operable within the

basin.

Correlation Analysis of Morphometric
Parameters

The interrelationship between the 27 morphometric

parameters for the 32 forth order sub-watersheds and 60

Table 3 Stream length of upper Ghaggar watershed

Stream order

Watershed 1 2 3 4 5 6 7 Total length of streams in upper Ghaggar watershed

Ghaggar 879.98 476.14 249.23 122.5 64.23 32.39 27.64 1852.11
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third-order sub-watersheds were analyzed to assess the

mutual interdependence prevalent among the different

parameters shown in Table 7. It is inferred from the cor-

relation analysis that most of the morphometric parameters

are positively correlated to each other. Further, there is no

single dependent variable, but all the variables influence

each other and are interconnected. The correlation matrix

depicts that there exists strong (0.8–0.9), Good (0.7–0.8),

moderate (0.5–0.7), and also negative correlation. Basin

Area (A), being the critical morphometric parameter

responsible for controlling the peak flow and the amount of

sediment being eroded, strongly correlates with SNu, SLu,

MSLu, Rb, P, Lb, and Lk. It is evident that as the area

increases, so does the SNu and SLu. Basin area is strongly

positively correlated to Lb, so an increase in the area leads

to an increase in Lb.

Similarly, the area also defines the watershed’s shape

since it is inversely proportional to Lk, so watersheds

having lower Lk values are more circular and therefore

have more area. The Lb shows a strong correlation with

SNu, SLu, MSLu, Rb, A, and P. Strahler (1964) further

indicated that basins with higher Rb values are more

elongated and, therefore, produced a low but extended peak

flow. In contrast, basins with lower Rb are more circular

and produce a sharp peak flow. The Ff is strongly corre-

lated with the Re. The value of Ff varies from 0 for highly

elongated basins to unity, i.e., 1 for perfectly circular

shaped basins. It is shown that the sub-watersheds are

having slightly elongated shapes having low Ff with a

flatter peak of flow for longer duration resulting in

groundwater percolation. The Rc shows a good correlation

with the relief parameters such as S, while it shows a

moderate correlation with Ra, Rr, Rhp, and Rn. Rc attributes

to the high to moderate relief and structurally controlled

drainage system. The Dd shows a strong correlation with If.
Although the inter-correlation matrix was helpful, it

induced a larger number of components into fewer com-

ponents based upon their importance (Siddiqui et al.,

2020). Hence, the inter-correlation matrix is subjected to

Principal component analysis (PCA) for categorizing the

27 morphometric parameters into 5 principal components.

Multivariate Analysis Using the Principal
Component Approach

The PCA resulted in 5 significant components having an

eigenvalue greater than one, as shown in Fig. 4. The

eigenvalues for PC1, PC2, PC3, PC4, and PC5 are 10.79,

7.48,2.79,1.57 and 1.07, respectively. They account for

percentage variance of 39.96, 27.70, 10.32, 5.82, and 3.98,

respectively, which account for 87.78% of the total vari-

ance explained by 27 morphometric parameters. The

component-wise eigenvalues, variance percentage, and

cumulative variance percentages are shown in Table 8. The

most correlated and loaded variables in a particular com-

ponent displayed in bold are shown in the varimax rotated

component matrix Table 9. The PC1 shows the highest

factor loading for positively SNu, SLu, MSLu, A, P, Lb, and

Lk, contributing to 39.96% of the total variance and des-

ignated as the sub-watershed magnitude factor

Table 4 Mean stream length of upper Ghaggar watershed

Watershed Stream order Total mean length of streams in upper ghaggar watershed

1 2 3 4 5 6 7

Ghaggar 0.26 0.65 1.56 3.83 7.14 10.80 27.64 51.85

Table 5 Stream length ratio of upper Ghaggar watershed

Watershed Stream length ratio Average Stream length ratio of upper Ghaggar watershed

2/1 3/2 4/3 5/4 6/5 7/6

Ghaggar 2.56 2.41 2.46 1.86 1.51 2.56 2.23

Table 6 Mean bifurcation ratio

of upper Ghaggar watershed
Watershed Bifurcation ratio Average bifurcation ratio

1/2 2/3 3/4 4/5 5/6 6/7

Ghaggar 4.73 4.61 5.00 3.56 3.00 3.00 3.98
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corresponding to the watershed dimensions. The PC2

shows the highest factor loading for positively correlated

Rc, Di, Ra, Rr, Rhp, Dis, Rn, and S, contributing to 27.70% of

the total variance and designated as the Relief factor cor-

responding to the basin relief and slope steepness.

This factor illustrates that the sub-watersheds’ hydro-

logical response behavior and higher value or steeper

slopes are more prone to runoff and soil losses. The PC3

shows the highest factor loading for positively correlated

MSLRu, and q contributes to 10.32% of the total variance

and can be designated as the Drainage composition factor.

This factor illustrates the Channel storage capacity, which

controls flood crest intensities downstream and is necessary

for flood routing and control (Horton, 1945). The PC4 and

PC5 show the highest factor loading for positively corre-

lated Sf and Dt, contributing to 5.82% and 3.98%, respec-

tively of the total variance and designated as the Dissection

Intensity factor. The factor scores for the 92 (32

Table 7 Pearson Correlation Matrix for the 25 parameters for sub-watersheds of upper Ghaggar watershed

Nu SLu MSLu MSLRu WMSLRu Rb WMRb ρ A P Lb Lk Ff Re Ie Rc Dd Sf Dt Di If Ra Rr Rhp Dis Rn S

Nu 1.00

SLu 0.97 1.00

MSLu 0.85 0.88 1.00

MSLRu 0.25 0.24 0.51 1.00

WMSLRu 0.23 0.24 0.48 0.97 1.00

Rb 0.51 0.49 0.63 0.74 0.74 1.00

WMRb 0.40 0.40 0.53 0.55 0.58 0.87 1.00

ρ -0.12 -0.11 0.09 0.66 0.62 0.03 -0.07 1.00

A 0.99 0.98 0.88 0.26 0.25 0.53 0.43 -0.12 1.00

P 0.90 0.93 0.96 0.39 0.39 0.58 0.50 0.00 0.92 1.00

Lb 0.97 0.95 0.90 0.32 0.31 0.60 0.51 -0.12 0.98 0.94 1.00

Lk 0.91 0.88 0.88 0.37 0.37 0.65 0.58 -0.10 0.92 0.92 0.98 1.00

Ff -0.86 -0.82 -0.85 -0.40 -0.40 -0.67 -0.61 0.08 -0.87 -0.89 -0.95 -0.99 1.00

Re -0.87 -0.83 -0.86 -0.40 -0.40 -0.67 -0.62 0.09 -0.87 -0.90 -0.95 -0.99 1.00 1.00

Ie 0.27 0.39 0.64 0.48 0.50 0.35 0.30 0.33 0.31 0.62 0.34 0.37 -0.37 -0.38 1.00

Rc -0.16 -0.27 -0.45 -0.36 -0.40 -0.20 -0.19 -0.34 -0.19 -0.48 -0.21 -0.23 0.23 0.23 -0.87 1.00

Dd -0.01 0.11 0.10 -0.07 -0.05 -0.15 -0.21 0.04 0.00 0.12 -0.06 -0.13 0.17 0.16 0.44 -0.50 1.00

Sf -0.10 -0.12 -0.18 -0.10 -0.16 -0.28 -0.36 0.12 -0.16 -0.18 -0.21 -0.28 0.31 0.31 -0.07 0.03 0.33 1.00

Dt 0.09 0.00 -0.06 -0.05 -0.05 0.10 0.17 -0.13 0.07 -0.01 0.13 0.19 -0.23 -0.22 -0.35 0.25 -0.49 -0.19 1.00

Di 0.03 -0.09 -0.16 -0.08 -0.10 -0.05 -0.02 -0.06 -0.01 -0.17 0.02 0.05 -0.07 -0.07 -0.54 0.59 -0.71 0.09 0.51 1.00

If -0.10 -0.02 -0.05 -0.13 -0.12 -0.24 -0.32 0.02 -0.11 -0.03 -0.18 -0.25 0.29 0.29 0.28 -0.36 0.83 0.67 -0.41 -0.48 1.00

Ra 0.12 -0.03 -0.10 -0.13 -0.20 0.04 0.11 -0.20 0.08 -0.09 0.13 0.18 -0.20 -0.19 -0.54 0.61 -0.71 -0.04 0.40 0.74 -0.59 1.00

Rr -0.01 -0.14 -0.19 -0.19 -0.26 -0.06 -0.02 -0.20 -0.04 -0.22 -0.01 0.01 -0.02 -0.03 -0.58 0.67 -0.70 -0.04 0.34 0.72 -0.59 0.92 1.00

Rhp -0.42 -0.46 -0.55 -0.36 -0.44 -0.40 -0.36 -0.15 -0.44 -0.59 -0.49 -0.53 0.54 0.53 -0.63 0.70 -0.39 0.15 0.07 0.48 -0.27 0.52 0.73 1.00

Dis -0.19 -0.26 -0.27 -0.16 -0.23 -0.13 -0.15 -0.14 -0.20 -0.35 -0.20 -0.20 0.20 0.19 -0.50 0.59 -0.61 -0.07 0.23 0.56 -0.49 0.61 0.83 0.77 1.00

Rn -0.06 -0.17 -0.23 -0.22 -0.30 -0.10 -0.07 -0.23 -0.09 -0.26 -0.07 -0.06 0.05 0.05 -0.57 0.67 -0.58 0.03 0.22 0.62 -0.48 0.86 0.97 0.77 0.83 1.00

S 0.00 -0.14 -0.17 -0.12 -0.20 0.00 0.03 -0.19 -0.02 -0.21 0.01 0.03 -0.05 -0.05 -0.60 0.71 -0.79 -0.10 0.36 0.75 -0.66 0.89 0.95 0.68 0.85 0.90 1.00

Strong 0.8 - 0.9 Good 0.7 - 0.8 Moderate 0.6 - 0.7
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from PCA
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Fourth ? 60 Third Order) sub-watersheds of the upper

Ghaggar watershed are shown in Table 10. The bold values

show the highest among the magnitude, relief, drainage

composition, and Dissection Intensity factors for each of

the 92 (32 Fourth ? 60 Third Order) sub-watersheds. The

dominating factor scores prevalent within the 92 sub-wa-

tersheds are shown in Fig. 5.

Prioritization Using Hierarchical Clustering
Analysis

The clustering analysis resulted in three prominent clusters

and is represented as Dendrogram (Fig. 6). In the Den-

drogram, the sub-watersheds are plotted on the vertical

axis, and the relative cluster difference represented by

linkage distances are plotted on the horizontal axis. The

Cluster wise mean values of the prominent linear, sub-

watershed geometry characteristics, drainage, and relief

characteristics, and their respective ranks are mentioned in

the brackets are listed in Table 11. The Upper Ghaggar

watershed and its sub-watersheds have dendritic drainage

patterns, and these kinds of patterns are prominent where

the underlying rock structure does not firmly control the

stream channels, and channels follow the slope of the ter-

rain. There is a high proportion of first-order streams in

Cluster 3 sub-watersheds and indicating the structural

weakness prevalent in the sub-watersheds associated with

these clusters.

Cluster Id 3 is having the highest values of Rb, which is

indicative of highly dissected sub-watersheds. The higher

Rb values correspond to sub-watersheds significantly

influenced by drainage network, whereas its low values are

associated with sub-watersheds having minimal disturbing

drainage patterns structurally less disturbed. The q is

Table 8 Component wise explanation of total variance

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 10.80 40.00 40.00 10.80 40.00 40.00 9.30 34.40 34.40

2 7.50 27.70 67.70 7.50 27.70 67.70 7.40 27.40 61.80

3 2.80 10.30 78.00 2.80 10.30 78.00 3.30 12.20 74.00

4 1.60 5.80 83.80 1.60 5.80 83.80 2.20 8.00 82.00

5 1.10 4.00 87.80 1.10 4.00 87.80 1.60 5.80 87.80

6 1.00 3.50 91.30

7 0.60 2.30 93.60

8 0.40 1.60 95.30

9 0.30 1.20 96.50

10 0.20 0.80 97.30

11 0.20 0.70 98.00

12 0.10 0.50 98.50

13 0.10 0.40 98.90

14 0.10 0.30 99.20

15 0.10 0.20 99.40

16 0.00 0.10 99.50

17 0.00 0.10 99.70

18 0.00 0.10 99.80

19 0.00 0.10 99.80

20 0.00 0.00 99.90

21 0.00 0.00 99.90

22 0.00 0.00 100.00

23 0.00 0.00 100.00

24 0.00 0.00 100.00

25 0.00 0.00 100.00

26 0.00 0.00 100.00

27 0.00 0.00 100.00
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dependent on hydrologic, geologic, and physiographic

factors, which ultimately determine the relation of drainage

composition and physiographic development of a sub-wa-

tershed. The low value of q indicates low water storage

during flood periods and has a high erosion effect, while

the higher value indicates higher hydrologic storage during

floods and thus reduces erosion effects at peak discharges.

Hence, the lowest q values are in sub-watersheds associ-

ated with Cluster 1.

The shape of sub-watersheds is also a prominent factor

in governing the prioritization since it controls the water

flow rate to the main channel. In hierarchical cluster

analysis, Lk, Ff, Re, Ie, and Rc were used. The sub-water-

sheds belonging to cluster 3 have low Ff, Re, Ie, and Rc are

shown in Table 11, which implies that they have an elon-

gated shape. According to Singh and Singh (1997), an

elongated watershed is less effective in runoff discharge

than the circular watershed. These elongated sub-water-

sheds have a flatter peak of flow for a longer duration,

which results in high infiltration and low surface runoff.

The sub-watersheds belonging to Cluster 1 have relatively

high Ff, Re, Ie, and Rc in Table 11, indicating its circular

shape, which further implies high peak flows and shorter

lag time than elongated sub-watersheds. Circular sub-wa-

tersheds are at higher risk of erosion and simultaneously

higher sediment load since the runoff is contributed by the

entire area, putting these sub-watersheds at higher risk of

flash floods.

The morphometric parameters such as Dd, Sf, Dt, Di, and

If indicate the landscape’s extent being dissected by the

stream network. These help in the prediction of sub-wa-

tershed surface runoff, its sediment yield, and terrain dis-

section magnitude. The drainage texture of the 3 clusters

varies from moderate to coarser. However, according to the

area’s geology, the entire watershed’s 60% area is under

Shale, Sandstone, and Limestone characterizing its low

permeability and its erosion-prone nature. High values of

Dd, Sf, and If are present in Cluster 3, whereas low values

prevail in Cluster 1, as shown in Table 11. The high values

of Cluster 3 are characterized by steep slopes, high relief,

weak and impervious subsurface resulting in high surface

runoff. The low values of Cluster 1 are characterized by a

gentle slope, low relief, resistance and permeable subsur-

face, resulting in less surface runoff and providing excel-

lent groundwater recharge sites.

The relief characteristics define the terrain’s erosional

properties, landform, development of drainage network,

and overland flow. In the study, morphometric parameters

such as Ra, Rr, Rhp, Dis, Rn, and S were used to reveal the

watershed’s erosion potential and runoff. The Ra and Rr of

the sub-watersheds coming under Cluster 1 are 1321.11 m

indicating its high erosional capacity to move water and

sediments down the slope. The Rhp ranges from 0.37 to

3.22, with sub-watersheds coming under Cluster 3 having

low values due to its low slopes and resistant bedrock,

whereas Cluster 2 and Cluster 1 have relatively higher

values (Table 11). Higher values of Rhp characterize steep

slopes, high erosion intensity, and higher sediment

Table 9 Varimax rotated component matrix for 27 variables dis-

tributed in five principal components

Component

1 2 3 4 5

Nu 0.97 0.00 - 0.01 0.06 0.03

SLu 0.96 - 0.12 - 0.03 0.04 - 0.07

MSLu 0.90 - 0.17 0.27 - 0.07 - 0.17

MSLRu 0.26 - 0.09 0.93 - 0.12 - 0.04

WMSLRu 0.25 - 0.18 0.91 - 0.18 0.01

Rb 0.56 - 0.02 0.53 - 0.39 0.01

WMRb 0.48 - 0.02 0.40 - 0.53 0.08

q - 0.17 - 0.13 0.80 0.24 - 0.01

A 0.98 - 0.03 - 0.01 0.00 - 0.01

P 0.94 - 0.22 0.14 - 0.06 - 0.10

Lb 0.99 - 0.01 0.05 - 0.08 0.05

Lk 0.96 0.00 0.12 - 0.17 0.11

Ff - 0.93 0.00 - 0.16 0.22 - 0.16

Re - 0.93 0.00 - 0.15 0.23 - 0.14

Ie 0.36 - 0.58 0.40 - 0.07 - 0.38

Rc - 0.21 0.72 - 0.31 0.03 0.21

Dd - 0.01 - 0.73 - 0.14 0.37 - 0.39

Sf - 0.12 0.00 0.04 0.91 - 0.03

Dt 0.09 0.25 - 0.04 - 0.16 0.83

Di 0.03 0.74 0.05 0.15 0.50

If - 0.11 - 0.59 - 0.11 0.65 - 0.22

Ra 0.15 0.88 - 0.07 - 0.04 0.23

Rr 0.01 0.97 - 0.09 - 0.04 0.05

Rhp - 0.46 0.76 - 0.19 0.12 - 0.16

Dis - 0.19 0.87 - 0.05 - 0.08 - 0.12

Rn - 0.04 0.95 - 0.13 0.02 - 0.09

S 0.01 0.97 - 0.04 - 0.11 0.12
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Table 10 Factor scores for 92 (32 fourth and 60 third-order) sub-watersheds of upper Ghaggar watershed

Sub-watersheds Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Magnitude factor Relief factor Drainage composition factor Dissection intensity factor

1 0.67 0.39 - 0.13 0.43 2.85

2 0.40 0.68 1.16 - 1.82 0.88

3 - 0.87 1.34 0.39 0.66 - 0.40

4 - 0.20 1.05 - 0.68 - 0.28 1.33

5 1.38 0.51 0.29 0.45 1.24

6 1.45 0.97 - 0.16 0.70 0.78

7 0.37 0.91 0.46 - 0.72 0.88

8 - 0.06 0.18 - 0.50 0.99 3.29

9 0.16 1.12 - 0.27 - 0.10 0.08

10 - 0.83 - 0.08 - 0.97 - 1.81 - 0.49

11 - 0.96 1.74 - 1.42 1.03 - 2.27

12 0.24 0.91 - 0.37 0.19 0.14

13 - 0.67 1.23 0.57 - 1.14 - 0.88

14 - 0.96 0.63 - 1.01 - 0.51 - 1.26

15 - 0.03 1.36 - 0.03 - 0.10 - 0.75

16 - 0.31 - 1.61 - 0.99 - 1.13 2.13

17 - 0.39 1.02 0.24 - 1.84 - 0.26

18 - 0.25 - 0.06 0.34 - 1.06 - 0.63

19 - 0.61 - 0.63 - 0.07 - 1.36 - 0.62

20 0.67 0.83 - 0.70 - 0.23 0.83

21 0.89 0.76 - 0.32 0.66 1.12

22 1.14 - 1.40 - 0.90 - 0.16 1.06

23 - 0.79 - 1.67 - 0.71 2.38 - 0.22

24 1.21 0.72 - 0.64 - 0.59 - 0.22

25 1.92 0.81 0.08 0.62 - 0.15

26 - 0.07 - 1.52 1.07 0.92 - 1.27

27 - 0.78 1.24 - 0.43 0.31 - 1.07

28 - 0.11 0.58 0.11 - 0.37 - 0.01

29 0.02 - 1.25 1.16 - 0.29 - 1.54

30 - 0.95 - 1.25 0.72 0.99 - 0.47

32 - 0.48 - 1.38 0.37 1.29 - 0.68

33 - 0.83 - 1.56 - 1.10 0.28 - 0.38

34 - 0.94 0.62 0.39 - 0.40 0.23

35 0.73 0.37 - 0.77 - 0.12 0.46

36 - 0.12 0.65 0.31 0.25 0.92

37 1.51 - 0.19 0.60 - 0.04 - 1.07

38 0.64 - 1.19 - 0.74 0.15 - 1.32

39 - 0.68 0.54 - 0.70 0.55 - 0.67

40 1.48 0.89 - 0.49 - 0.68 - 0.29

41 - 0.73 - 1.68 - 0.66 - 0.12 - 0.79

42 - 0.81 0.92 1.56 0.93 0.30

43 - 0.36 0.72 - 0.01 0.77 0.13

44 - 1.10 - 1.37 2.37 1.95 - 0.28

45 - 0.95 1.55 0.37 - 0.51 - 0.66

46 0.31 0.55 2.03 0.28 0.34

47 1.91 0.01 0.89 0.60 - 1.66

48 3.11 - 0.08 - 0.75 1.10 - 1.42

49 - 1.00 - 0.27 - 1.18 - 0.54 - 0.44
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Table 10 (continued)

Sub-watersheds Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Magnitude factor Relief factor Drainage composition factor Dissection intensity factor

50 - 0.87 - 0.55 - 2.14 1.70 - 0.69

51 0.91 0.72 - 0.56 1.00 0.09

52 - 0.86 0.90 - 0.76 0.20 - 0.62

53 - 1.07 - 1.18 0.52 2.03 0.20

54 - 0.66 - 0.64 - 1.05 - 0.79 0.13

55 - 0.68 - 0.03 - 0.69 - 0.39 0.47

56 - 0.98 - 0.80 - 0.23 0.12 - 0.83

57 - 0.71 1.52 - 0.03 - 0.63 - 0.53

58 - 0.41 - 0.53 - 0.38 - 1.65 1.20

59 - 1.13 - 0.84 - 0.24 - 1.40 - 0.47

60 - 0.78 1.01 - 0.81 1.04 - 1.66

61 0.63 - 0.41 1.05 - 2.30 - 0.03

62 - 0.28 - 0.51 0.96 - 1.46 - 0.04

63 0.79 0.47 - 0.53 0.23 0.34

64 - 0.51 1.47 0.68 0.85 0.58

65 - 0.82 0.60 - 0.36 1.02 0.73

66 - 0.24 0.47 0.20 - 1.85 0.00

67 1.14 0.50 - 0.60 0.00 0.15

68 - 0.50 - 0.45 0.47 - 0.74 0.51

69 - 0.56 0.35 - 1.14 - 0.90 - 0.23

70 - 0.60 1.58 0.52 2.16 - 0.91

71 0.20 - 1.38 - 0.08 0.23 2.36

72 - 0.96 - 0.90 - 1.37 - 0.11 - 0.16

73 0.25 0.99 1.31 0.11 0.03

74 0.78 0.51 - 0.72 - 0.81 0.31

75 - 0.51 0.56 0.43 0.45 0.89

76 - 0.91 0.32 1.48 - 1.81 0.43

77 1.30 0.28 - 0.03 - 0.14 0.77

78 - 1.05 0.94 - 0.17 1.61 0.73

79 - 1.20 0.28 0.99 0.78 0.88

80 - 0.94 0.60 - 1.47 - 0.46 - 0.11

81 - 0.67 - 1.30 1.60 1.37 1.43

82 - 0.26 - 0.33 4.10 0.08 0.05

83 1.77 0.18 - 0.64 0.24 1.00

84 0.91 - 0.47 2.53 - 0.43 - 0.91

85 - 1.14 - 1.36 - 1.34 0.02 - 0.43

86 0.68 - 0.88 1.43 - 0.89 - 1.29

87 - 0.05 - 1.66 - 0.86 - 0.01 - 0.47

88 0.06 - 1.72 0.70 - 1.97 - 0.24

89 0.25 - 1.91 - 1.25 - 1.42 0.08

90 2.06 - 1.12 - 0.23 0.22 - 1.42

91 1.83 - 0.88 0.90 0.50 - 1.45

93 - 1.00 - 1.83 0.10 0.87 2.32

94 3.39 - 1.18 - 1.13 0.82 0.02
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transport. Therefore, the sub-watersheds having higher Rhp

having peak discharges resulting in higher erosion. The

mean values of Dis, Rn, and S of the sub-watersheds falling

in different clusters range from 0.16 to 0.25, 0.30 to 0.88,

and 7.92 to 22.67, respectively, as shown in Table 11.

Higher Dis, Rn, and S values correspond to sub-watersheds

falling under Cluster 1, while low values of Dis, Rn, and

S correspond to sub-watersheds falling under Cluster 3.

The higher values of Dis, Rn, and S indicate steeper slopes,

higher dissection, less overland flow due to lower time of

concentration resulting in higher possibilities of flash

floods and more erosion than sub-watersheds having lower

Dis, Rn, and S.

The average values of all the Cluster’s priorities 1, 2 and

3 are 1.77, 2.07, and 2.16, respectively. The spatial dis-

tribution of the priority-wise sub-watersheds is shown in

Fig. 7. The Cluster 1 sub-watersheds are with the highest

priority, followed by Cluster 2, and finally, the least pri-

ority sub-watersheds falling under Cluster 3.

Fig. 5 Dominating factor scores prevalent within the upper Ghaggar watershed
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Conclusions

The upper Ghaggar watershed, forming the part of the

lower Shivaliks, is the most fragile ecosystem due to its

highly erodible soil structures. Therefore, prioritization at

the sub-watershed scale can help the decision/policy

makers to address the soil erosion problems eminent within

a specific region of the upper Ghaggar watershed. The area

is also prone to flooding during the monsoon season, hence

water conservation structures such as check dams, gabion

walls, etc., can be constructed in the downstream of the

basin which will reduce the potential of flash floods and

will increase the groundwater recharge and utilization of

surface water for irrigation. In the present study, watershed

prioritization of the erosion susceptible areas has been

achieved by synergistically fusing the remote sensing and

geographical information system techniques backed with

statistical techniques such as correlation analysis, principal

component analysis, and hierarchical clustering analysis.

Twenty-seven linear, areal, and relief morphometric

parameters were chosen for ninety-two sub-watersheds,

where thirty-two are fourth-order, and sixty are third-order.

The Principal Component Analysis applied on the inter-

correlation matric resulted in five significant components

representing the entire dataset. These five principal com-

ponents were grouped into four factors, i.e., magnitude

factor (PC1), relief factor (PC2), drainage composition

factor (PC3), and Dissection intensity factor (PC4 & PC5).

The Upper Ghaggar watershed is primarily controlled by

magnitude and relief factors since these together explain

67.66% of the total variance. Because of the larger number

of sub-watersheds involved in the present study, hierar-

chical clustering techniques based on Ward’s algorithm

resulted into three prime clusters, i.e., high, medium, and

least priority showing considerable spatial variability. Out

of ninety-two, 29, 46, and 17 sub-watersheds fall in high,

medium, and least priorities clusters. The results of this

study provide vital information to the planners and deci-

sion-makers regarding drainage morphometry utilizing the

geospatial techniques, which can act as a base criterion for

implementing soil erosion conservation strategies (such as

planting vegetation, hillshade terracing) and assessment of

surface/groundwater recharge potential and flash flood

mitigation (by constructing water harvesting structures

such as check dams, gabion structures, etc.).

Fig. 6 Dendrogram of the clustered sub-watersheds in upper Ghaggar

watershed
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Table 11 Results of

morphometric parameters

derived based on hierarchical

cluster analysis method for the

92 sub-watersheds

Linear characteristics

Cluster ID Nu SLu MSLu MSLRu Rb q

Cluster 1 57.90 (2) 20.74 (2) 4.51 (2) 3.10 (2) 4.25 (2) 0.73 (1)

Cluster 2 13.17 (3) 4.97 (3) 1.92 (3) 2.52 (3) 3.03 (3) 0.83 (2)

Cluster 3 72.76 (1) 36.35 (1) 8.00 (1) 4.35 (1) 4.98 (1) 0.86 (3)

Shape characteristics

Cluster ID Lk Ff Re Ie Rc

Cluster 1 1.73 (2) 0.46 (2) 0.76 (2) 2.62 (1) 0.31 (1)

Cluster 2 1.40 (3) 0.56 (1) 0.85 (1) 2.75 (2) 0.29 (2)

Cluster 3 1.80 (1) 0.44 (3) 0.75 (3) 6.35 (3) 0.17 (3)

Drainage characteristics

Cluster ID Dd Sf Dt Di If

Cluster 1 2.66 (3) 11.43 (3) 0.72 (3) 4.58 (1) 32.95 (3)

Cluster 2 3.16 (2) 11.97 (1) 0.60 (1.5) 3.92 (2) 41.01 (2)

Cluster 3 3.58 (1) 11.44 (2) 0.51 (1.5) 3.32 (3) 43.20 (1)

Relief characteristics

Cluster ID Ra Rr Rhp DiS Rn S

Cluster 1 1321.11 (1) 333.95 (1) 2.25 (2) 0.25 (1) 0.88 (1) 22.67 (1)

Cluster 2 792.68 (2) 215.28 (2) 3.22 (1) 0.24 (2) 0.63 (2) 15.36 (2)

Cluster 3 512.57 (3) 94.39 (3) 0.37 (3) 0.16 (3) 0.30 (3) 7.92 (3)

Fig. 7 Final prioritized sub-watersheds of upper Ghaggar watershed

1068 Journal of the Indian Society of Remote Sensing (June 2022) 50(6):1051–1070

123



Funding Not applicable.

Declarations

Conflict of interest On behalf of all authors, the corresponding author

states that there is no conflict of interest.

Availability of Data and Material Submitted as supplementary data.

Code Availability Not applicable.

References

Abdeta, G. C., Tesemma, A., Tura, A. L., & Atlabachew, G. H.

(2020). Morphometric analysis for prioritizing sub-watersheds

and management planning and practices in Gidabo Basin,

Southern Rift Valley of Ethiopia. Applied Water Science.
https://doi.org/10.1007/s13201-020-01239-7

Arefin, R., Mohir, M., & Alam, J. (2020). Watershed prioritization for

soil and water conservation aspect using GIS and remote

sensing: PCA-based approach at northern elevated tract

Bangladesh. Applied Water Science. https://doi.org/10.1007/

s13201-020-1176-5

Bhat, M. S., Alam, A., Ahmad, S., Farooq, H., & Ahmad, B. (2019).

Flood hazard assessment of upper Jhelum basin using morpho-

metric parameters. Environmental Earth Sciences. https://doi.

org/10.1007/s12665-019-8046-1

Bothale, R. V., Bothale, V. M., & Sharma, J. R. (1997). Delineation

of eco watersheds by integration of remote sensing and GIS

techniques for management of water and land resources. In D.

Fritsch, M. Englich, & M. Sester (Eds.), ISPRS commission IV
symposium on GIS—between visions and applications. 32/4.
IAPRS.

Chandniha, S. K., & Kansal, M. L. (2017). Prioritization of sub-

watersheds based on morphometric analysis using geospatial

technique in Piperiya watershed, India. Applied Water Science,
7, 329–338. https://doi.org/10.1007/s13201-014-0248-9

Chauhan, N., Kumar, V., & Paliwal, R. (2020a). Land capability

assessment of Ghaggar river basin using integrated remote

sensing and geographical information system approach—A Case

Study. Annals of Plant and Soil Research, 22(4), 367–372.

https://doi.org/10.47815/apsr.2020a.10006

Chauhan, N., Kumar, V., & Paliwal, R. (2020b). Quantifying the

impacts of decadal landuse change on the water balance

components using soil and water assessment tool in Ghaggar

river basin. SN Applied Sciences. https://doi.org/10.1007/

s42452-020-03606-0

Chen, C. W., & Zebker, H. A. (2000). Network approaches to two-

dimensional phase unwrapping: Intractability and two new

algorithms. Journal of the Optical Society of America, 17(3),
401–414.

Chorley, R. J., Malm, D. E., & Pogorzelski, H. A. (1957). A new

standard for estimating drainage basin shape. American Journal
of Science, 255, 138–141.

Chow, V. T. (1964). Handbook of applied hydrology. McGraw-Hill

Book Co., Inc.

Dadhwal, V. K., Sharma, J. R., Bera, A. K., Paliwal, R., Chauhan, N.,

& Shirsath, P. B., et al. (2012). River Basin Atlas of India.
Central Water Commision and Regional Remote Sensing Centre-

West, NRSC, ISRO.

F.A.O. (1985). Watershed development with special reference to soil
and water conservation. Rome: F.A.O Soil Bulletin 44.

Falkenmark, M., & Lindh, G. (1976). Water for a starving world.
Westview Press.

Faniran, A. (1968). The index of drainage intensity—A provisional

new drainage factor. Australian Journal of Scienec, 31, 328–330.
Gajbhiye, S., & Mishra, S. K. (2012). Application of NRSC-SCS

curve number model in runoff estimation using RS & GIS. In

IEEE-international conference on advances in engineering,
science and management (ICAESM-2012) (pp. 346–352). IEEE.

Gardiner, V. (1975). Drainage basin morphometry. British Geomor-

phological Research Group.

Goldstein, R. M., Zebker, H. A., & Werner, C. L. (1988). Satellite

radar interferometry: Two-dimensional phase unwrapping. Radio
Science, 23(4), 713–720.

Gopinath, G., Nair, A. G., Ambili, G. K., & Swetha, T. V. (2016).

Watershed prioritization based on morphometric analysis cou-

pled with multi criteria decision making. Arabian Journal of
Geosciences, 9, 1–17. https://doi.org/10.1007/s12517-015-2238-
0

Horton, R. E. (1932). Drainage-basin Characteristics. Transactions,
American Geophysical Union, 13(1), 350–361.

Horton, R. E. (1945). Erosional development of streams and their

drainage basins; Hydrophysical approach to quantitative mor-

phology. Geological Society of America Bulletin, 56(3),
275–370.

Jhariya, D. C., Kumar, T., & Pandey, H. K. (2020). Watershed

prioritization based on soil and water hazard model using remote

sensing, geographical information system and multi-criteria

decision analysis approach. Geocarto International, 35,
188–208.

Mangan, P., Haq, M., & Baral, P. (2019). Morphometric analysis of

watershed using remote sensing and GIS—A case study of

Nanganji River Basin in Tamil Nadu, India. Arabian Journal of
Geosciences, 12(6), 14.

Mather, P. M., & Doornkamp, J. C. (1970). Multivariate analysis in

geography with particular reference to drainage-basin morphom-

etry. Transactions of the Institute of British Geographers, 51,
163–187. https://doi.org/10.2307/621768

Melton, M. A. (1958). Correlation structure of morphometric

properties of drainage systems and their controlling agents.

The Journal of Geology, 66(4), 442–460.
Meshram, S. G., & Sharma, S. K. (2017). Prioritization of watershed

through morphometric parameters:A PCA-based approach.

Applied Water Scinece. https://doi.org/10.1007/s13201-015-

0332-9

Miller, V. C. (1953). A Quantitative geomorphic study of drainage
basin characteristics in the Clinch Mountain area, Virginia and
Tennessee. Columbia University, Department of Geology.

Mishra, S. K., Gajbhiye, S., & Pandey, A. (2013). Estimation of

design runoff curve numbers for Narmada watersheds (India).

Journal of Applied Water Engineering and Research, 1(1),
69–79. https://doi.org/10.1080/23249676.2013.831583

Narayana, R. D., & Babu, R. (1983). Estimation of soil erosion in

India. Journal of Irrigation and Drainage Engineering, 109(4),
419–434.

Nautiyal, M. D. (1994). Morphometric analysis of a drainage basin

using aerial photographs: A case study of Khairkuli basin,

district Dehradun, U.P. Journal of the Indian Society of Remote
Sensing, 22, 251–261. https://doi.org/10.1007/BF03026526

Nir, D. (1957). The ratio of relative and absolute altitudes of Mt.

Carmel: A contribution to the problem of relief analysis and

relief classification. Geographical Review, 47(4), 564–569.
Nookaratnam, K., Srivastava, Y. K., Rao, V. V., Amminedu, E., &

Murthy, K. R. (2005). Check dam positioning by prioritization of

micro-watersheds using SYI model and morphometric analy-

sis—Remote Sensing and GIS perspective. Journal of the Indian
Society of Remote Sensing, 33(1), 2–38.

Journal of the Indian Society of Remote Sensing (June 2022) 50(6):1051–1070 1069

123

https://doi.org/10.1007/s13201-020-01239-7
https://doi.org/10.1007/s13201-020-1176-5
https://doi.org/10.1007/s13201-020-1176-5
https://doi.org/10.1007/s12665-019-8046-1
https://doi.org/10.1007/s12665-019-8046-1
https://doi.org/10.1007/s13201-014-0248-9
https://doi.org/10.47815/apsr.2020a.10006
https://doi.org/10.1007/s42452-020-03606-0
https://doi.org/10.1007/s42452-020-03606-0
https://doi.org/10.1007/s12517-015-2238-0
https://doi.org/10.1007/s12517-015-2238-0
https://doi.org/10.2307/621768
https://doi.org/10.1007/s13201-015-0332-9
https://doi.org/10.1007/s13201-015-0332-9
https://doi.org/10.1080/23249676.2013.831583
https://doi.org/10.1007/BF03026526


Obeidat, M., Awawdeh, M., & Al-Hantouli, F. (2021). Morphometric

analysis and prioritisation of watersheds for flood risk manage-

ment in Wadi Easal Basin (WEB), Jordan, using geospatial

technologies. Journal of Flood Risk Management. https://doi.
org/10.1111/jfr3.12711

Oldeman, L. R. (1991). Global extent of soil degradation. ISRIC:
Wageningen.

Patton, P. C., & Baker, V. R. (1976). Morphometry and floods in

small drainage basin subject to diverse hydrogeomorphic

controls. Water Resource Research, 12(5), 941–952.
Prasad, R. K., Mondal, N., Banerjee, P., Nandakumar, M. V., &

Singh, V. S. (2008). Deciphering potential groundwater zone in

hard rock through the application of GIS. Environmental
Geology, 55, 467–475. https://doi.org/10.1007/s00254-007-

0992-3

Prieto-Amparán, J. A., Pinedo-Alvarez, A., Vázquez-Quintero, G.,

Valles-Aragón, M. C., Rascón-Ramos, A. E., Martinez-Salvador,

M., & Villarreal-Guerrero, F. (2019). A multivariate geomor-

phometric approach to prioritize erosion-prone watersheds.

Sustainability. https://doi.org/10.3390/su11185140
Rai, P. K., Mohan, K., Mishra, S., Ahmad, A., & Mishra, V. N.

(2017). A GIS-based approach in drainage morphometric

analysis of Kanhar River Basin, India. Applied Water Science,
7, 217–232. https://doi.org/10.1007/s13201-014-0238-y

Rai, P. K., Chandel, R. S., Mishra, V. N., & Singh, P. (2018).

Hydrological inferences through morphometric analysis of lower

Kosi river basin of India for water resource management based

on remote sensing data. Applied Water Sciences, 8(15), 1–16.
https://doi.org/10.1007/s13201-018-0660-7

Rao, D. P. (2000). Role of remote sensing and geographical

information system in sustainable development. In International
archives of photogrammetry and remote sensing (Vol. XXXIII,

pp. 1231–1251). Amsterdam: ISPRS.

Schumm, S. A. (1956). Evolution of drainage systems and slopes in

badlands at perth amboy, New Jersey. Geological Society of
America Bulletin, 67(5), 597–646.

Siddiqui, R., Said, S., & Shakeel, M. (2020). Nagmati River sub-

watershed prioritization using PCA, integrated PCWS, and AHP:

A case study. Natural Resources Research, 29, 2411–2430.

https://doi.org/10.1007/s11053-020-09622-6

Singh, S. (1976). On the quantitative parameters for the computation

of drainage density, texture and frequency: A case study of a part

of the Ranchi Plateau. National Geographer, 10(1), 21–31.

Singh, S., & Singh, M. C. (1997). Morphometric analysis of Kanhar

river. National Geographical Journal of Lndia, 43(1), 31–43.
Singh, G., Babu, R., Narain, P., Bhushan, L. S., & Abrol, I. P. (1992).

Soil erosion rates in India. Journal of Soil and Water Conser-
vation, 47(1), 97–99.

Smith, G. H. (1935). The relative relief of Ohio. Geographical
Review, 25, 247–248.

Space Application Centre. (2016). Desertification and land degrada-
tion atlas of India (Based on IRS AWiFS data of 2011–13 and
2003–05). Space Applications Centre, ISRO.

Stoddart, D. R. (1965). The shape of atolls. Marine Geology, 3(5),
369–383.

Strahler, A. N. (1952). Hypsometric (area-altitude curve) analysis of

erosional topography. Geological Society of America Bulletin,
63(11), 1117–1142.

Strahler, A. N. (1953). Revisions of Horton’s quantitative factors in

erosional terrain. Transactions American Geophysical Union, 34,
345.

Strahler, A. N. (1957). Quantitative analysis of watershed geomor-

phology. Transactions, American Geophysical Union, 38(6),
913–920.

Strahler, A. N. (1964). Quantitative geomorphology of drainage

basins. In V. T. Chow (Ed.), Handbook of applied hyrology (pp.

4–11). McGraw Hill Book Company.

Thakkar, A. K., & Dhiman, S. D. (2007). Morphometric analysis and

prioritization of miniwatersheds in Mohr watershed, Gujarat

using remote sensing and GIS techniques. Journal of Indian
Society of Remote Sensing, 35, 313–321. https://doi.org/10.1007/
BF02990787

Waiyasusri, K., & Chotpantarat, S. (2020). Watershed prioritization

of Kaeng Lawa sub-watershed, Khon Kaen Province using the

morphometric and land-use analysis: A case study of heavy

flooding caused by tropical storm podul. Water. https://doi.org/
10.3390/w12061570

Ward, J. H. (1963). Hierarchical grouping to optimize an objective

function. Journal of American Statistical Association, 58(301),
236–244. https://doi.org/10.1080/01621459

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1070 Journal of the Indian Society of Remote Sensing (June 2022) 50(6):1051–1070

123

https://doi.org/10.1111/jfr3.12711
https://doi.org/10.1111/jfr3.12711
https://doi.org/10.1007/s00254-007-0992-3
https://doi.org/10.1007/s00254-007-0992-3
https://doi.org/10.3390/su11185140
https://doi.org/10.1007/s13201-014-0238-y
https://doi.org/10.1007/s13201-018-0660-7
https://doi.org/10.1007/s11053-020-09622-6
https://doi.org/10.1007/BF02990787
https://doi.org/10.1007/BF02990787
https://doi.org/10.3390/w12061570
https://doi.org/10.3390/w12061570
https://doi.org/10.1080/01621459

	Watershed Prioritization in Lower Shivaliks Region of India Using Integrated Principal Component and Hierarchical Cluster Analysis Techniques: A Case of Upper Ghaggar Watershed
	Abstract
	Introduction
	Study Area
	Dataset and Software Used
	Methodology
	Watershed Delineation and Drainage Analysis
	Morphometric Analysis
	Principal Component Analysis of the Morphometric Parameters
	Watershed Prioritization Using Hierarchical Clustering Analysis

	Results and Discussion
	Morphometric Analysis
	Correlation Analysis of Morphometric Parameters
	Multivariate Analysis Using the Principal Component Approach
	Prioritization Using Hierarchical Clustering Analysis

	Conclusions
	Funding
	References




