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Abstract
Accurate yield estimation of paddy crop plays an important role in forecasting paddy productivity for ensuring regional or

national food security of the country. Although the crop growth models provide accurate yield forecasting, these models

are difficult to implement in developing countries like India due to inhomogeneous or/and lack of required information

about crop, soil, weather, etc. On the contrary, remotely sensed imagery available homogeneously provides valuable inputs

for this purpose. Particularly, synthetic aperture radar (SAR) data proved to have great potential for paddy growth

monitoring and biophysical parameters retrieval over optical data. Moreover, the effective use of artificial neural network

(ANN) may enable us to understand the complex relation between parameters as well as improve the forecasting per-

formance than using empirical-/semiempirical-based approaches. Thus, the study aims to analyze multi-temporal dual-

polarization C-band Sentinel-1 SAR data for paddy yield forecasting using ANN model. In this study, smart sampling

based on the normalized difference vegetation (NDVI) and normalized difference water index has been considered to

obtain in situ yield measurements in the study area. The peak stage signature of backscattering coefficients is considered to

estimate yield due to the maximum possibility of signal to interact with crop cover characteristics. It is observed that the

VH-polarization-based ANN model provides better accuracy with coefficient of determination (R2) and root mean square

error (RMSE) of 0.72 and 600.11 kg/ha, respectively, in comparison with VV polarization which has shown 0.26 and

948.46 kg/ha, respectively. Overall, the study demonstrates that the effective use of ANN model may provide reliable yield

estimation accuracy from remotely sensed imagery alone.
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Introduction

Rice, Oryza sativa, is a globally important food for more

than half the population and it has a notable influence on

the global political and economic system. With the changes

in global climate and increase in world population, it is

utmost important and challenging to maintain the produc-

tion and demand for rice, particularly in developing

countries like India (Auffhammer et al., 2012; Guntukula,

2020; Mahajan et al., 2017). This may be addressed by

effective monitoring of crop health status and accurate

estimation of yield to maintain political and social stability

and equity (Brisco et al., 1998). In contrast to conventional

field-based approaches, remote sensing provides valuable

inputs for this purpose by supplying coarse to high spatial

and temporal resolution images at regional to global scales.

The marginal 20–25 days temporal resolution with high

spatial resolution datasets are generally acceptable and

plentiful for agricultural crops monitoring because the

average field size is very small in most of the developing

countries including India (Sivasankar et al., 2018).

Nonetheless, the spectral region used to acquire remotely

sensed imagery has a significant impact on the potentials to

retrieve crop characteristics including yield (Alebele et al.,

2020; Ranjan & Parida, 2021).
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Most early investigations were performed using multi-

spectral optical remote sensing data to infer crop bio-geo-

physical parameters. For instance, Patel et al. (1991)

proposed a semi-empirical based approach to estimate

paddy yield from Landsat Multispectral Scanning System

(MSS) and Indian Remote Sensing (IRS) Linear Imaging

Self Scanning (LISS)-I datasets. In spite of potential

capabilities and availability of multispectral remotely

sensed imagery, operational applications of the data in this

regard are limited due to its ability to acquire data only in

clear weather conditions. This has made the radar remote

sensing, operating in the microwave region of the elec-

tromagnetic spectrum, as a better alternative toward unin-

terrupted crop growth monitoring. Moreover, synthetic

aperture radar (SAR) data is sensitive toward geometrical,

structural and dielectric properties of various crop cover

components which made the data as suitable to retrieve

crop bio-geophysical parameters (Liao et al., 2018; Siva-

sankar, Kumar, et al., 2020; Sharifi and Hosseingholizadeh,

2020). However, it is necessary to choose proper SAR

sensor parameters such as frequency, polarization and

incidence angle of operation in enhancing the sensitivity of

return signal toward crop cover (Sivasankar et al., 2018).

Particularly, higher frequency like C-band and high inci-

dence angle ([ 30�) is identified as suitable for narrow leaf

crops such as paddy and wheat (Ferrazzoli et al., 1997;

Macelloni et al., 2001). Apart from SAR data sensitivity

toward vegetation characteristics, it is also highly influ-

enced by topographic characteristics like aspect and degree

of slope in hilly terrain.

With the advancements in remote sensing, GIS, com-

puter science and computation techniques collectively

enhanced the accuracy and precision to retrieve crop cover

distribution and characteristics. Several previous studies

(Patel et al., 2006; Inoue et al., 2014a, 2014b; Setiyono

et al., 2019; Mandal and Rao 2020) have proposed various

approaches to effectively retrieve crop yield within season

from SAR data. These techniques range from simple

empirical based to more complex models like radiative

transfer, artificial intelligence, machine learning and deep

learning-based approaches. Patel et al. (2006), is one of the

notable studies in this area, proposed Interaction Factor

(IF) from volume, moisture, height for each of the com-

ponents and density of plant to determine the influence of

various crop components on SAR backscatter. Moreover,

Chauhan et al. (2018) reported that the IF provides valu-

able information as a crop descriptor to simulate SAR

backscatter using water cloud model. Since 1990, the uti-

lization of artificial neural networks (ANNs), a machine

learning approach, over conventional methods have been

significantly increased for remote sensing analysis

(Atkinson & Tatnall, 1997). This is due to its ability to

integrate different types of data for understanding complex

patterns by incorporating realistic physical constraints

(Carpenter et al., 1997; Lek & Guégan, 1999; Mas &

Flores, 2008). Thus, several studies have attempted to

analyze the performance of ANNs for agricultural appli-

cations which includes classification (Kumar et al., 2016;

Murthy et al., 2003), crop biophysical parameters estima-

tion (Chauhan et al., 2018; Jiang et al., 2004; Prasad et al.,

2012). However, limited studies like Jing et al. (2013) have

assessed the applicability of ANNs for yield estimation

from SAR data. The literature clearly demonstrates the

importance and research scope of ANNs in developing a

robust model to improve the accuracy and precision of crop

yield prediction from remotely sensed imagery.

Most of the previous studies (Maki et al., 2017; Setiyono

et al., 2017, 2019) have attempted to analyze the integrated

use of remotely sensed imagery (optical or/and SAR) in

crop growth models to predict yield. However, the neces-

sary information about weather and soil properties may not

be available accurately over developing countries. More-

over, few studies (Li et al., 2003; Patel et al., 2006)

attempted to retrieve yield based on remote sensing ima-

gery alone, mostly exploring the potentials using empirical/

semiempirical approach. Therefore, the study aims to

assess the potentials of dual-polarization (VV ? VH)

Sentinel-1 SAR data using ANN-based approach. Further

details about the study area, ground-truth data collection

and methodology are given in the following sections.

Study Area and Datasets Used

Study Area

The study is carried over Cuttack district located in the

mid-eastern part of Odisha. It extends over an area of 3,932

sq. km, between 84.85� E to 86.28� E longitudes and

20.04� N to 20.70� N latitudes as shown in Fig. 1. This

region is situated at an altitude of about 15 m above MSL

(Mean Sea Level) and covered with deltaic sediments of

the Mahanadi River (Antaryami & Jyotsnarani, 2013). In

Cuttack district, the temperature typically varies between

15 �C and 39 �C with an average annual rainfall of about

1501.3 mm. The area is dominated by agricultural fields,

majorly cultivating paddy crop in the kharif season

extended between June and December.

Satellite Data

Remotely sensed imagery acquired from Sentinel-1 and

Sentinel-2 missions was used for estimating crop yield and

site selection process for ground-truth data collection,

respectively. These two missions are a constellation of two

satellites, developed by European Space Agency (ESA) on
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behalf of the joint ESA/European Commission initiative

Copernicus. Sentinel-1 provides the C-band (center fre-

quency of 5.405 GHz) SAR datasets acquired in single or

dual polarization, i.e., VV (vertical transmitting, vertical

receiving) or HH (horizontal transmitting, horizontal

receiving) or VV ? VH (vertical transmitting, horizontal

receiving) or HH ? HV (horizontal transmitting, vertical

receiving) in four different modes such as stripmap,

Interferometric Wide swath (IW), extra wide swath and

wave modes. In IW mode, Sentinel-1 acquires SAR data at

spatial resolution (range 9 azimuth) of 5 m 9 20 m with a

wide swath width of 250 km at a look angle ranging from

29.1� (near range) to 46.0� (far range), whereas Sentinel-2
provides optical data in 13 spectral bands with four, six and

three bands at 10 m, 20 m and 60 m spatial resolution,

respectively. In this study, multi-temporal C-band dual-

polarization (VV ? VH) Sentinel-1A Level-1 Ground

Range Detected (GRD) SAR imagery acquired in IW mode

between 13 August 2019 and 11 December 2019 as well as

cloud-free Level-1C Sentinel-2 optical data acquired on 15

November 2019 are used for analysis. The detailed speci-

fications of the datasets used are given in Table 1. These

datasets are freely available for researchers to download

from the ESA Copernicus open access hub.

Ground-Truth Data

Two ground-truth data collection campaigns were carried

over the study area during paddy crop growing season. The

first campaign was done during the initial crop growth

stage, i.e., between 20 and 23 September 2019 to collect

necessary information for paddy crop mapping. During this

Fig. 1 Location map of the study area. Red dots on the map represent the locations selected for CCE experiments
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campaign, field boundaries and tracks were recorded using

handheld GPS along with the crop type and health status

details.

The second campaign was carried out between 9 and 23

December 2019 during the harvesting phase of the paddy

crop. Field level paddy yield data are collected from

selected fields, well distributed in the study area, using the

Crop Cutting Experiment (CCE) approach. The dimension

of CCE size (5 m 9 5 m) for the field level yield estima-

tion was selected on the basis of government state rule.

These fields are identified using the smart sampling

techniques, detailed procedure is given in the following

section. This enables the study to be comprehensive by

considering the wide range of variations in the paddy crop

patterns which includes early, mid and late sown crops.

During the ground-truth data collection, an Android-based

mobile application developed by Amnex Infotechnologies

Pvt. Ltd., was used for CCE sample collection. The

information collected through CCE mobile app consists of

geographic coordinates (latitude & longitude), district,

taluk, gram panchayat/ village name, date of CCE, farmer

name, farmer contact number, crop name, crop variety,

CCE size detail, land details, biomass weight, grain wet

weight, grain dry weight, moisture percentage, pho-

tographs, other remarks (stress, disease, pest), etc. The

plot-wise measured paddy grain weight and moisture

content are used to estimate actual yield (dry grain weight).

In this study, a total 137 CCE sample points have been

collected over the parts of Cuttack District.

Methodology

Initially, multi-temporal SAR datasets are preprocessed and

co-registered with cloud-free optical data in order to mini-

mize shifts between images. The preprocessed multi-tem-

poral Sentinel-1 SAR data are integrated with ground-truth

data collected during the first campaign for paddy crop

mapping, based on the workflow proposed by Sivasankar,

Sharma, et al. (2020). Further analyses are carried over

paddy fields using cloud-free optical data for the selection of

locations to carry out CCE experiments. The detailed process

of the smart sampling method used in this study is given in

the following subsection. Later, field boundaries, locations

and tracks recorded during the ground-truth data collection

are overlaid on SAR imagery to extract the backscattering

coefficients (r0VV and r0VH) signature from sampled agricul-

tural fields. These multi-temporal backscatter signatures are

analyzed with a polynomial curve fitting approach to obtain

the peak stage signature of paddy crop patterns which

includes early, mid and late sown crops. This peak stage

signature of backscattering coefficients is related to in situ

paddy yield (collected during the second ground-truth data

collection campaign) to train and validate theANNaswell as

to test the same. The detailed flowchart of themethodology is

given in Fig. 2. As the sampled fields are considered over flat

terrain, the influence of topographic characteristics is

neglected in the study.

Sentinel-1 SAR Data Preprocessing

The C-band dual-polarization (VV ? VH) Sentinel-1A

Level-1 GRD SAR imagery are preprocessed using

Table 1 Specifications of satellite data used in the study

Product Specifications Specification details

Sentinel-1

SAR

Image

acquisition

13 Aug 19, 25 Aug19, 06 Sep19, 18 Sep 19, 30 Sep 19, 12 Oct 2019, 12 Oct 19, 24 Oct 19, 05 Nov 19, 17 Nov

2019, 29 Nov 19 and 11 Dec 19

Imaging mode Interferometric wide (IW)

Acquisition

orbit

Ascending/descending

Imaging

frequency

C-band (5.46 Hz)

Polarization VH and VV

Resolution

mode

5 9 20 m

Sentinel-2

Optical

Image

acquisition

15 November 2019

Bands used NIR, Red and SWIR

Resolution 10 m, 10 m and 20 m

Product Level-1C (TOA reflectance)
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Sentinel Application Platform (SNAP), an open-source

software developed by Brockmann Consult, SkyWatch,

Sensar and C-S. At first, Sentinel-1 SAR data applied a

precise orbit of acquisition and thermal noise removal.

Then, radiometric calibration was carried to convert digital

number (DN) values of raw data into sigma nought

backscatter (r0) values which are proportional to the

intensity of backscattered signal from a unit area on

ground. This is followed by removal of speckle (black and

pepper) noise, which is inherently in SAR images due to

the coherent nature of the acquisition, using a refined Lee

filter with window kernel size of 5 9 5 pixels. Later, it was

applied to Range Doppler terrain correction using the

Shuttle Radar Topography Mission (SRTM) digital eleva-

tion model at a spatial resolution of 1 arc second (30 m) as

reference. These datasets are converted to dB logarithmic

units, co-registered and resampled to 20 m pixel spacing

before utilizing them for crop classification and yield

estimation purposes.

Remote Sensing-Based CCE Sampling

The sampling fields for in situ yield data collection are

identified using the smart sampling technique based on

stratification of normalized difference vegetation index

(NDVI) and normalized difference water index (NDWI),

proposed by Kriegler et al. (1969) and Gao (1996),

respectively, generated from cloud-free Sentinel-2 optical

data acquired on 15 November 2019 (see Fig. 3a, b).

Among these indices, NDVI measured using near-infrared

(NIR) and red bands indicates the photosynthetically active

biomass, whereas NDWI measured using NIR and short-

wave infrared (SWIR) bands represents the water content

of leaves. Thus, these two indices provide a better indicator

to assess the spatial distribution of crop health status across

the study area. The paddy crop in the study area is initially

categorized into five different classes based on the NDVI

and NDWI values. Then, the sampling fields (as given in

Fig. 3c) are identified using a stratified sampling approach

based on the crop health status by keeping in mind the

accessibility and possibility to measure in situ yield data.

Therefore, this enables the study to be comprehensive by

considering the wide range of variations in paddy crop

patterns.

ANN for Crop Yield Estimation

A two-layer feedforward neural network comprising one

hidden layer with sigmoid neurons and one output layer

with linear neurons, available in the MATLAB software is

employed for the study analysis. The typical structure of

this type of ANN is illustrated in Fig. 4. The neural

Fig. 2 Flowchart of the

methodology
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network operates based on the weights and biases between

layers (as given in Eq. 1) to minimize errors during the

training phase of the model. In this study, the model was

attempted twice with backscattering coefficients (first

attempt with r0VV whereas second attempt with r0VH) as

inputs and one hidden layer with 10 neurons to infer paddy

yield. The total of 137 samples are randomly divided into

three independent sets, i.e., 95 samples (& 70%) for

training the model whereas two different sets of 21 samples

(& 15%) for validation and testing purposes. Among these

sets, training samples are basically used during training and

further corrections in the network based on the error cal-

culated from validation samples, whereas the testing sam-

ples provide an independent measure of network

performance during and after training. This study consid-

ered the Levenberg–Marquardt algorithm for network

training process and mean squared error (MSE) is the

average squared difference between estimated and actual

yield, for assessing the performance. The ANN model

automatically adjusts weights and biases during each

training iteration to provide an optimum trained model

based on the performance.

y ¼ f
X

j

wijxij þ b

 !
ð1Þ

where ‘y’ and ‘x’ represent the output and input of the

model, respectively; f(.) indicates the complex neural net-

work function; ‘w’ and ‘b’ indicate weights and bias,

respectively; and ‘i’ and ‘j’ indicate the number of inputs

and neurons in hidden layer, respectively.

Results and Discussion

In this study, the maximum likelihood supervised classifi-

cation was used for paddy crop classification using multi-

temporal dual-polarized (VV ? VH) Sentinel-1A SAR

data. During this process, the ground-truth information

collected over 65 locations during the first campaign is

randomly divided into two sets in which 46 (& 70%) are

used for training and 19 (& 30%) are used for validation

purposes. It is well known that the pixel-based classifica-

tion methods like maximum likelihood commonly observe

‘salt and pepper’ or speckled appearance which limits its

accuracy (Lu & Weng, 2007). Thus, the classification

output underwent post-classification processing in ArcGIS

software which includes filtering, smoothening and gener-

alization. The final paddy crop map (given in Fig. 5) has

significantly improved the classification performance with

overall accuracy of 91.25% and observed an area of about

97,000 ha.

As discussed in ‘Remote Sensing-Based CCE sampling’

section, ground-truth sampling fields are identified for

paddy yield data collection. The study analysis observed

that the study area is majorly covered by good and excel-

lent crop health status with an area of about 12,270.49 ha

(which contributes 12.56% of total paddy area). Table 2

provides the area (ha) under each category of crop health

status and number of CCE samples taken in the corre-

sponding category. The statistical analysis of in situ yield

data observes mean and standard deviation of 5286.55 kg/

ha and 1115.21 kg/ha, respectively. It is also observed that

the kurtosis of 0.45 and 0.51 indicates the data is most

closely representing the normal distribution (see Fig. 6).

This clearly shows that the data is not having influential

outliers or extreme values for further analysis. Thus, the

ground-truth paddy yield data has been considered for

prediction modeling using multi-temporal SAR data.

The time-series backscattering coefficients (r0), as

given in Fig. 7, show the various paddy crop growth pat-

terns in the study area. It is observed that the increase in

backscatter (r0VV and r0VH) during the crop growth from

initial stage to mature stage whereas the backscatter is

decreased between mature stage and harvesting. Several

previous studies (Choudhury & Chakraborty, 2006; Patel &

Srivastava, 2013; Yang et al., 2014) have also observed

similar trends of SAR backscatter with paddy crop growth.

During the peak crop growth stages, the microwave signal

interacts more with crop cover than the underneath soil.

This enables the remotely sensed data at peak crop growth

stages as a crucial input to infer the crop bio-geophysical

parameters including grain yield (Brandão et al., 2015; Liu

et al., 2019). Thus, the study estimated the highest value of

r0VV and r0VH during the crop growing season from each

sampled plot for further analysis. The study observed that

the peak mature stage of paddy crop with mean and stan-

dard deviation of -8.9 dB and 1.48 dB, respectively, for

VV polarization whereas - 14.22 dB and 1.2 dB, respec-

tively, for VH polarization.

The peak crop growth backscatter signatures in VV and

VH polarization are analyzed to retrieve the paddy yield

using ANN algorithm. It is observed that cross-polarization

bFig. 3 Analysis of vegetation indices for stratification of paddy crop:

a NDVI, b NDWI and c CCE sampling points

Fig. 4 Structure of a two-layer feedforward neural network
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Fig. 5 Paddy classification map of the study area

Table 2 Area of paddy crop

health status categories and

CCE samples taken for the

study

S. no. Crop health status Area (ha) Percentage (%) Number of CCE samples

1 Very poor 2814.4 2.88 15

2 Poor 9456.09 9.68 25

3 Moderate 16,764.44 17.15 41

4 Good 27,874.66 28.52 34

5 Excellent 40,823.79 41.77 22

Fig. 6 Analysis of ground-truth data: a histogram of yield data with normal distribution curve and b normal probability plot
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(r0VH) has better performance for paddy yield estimation

than the like polarization (r0VV) data (see Fig. 8) due to the

multiple scattering within the crop canopy at the peak stage

and less influence by the crop surface condition (Ranson, &

Sun, 1994; Wang et al., 2019). The training results for the

r0VH backscatter show that the overall values are greater

than 0.72 with the validation and test results also showed

the good coefficient of determination (R2), 0.75 and 0.70,

respectively, between estimated yield and observed yield.

But in case of r0VV backscatter, the training result shows the

poor ‘R2’ value of 0.26 with the validation and test result

also showed poor ‘R2,’ 0.36 and 0.14 in comparison of VH

polarization. Moreover, the best validation performance

was observed for r0VH at epoch 4 whereas the r0VV at epoch

14. This clearly indicates that the cross-polarization (VH)

backscattering coefficients are more suitable for paddy

Fig. 7 Polynomial curve fit plot: a–c VH-backscatter and d–f VV-backscatter

Fig. 8 Training, validation and test results for VV polarization and VH polarization between observed paddy yield and estimated yield a VV

polarization and b VH polarization
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yield estimation than the like polarization (VV). The study

results support the previous studies (Inoue et al.,

2014a, 2014b; Parida & Singh, 2021; Patel & Srivastava,

2013) in observing the cross-polarization for retrieving

crop bio-geophysical parameters due to the multiple scat-

tering in crop cover.

The study further analyzed the error distribution during

training, testing and validation process for each ANN

model. Error histograms (difference between actual and

predicted yield value) given in Fig. 9 represents the error

value, error frequency and zero error for r0VV and r0VH
backscattering coefficients. It is observed that the zero error

is illustrated with a yellow line in the middle with 12

instances for r0VH and 5 instances for r0VV in the training

set. It is also observed that the errors in training, test and

validation sets are more inclined to zero meaning, indi-

cating that these ANN models have a high degree of gen-

eralizability. The detailed study results about the

performance of r0VV and r0VH for paddy yield forecasting

are given in Table 3 and spatial distribution of paddy yield

derived from r0VH using ANN is given in Fig. 10.

The study was used the ANN model to predict paddy

yield and build a spatial map of the study area. The spatial

map (Fig. 10) depicts the distribution of minimum, mean

and maximum paddy yields across the research area. The

minimum, mean and maximum yield values were found to

be 394 kg/ha, 4791 kg/ha and 8498 kg/ha, respectively.

Also, it has been observed that distribution of low yields

pixels ranging from 394 kg/ha to 1743 kg/ha, is very low

in comparison with distribution of mean and maximum

yield pixels. We have verified with optical data as well and

found that total 2.99 ha of very low yield value pixel due to

the very low density of paddy crop. The results also indi-

cate the overestimation of grain yield pixels, ranging

6646 kg/ ha to 8498 kg/ha, near to the river and coastal

area, as well as a low land area with high moisture avail-

ability regions with total area of 2203.657 ha of very high

yield pixels.

The study results show comparable accuracy obtained

from previous studies (Maki et al., 2017; Setiyono et al.,

2017) where remote sensing data integrated with climate

variables and crop growth models. It is also demonstrated

that the proper choice of input data and effective use of

ANN may provide reasonable accuracy and precision that

is observed from integrated use of remotely sensed imagery

and crop growth models.

Conclusions

The study focuses on analyzing the potentials of dual-po-

larization (VV ? VH) C-band Sentinel-1 SAR data for

paddy yield forecasting using ANN model. A completely

remotely sensed imagery (optical ? SAR) has been pro-

posed in this work to properly select the locations for

ground-truth data collection as well as paddy yield esti-

mation. In this study, the artificial neural network model

has been used for estimating the paddy yield from VV and

VH polarization signatures during the peak stage of paddy

crop growth. It is observed that the VH polarization is

highly sensitive and provides better accuracy than the VV

Fig. 9 Error histogram with 20 bins for the training, validation and test steps: a r0VV and b r0VH
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polarization. This is because of the cross-polarization

sensitivity toward the multiple scattering of microwave

signals in crop cover. The study results exhibit that the

effective use of ANN model integrated with remotely

sensed imagery may provide comparable accuracy that is

observed from crop growth models which require a lot of

information regarding crop, soil, weather, etc. However,

the proposed methodology needs to be further analyzed

over different study areas to understand its applicability for

operational applications as well as influence of weather

parameters and others.
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Lek, S., & Guégan, J. F. (1999). Artificial neural networks as a tool in

ecological modelling, an introduction. Ecological Modelling,
120(2–3), 65–73.

Li, Y., Liao, Q., Li, X., Liao, S., Chi, G., & Peng, S. (2003). Towards

an operational system for regional-scale rice yield estimation

using a time-series of Radarsat ScanSAR images. International
Journal of Remote Sensing, 24(21), 4207–4220.

Liao, C., Wang, J., Shang, J., Huang, X., Liu, J., & Huffman, T.

(2018). Sensitivity study of Radarsat-2 polarimetric SAR to crop

height and fractional vegetation cover of corn and wheat.

International Journal of Remote Sensing, 39(5), 1475–1490.
Liu, J., Shang, J., Qian, B., Huffman, T., Zhang, Y., Dong, T., Jing,

Q., & Martin, T. (2019). Crop yield estimation using time-series

MODIS data and the effects of cropland masks in Ontario,

Canada. Remote Sensing, 11(20), 2419.
Lu, D., & Weng, Q. (2007). A survey of image classification methods

and techniques for improving classification performance. Inter-
national Journal of Remote Sensing, 28(5), 823–870.

Macelloni, G., Paloscia, S., Pampaloni, P., Marliani, F., & Gai, M.

(2001). The relationship between the backscattering coefficient

and the biomass of narrow and broad leaf crops. IEEE
Transactions on Geoscience and Remote Sensing, 39(4),
873–884.

Mahajan, G., Kumar, V., & Chauhan, B. S. (2017). Rice production in

India. In B. S. Chauhan, K. Jabran, & G. Mahajan (Eds.), Rice
production worldwide (pp. 53–91). Springer.

Maki, M., Sekiguchi, K., Homma, K., Hirooka, Y., & Oki, K. (2017).

Estimation of rice yield by SIMRIW-RS, a model that integrates

remote sensing data into a crop growth model. Journal of
Agricultural Meteorology, 73(1), 2–8.

Mandal, D., & Rao, Y. S. (2020). SASYA: An integrated framework

for crop biophysical parameter retrieval and within-season crop

yield prediction with SAR remote sensing data. Remote Sensing
Applications: Society and Environment, 20, https://doi.org/10.
1016/j.rsase.2020.100366.

Mas, J. F., & Flores, J. J. (2008). The application of artificial neural

networks to the analysis of remotely sensed data. International
Journal of Remote Sensing, 29(3), 617–663.

Murthy, C. S., Raju, P. V., & Badrinath, K. V. S. (2003).

Classification of wheat crop with multi-temporal images:

Performance of maximum likelihood and artificial neural

networks. International Journal of Remote Sensing, 24(23),
4871–4890.

Parida, B. R., & Singh, S. (2021). Spatial mapping of winter wheat

using C-band SAR (Sentinel-1A) data and yield prediction in

Gorakhpur district, Uttar Pradesh (India). Journal of Spatial
Science. https://doi.org/10.1080/14498596.2021.1896393

Patel, N. K., Ravi, N., Navalgund, R. R., Dash, R. N., Das, K. C., &

Patnaik, S. (1991). Estimation of rice yield using IRS-1A digital

data in coastal tract of Orissa. International Journal of Remote
Sensing, 12(11), 2259–2266.

Patel, P., & Srivastava, H. S. (2013). RADARSAT-2 announcement

of opportunity project on soil moisture, surface roughness and

906 Journal of the Indian Society of Remote Sensing (May 2022) 50(5):895–907

123

https://doi.org/10.1016/j.rsase.2020.100366
https://doi.org/10.1016/j.rsase.2020.100366
https://doi.org/10.1080/14498596.2021.1896393


vegetation parameter retrieval using SAR polarimetry. In SAC/
EPSA/MPSG/CVD/TDP R& D/01/13, SOAR International Clos-
ing and Reporting–2013.

Patel, P., Srivastava, H. S., & Navalgund, R. R. (2006). Estimating

wheat yield: an approach for estimating number of grains using

cross-polarised ENVISAT-1 ASAR data. In Microwave remote
sensing of the atmosphere and environment V (Vol. 6410,

p. 641009). International Society for Optics and Photonics.

Prasad, R., Pandey, A., Singh, K. P., Singh, V. P., Mishra, R. K., &

Singh, D. (2012). Retrieval of spinach crop parameters by

microwave remote sensing with back propagation artificial

neural networks: A comparison of different transfer functions.

Advances in Space Research, 50(3), 363–370.
Ranjan, A. K., & Parida, B. R. (2021). Predicting paddy yield at

spatial scale using optical and Synthetic Aperture Radar (SAR)

based satellite data in conjunction with field-based Crop Cutting

Experiment (CCE) data. International Journal of Remote
Sensing, 42(6), 2046–2071.

Ranson, K. J., & Sun, G. (1994). Mapping biomass of a northern

forest using multifrequency SAR data. IEEE Transactions on
Geoscience and Remote Sensing, 32, 388–396.

Setiyono, T. D., Holecz, F., Khan, N. I., Barbieri, M., Quicho, E.,

Collivignarelli, F., Maunahan, A., Gatti, L., & Romuga, G. C.

(2017). Synthetic Aperture Radar (SAR)-based paddy rice

monitoring system: Development and application in key rice

producing areas in Tropical Asia. In IOP conference series:
Earth and environmental science (Vol. 54, No. 1, p. 012015).

IOP Publishing.

Setiyono, T. D., Quicho, E. D., Holecz, F. H., Khan, N. I., Romuga,

G., Maunahan, A., Garcia, C., Rala, A., Raviz, J., Collivignarelli,

F., Gatti, L., Barbieri, M., Phuong, D. M., Minh, V. Q., Vo, Q.

T., Intrman, A., Rakwatin, P., Sothy, M., Veasna, T., …
Mabalay, M. R. O. (2019). Rice yield estimation using synthetic

aperture radar (SAR) and the ORYZA crop growth model:

development and application of the system in South and South-

east Asian countries. International Journal of Remote Sensing,
40(21), 8093–8124.

Sharifi, A., & Hosseingholizadeh, M. (2020). Application of Sentinel-

1 data to estimate height and biomass of rice crop in Astaneh-ye

Ashrafiyeh, Iran. Journal of the Indian Society of Remote
Sensing, 48(1), 11–19.

Sivasankar, T., Kumar, D., Shanker Srivastava, H., & Patel, P. (2020).

Wheat leaf area index retrieval using RISAT-1 hybrid polarized

SAR data. Geocarto International, 35(8), 905–915.
Sivasankar, T., Kumar, D., Srivastava, H. S., & Patel, P. (2018).

Advances in radar remote sensing of agricultural crops: A

review. International Journal on Advanced Science, Engineering
and Information Technology, 8, 1126.

Sivasankar, T., Sharma, P. K., Ramya, M. N. S., Venkatesh, P., &

Bairagi, G. D. (2020b). Evaluation of multi-temporal Sentinel-1

dual polarization SAR data for crop type classification. In Spatial
Information Science for Natural Resource Management (pp.

44–61). IGI Global.

Wang, J., Dai, Q., Shang, J., Jin, X., Sun, Q., Zhou, G., & Dai, Q.

(2019). Field-scale rice yield estimation using Sentinel-1A

Synthetic Aperture Radar (SAR) data in coastal saline region

of Jiangsu Province, China. Remote Sensing, 11, 2274. https://
doi.org/10.3390/rs11192274

Yang, Z., Li, K., Liu, L., Shao, Y., Brisco, B., & Li, W. (2014). Rice

growth monitoring using simulated compact polarimetric C band

SAR. Radio Science, 49(12), 1300–1315.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Journal of the Indian Society of Remote Sensing (May 2022) 50(5):895–907 907

123

https://doi.org/10.3390/rs11192274
https://doi.org/10.3390/rs11192274

	Assessing the Potentials of Multi-temporal Sentinel-1 SAR Data for Paddy Yield Forecasting Using Artificial Neural Network
	Abstract
	Introduction
	Study Area and Datasets Used
	Study Area
	Satellite Data
	Ground-Truth Data

	Methodology
	Sentinel-1 SAR Data Preprocessing
	Remote Sensing-Based CCE Sampling
	ANN for Crop Yield Estimation

	Results and Discussion
	Conclusions
	Funding
	References




