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Abstract
This research paper investigates urban sprawl in Thiruvananthapuram Urban Agglomeration (UA) and attempts to

delineate Urban Growth Boundary (UGB) for promoting urban sustenance. A 112% rise in the spatial expanse of

Thiruvananthapuram UA from 256.22 km2 in 2001 to 542.57 km2 in 2011 might induce urban sprawl in the peripheral

areas. The Landsat satellite imagery for the years 1987, 1997, 2007, and 2017 were extracted to examine the spatiotemporal

urban growth pattern. Shannon’s entropy index was employed to detect urban sprawl in Thiruvananthapuram UA. The

UGB delineation process involved future urban growth prediction using the MOLUSCE (Modules for Land Use Change

Simulations) plug-in of QGIS software. ANN-MLP (Artificial Neural Network-Multi Layer Perceptron) and CA (Cellular

Automata) model was preferred in MOLUSCE to predict future urban growth for the year 2027. Thereafter, hexagons of

one square kilometer were used to demarcate the Contiguous built-up Growth Boundary (CGB), and later, sub-adminis-

trative units were selected to delineate UGB. The results revealed a rise in the built-up areas from 36.04 km2 in 1987 to

140.69 km2 in 2017. Shannon’s entropy index indicated the prevalence of urban sprawl in Thiruvananthapuram UA. The

future growth prediction by 2027 exhibited a further rise in built-up areas to 173.31 km2. The total area within CGB is

213.58 km2, while UGB accounted for 355.59 km2, which included 16 sub-administrative units. This study exhibited a

unique methodology to delineate the urban growth boundary, which optimizes the future land requirements in developing

nations.
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Introduction

The world’s population is expected to rise 10% by 2030

and a further 26% by 2050, wherein such growth will

predominantly occur in the urban areas and their sur-

roundings (United Nations, 2019). The saturation of large

cities has shifted the hotspot of future urban growth to mid-

sized cities with a population between 0.5–5 million (Perez

et al., 2019). However, due to the lack of proper urban

planning strategies in India, urban sprawl is likely to occur

in mid-sized cities (Chettry & Surawar, 2020). Such a

pattern of urban growth marks a significant hurdle toward

promoting safe, resilient, inclusive, and sustainable cities

as per the 11th Sustainable Development Goal framed by

the United Nations.

The rapid urban growth in Indian cities has accelerated

peripheral urban growth and negatively affected the natural

environment (Kumar & Pandey, 2013; Aithal &

Ramachandra, 2016; Diksha and Kumar, 2017). Urban

sprawl is a complex and dynamic phenomenon, and hence

it has become challenging to achieve a consensus on the

definition and measurement methods (Bhatta, 2012; Mai-

thani, 2020). The significant characteristics of urban sprawl

observed in Indian cities are rapid land cover changes

(Mandal et al., 2019), low-density development (Alsharif

& Pradhan, 2014), haphazard and unplanned growth

(Aithal & Ramachandra, 2016; Sudhira et al., 2003),

decrease in agricultural land and open spaces (Sahana
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et al., 2018; Singh & Singh, 2020), and increase in urban

heat island (Singh & Kalota, 2019). Urban sprawl has been

assessed using remote sensing (RS) and geographic infor-

mation system (GIS) in combination with Shannon’s

entropy index, landscape metrics, expansion metrics, and

spatial metrics (Saini & Tiwari, 2020).

There are multiple strategies aimed to contain and reg-

ulate urban sprawl, such as adequate public facilities

ordinances, annexation, development priority zoning

(DPZ), exclusive agricultural zoning, green belt, infill

growth, infrastructure concurrency requirements, land

purchase by the government, mitigation ordinance, urban

service boundary (USB), urban growth boundary (UGB),

transfer of development rights (TDR), and zoning (Beng-

ston & Youn, 2006; Bhatta, 2010; Elson et al., 1993;

Nelson & Moore, 1993; Wang et al., 2017). Comparatively,

UGB is widely reviewed in academia and is also the most

successful urban containment tool (Ding et al., 1999;

Easley, 1992; Tayyebi et al., 2011; Yang et al., 2019).

UGB, by definition, is a line drawn to distinguish urban

from rural areas, wherein compact, contiguous growth is

promoted within the boundary, while agricultural lands,

open spaces, forests, and ecologically fragile regions are

protected outside the boundary (Carter, 2009; Meck, 2002).

The advantages of UGB are its ability to curtail urban

sprawl (Mubarak, 2004), shifts urban growth from green-

field sites (Morrissey et al., 2018), restricts the radius of a

city (He et al., 2018), and lowers the cost of infrastructure

provision and maintenance (Jain et al., 2019). In India, the

concept of UGB is mainly inclined toward British green

belts and was incorporated in the master plan of Indian

cities such as Chandigarh in 1952 (Chalana, 2015), sub-

sequently Ahmedabad in 1967 (Mell, 2017), Bengaluru in

1972 (Venkataraman, 2013), and Delhi in 1987 (Jain &

Siedentop, 2014). However, the green belts were found to

have limited success in India; therefore, UGB has been

suggested as the potential substitute planning tool to con-

tain future urban growth and limit urban sprawl (Jain et al.,

2019).

Most of the UGBs implemented in the cities worldwide

adopt traditional methods, such as statistical projection of

the future urban population and land demand, stakeholder

discussions, and a primary survey of the city (Al-Hathloul

& Mughal, 2004; State of Victoria, 2002; Yang et al.,

2020). Due to scientific advancements in recent years, the

UGB delineation process has started to utilize landscape

metrics for Wuhan, China (He et al., 2018) and a combi-

nation of the SLEUTH (slope, land use, exclusion, urban

extent, transportation, and hill shade) model with the land

regulation policies for Changzhou, China (Jiang et al.,

2016). In India, IURP (Ideal Urban Radial Proximity),

based on the concept of the circular city for Kolkata

(Bhatta, 2009) and the ANN model for Siliguri

(Chakraborti et al., 2018) were attempted to delineate

UGB. However, most of the simulated UGBs are tedious to

implement in India due to issues related to administrative

jurisdictions. In developing countries, flexible UGB is

required to cater to existing and future land demands for

development (Jain et al., 2019). The National Urban Policy

Framework of India in 2018 prioritized the implementation

of UGB for the sustainable development of urban

agglomerations (MoHUA Govt. of India, 2018). Never-

theless, the research related to UGB delineation using

modern scientific methods is at the very initial stages in

India.

Thiruvananthapuram UA had experienced an increase

(112%) in the spatial expanse from 256.22 km2 in 2001 to

542.57 km2 in 2011, which might induce urban sprawl in

the peripheral areas. Moreover, the city is surrounded by

the fragile ecology of the coastal plains region, wherein

rapid urban sprawl poses a major threat (Arulbalaji et al.,

2020). Therefore, this study attempts to exhibit a unique

UGB delineation method for Thiruvananthapuram UA by

utilizing hexagon cells of one square kilometer and sub-

administrative boundaries. The major objectives of this

paper are to: (1) conduct land cover change detection of

Thiruvananthapuram UA during 1987, 1997, 2007, and

2017; (2) simulate future urban growth through ANN-MLP

and CA model; and (3) delineate CGB and UGB based on

the combination of hexagon cells and administrative

boundaries of the study area.

Study Area

Thiruvananthapuram is the capital city of Kerala state of

India (Fig. 1). It is one of the extremely urbanized cities in

the state and is located in the coastal plains along the

Lakshadweep sea. Thiruvananthapuram UA includes 30

sub-administrative units within its boundary, i.e., one

Municipal Corporation (M.Corp.), three Municipalities

(M), twenty-four Census Towns (CT), and two Outgrowths

(OG). As per the Census of India 2011, Thiruvananthapu-

ram UA has a total population of 1.687 million within an

area of 542.57 km2. It has an undulating terrain, and the

elevation varies from 0 to 257 m from mean sea level.

Earlier the city was an educational and research hotspot,

but after the economic liberalization of the Indian econ-

omy, it has evolved as an IT hub in the state.

Research Methods

The flowchart of this research is shown in Fig. 2. The

details of the Landsat satellite images for the years 1987,

1997, 2007, and 2017 are presented in Table 1. The total
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population, UA boundary, and the constituents of Thiru-

vananthapuram UA were availed from the Census of India

2011 website. Other essential data, such as state boundary

and district boundary, were obtained from the administra-

tive atlas of India. The nearest neighbor assignment tech-

nique was adopted for resampling the 1987 Landsat image

to 30 m resolution. The downloaded satellite images were

used to conduct land cover change detection through the

maximum likelihood supervised classification (MLC) tool

in ArcGIS 10.3. Shannon’s entropy index was used to

detect urban sprawl. Further, in QGIS 2.8.4, the

MOLUSCE plug-in was employed to predict land cover for

the year 2027. However, before utilizing the model for

prediction, the accuracy of the model was determined by

comparing the 2017 MLC land cover map with the simu-

lated land cover map of 2017. Thereafter, one sq. km

hexagon cells combined with administrative boundary

were used to delineate contiguous built-up growth bound-

ary and urban growth boundary.

Land Cover Classification

The downloaded Landsat satellite images were georefer-

enced to Universal Transverse Mercator (UTM) Zone

43 N. Dark-Object Subtraction (DOS) method was

employed for the atmospheric correction of the satellite

images (Dutta & Das, 2019). The study area was clipped

using the vector file of the Thiruvananthapuram UA

boundary in ArcGIS 10.3. All the required layers of

satellite images were merged, and a composite image was

obtained before proceeding with the land cover classifica-

tion process. The accuracy and precision of the classifica-

tion process were enhanced by increasing the texture of the

composite images and preparing a false-color composite

using the optimum index factor for each period (Kalkhajeh

& Jamali, 2019). After thorough visual image interpreta-

tion, land cover maps were obtained using the MLC tool

(Bharath et al., 2014). Despite these measures, a few mixed

pixels observed during the classification process were

removed through the reclassification process. The MLC

tool predicts the probability of pixels belonging to a land

cover class based on the Bayes’ theorem, as

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ ð1Þ

where A and B are events and P Bð Þ 6¼ 0; P AjBð Þ is the

likelihood of event A occurring given that B is true, P BjAð Þ
is the likelihood of event B occurring given that A is true,

P Að Þ and P Bð Þ are the probabilities of observing A and B

independently of each other.

Fig. 1 Location map of Thiruvananthapuram Urban Agglomeration
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shown in Eq. 1 (Alkaradaghi et al., 2019).

The images were classified into five major land cover

classes, i.e., vegetation, built-up, water body, agriculture,

and fallow land (John et al., 2020; Prasad & Ramesh, 2019;

Xu et al., 2010). The accuracy of the obtained land cover

maps was assessed through the ground truth data collected

from the Google Earth archives (Shooshtari et al., 2019).

For each land cover class, 50 ground truth points, i.e., a

Fig. 2 Flowchart of the methodology adopted in the study

Table 1 Descriptions of Landsat satellite images used in the study

Landsat sensor Thiruvananthapuram UA

Scene ID/Tile number Path/Row No. of bands Acquisition date Resolution (m)

4–5 TM Mosaics MTN-43-05_LOC 03 19 February 1987 28.5

5 TM LT51440541997043SGI00 144/54 07 12 February 1997 30

7 ETM ? LE71440542007047SGS00 144/54 08 16 February 2007

8 OLI_TIRS LC81440542017002LGN01 144/54 11 02 January 2017
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total of 250 random samples, were collected (Girma et al.,

2019; M and M, 2019). Overall accuracy (OA) and kappa

coefficients (ki) were determined for each land cover map

as shown in Eq. 2 and 3 (Congalton, 1991; Setturu, 2013).

OA ¼
Pk

i¼1 nij
n

ð2Þ

ki ¼
P oð Þ � P eð Þ

1 � P eð Þ
ð3Þ

where nij ¼ diagonal elements in the error matrix, k ¼ total

number of classes, n ¼ total number of samples in the error

matrix, P oð Þ ¼ observed proportion of agreement, P eð Þ ¼
proportion expected by chance.

Shannon’s Entropy Index

After obtaining the required accuracy standards, the built-

up land cover was extracted to analyse the urban growth

pattern. Shannon’s entropy index was used to detect urban

sprawl (Sudhira et al., 2003). In this method, the index

value approaching zero indicates concentrated urban

development, while the values nearer to log e nð Þ indicate

Hn ¼ �
Xn

i¼1

Pi log e Pið Þ ð4Þ

Pi ¼ Xi=
Xn

i¼1

Xi ð5Þ

where Pi is the probability or the proportion of the variable

occurring in the zone i. In this research, the study area is

divided into eight cardinal direction therefore, the value of

n is 8.

the occurrence of urban sprawl. Shannon’s entropy Hn is

calculated, as shown in Eq. 4 and 5.

MOLUSCE

MOLUSCE (Module for Land use change evaluation)

plug-in, programmed jointly by Asia Air Survey Co. Ltd.

and NEXTGIS for QGIS 2.8.4 software, was used to

forecast land cover change within an area. The interface of

the MOLUSCE plug-in is easy to use and includes basic

modules such as input variables, area change analysis,

transition potential modeling, simulation, and validation

(Asia Air Survey & Next GIS, 2012). The model was

trained by producing a 2017 simulated land cover map

based on the actual land cover maps of 1987, 1997, and

2007. Since the gap between each consecutive study period

is ten years, the future land cover was predicted for the year

2027. The input variables contain raster land cover maps of

1987, 1997, and 2007 and spatial variables as driving

factors. The prominent urban growth drivers (Fig. 3)

gathered from the literature to simulate future built-up

growth includes slope, hill shade, DEM, distance from the

urban core, suburban centers, waterbody, railways, major

roads, airport, and future urban centers (Long et al.,

2012, 2013; Liu et al., 2016; Wang et al., 2018; Jamali and

Kalkhajeh, 2019).

The slope and hill shade maps were extracted from

DEM, while other raster maps of growth drivers were

obtained by calculating Euclidean distances from the

respective vector datasets. The DEM of the study area

ranges from 0 to 237 m from the mean sea level. The slope

map exhibited the presence of hills within the city. The

distance from the urban core revealed an occurrence of

high urban growth in the core and gradual decline toward

the periphery, especially toward the north-west direction of

Thiruvananthapuram UA. The suburban centers included

three municipalities, i.e., Attingal, Nedumangad, and

Neyyattinkara. The distance from the waterbody is another

essential factor to be considered for future urban growth

prediction. The location of the railway line, major roads,

and airports is major contributing factors to the land cover

change of an area. Thus, the Euclidean distances from these

vector datasets were determined to forecast urban growth.

Before proceeding with the simulation, the raster image of

all the drivers was scaled between - 1 to 1 using the raster

calculator function in ArcGIS 10.3 to avoid inconsistency

in datasets. After that, the area change analysis produces a

land cover change map and land cover class statistics of

each year to display ‘from-to’ changes during the period.

To conduct transition potential modeling in MOLUSCE,

the ANN-MLP model is preferred due to its higher com-

puting performance (El-tantawi et al., 2019; Tayyebi et al.,

2011). It is a nonlinear data analysis algorithm that trains

urban growth drivers and considers complex underlying

features during modeling (Maithani, 2009; Yang et al.,

2016). This model creates a transition probability map

through input, hidden, an output layers, which altogether

forms a multilayer perceptron (Pijanowski et al., 2002).

The training parameters adopted to customize the

MOLUSCE model are shown in Table 2.

The training of neurons involves the feed-forward of the

weighted input neuron, the backpropagation of the asso-

ciated error, and the adjustment of the weights using a

standard delta rule. Thereafter, Cellular Automata (CA)

was used to predict future urban growth within Thiru-

vananthapuram UA; it is considered highly accurate in

such studies (Santé et al., 2010). An urban CA model

involves a disconnected cell space characterized by its

function, qualitative data (land uses), and quantitative

urban data. In the CA model, the previous state of each cell

and the state of neighboring cells affect the current state of

each cell. For the validation of the model, the reference

pixels from the 2017 simulated map obtained through
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MOLUSCE were compared with the land cover map of

2017 obtained through the MLC process. The overall

accuracy and Kappa (overall) were determined to assess

the accuracy of the model. After obtaining the desired

Fig. 3 Urban growth drivers used for future growth prediction of

Thiruvananthapuram UA, a Slope, b Hill shade, c DEM, d Distance

from urban core, e Distance from suburban centers, f Distance from

waterbody, g Distance from railways, h Distance from major roads,

i Distance from airport, and j Distance from future urban centers
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accuracy standards, the process was repeated to produce a

simulated land cover map for the year 2027 (Ullah et al.,

2019).

Urban Growth Boundary

Delineation of the Urban Growth Boundary (UGB) for the

year 2027 involves a unique approach. The predicted raster

land cover map was converted to vector data, and the built-

up class was extracted for the delineation purpose. A

hexagon mesh of one sq. km covering the whole study area

was constructed in ArcGIS 10.3 and intersected with the

built-up layer to obtain a Contiguous built-up Growth

Boundary (CGB). For this purpose, hexagon cells of more

than 50% built-up were extracted since this criterion is

used in other studies to demarcate contiguous growth

(Kantakumar et al., 2016; Sahana et al., 2018). The

remaining built-up units were excluded as they are not

suitable for future urban development (Tayyebi et al.,

2014; Zhou et al., 2016). Moreover, as per environmental

protection policies, the areas demarcated for conservation

and no development were restricted for future development

(Zhuang et al., 2017). Since CGB surpasses through mul-

tiple sub-administrative units within Thiruvananthapuram

UA, it might challenge maintaining the recommended

momentum of urban growth as per UGB policies. Hence,

for practical delineation of UGB, the sub-administrative

units within which the CGB surpasses were considered to

decrease confusion among the concerned authorities.

Results and Discussion

Land Cover Change Detection

The land cover maps of Thiruvananthapuram UA during

1987, 1997, 2007, and 2017 obtained through the MLC tool

are exhibited in Fig. 4.

As per the accuracy assessment (Table 3), the Overall

Accuracy (OA) and kappa coefficients (ki) were above 85%

and found to be satisfactory for further analysis (Congal-

ton, 1991; Fenta et al., 2017).

During the study period, the vegetation land cover had

exhibited a decreasing trend from 349.83 km2 in 1987 to

193.47 km2 in 2017 (Fig. 5). The built-up area had

increased from 36.04 km2 in 1987 to 140.69 km2 in 2017.

There was a minimal increase in water body land cover

from 4.19 km2 in 1987 to 6.03 km2 in 2017, agriculture

land cover from 52.53 km2 in 1987 to 86.24 km2 in 2017,

fallow land cover from 99.98 km2 in 1987 to 116.14 km2

in 2017. Overall, the reduction in vegetation land cover had

resulted in the rapid built-up growth within Thiruvanan-

thapuram UA. Such large-scale vegetation loss was also

observed in other cities of Kerala (Veettil & Grondona,

2018).

Such urban growth patterns of the city can be attributed

to the dominance of industrial units and the IT sector post-

liberalization of the Indian economy, i.e., 1990. Earlier,

Thiruvananthapuram was majorly a service town, wherein

the local workforce was primarily involved with govern-

mental and administrative operations. Multiple industries

were established, such as Technopark at Kazhakootam in

1990, and KINFRA (Kerala Industrial Infrastructure

Development Corporation) in 1993, set up a small indus-

trial park at Thumba and film and video park at

Kazhakoottam (Thiruvananthapuram Corporation, 2012;

Shaji, 2019). Gradually, an industrial estate at Pappanam-

code, a mini-Industrial estate at Ulloor, and an Industrial

Development Center at Kochuveli were developed. These

recent developments have attracted rapid built-up growth

in Thiruvananthapuram UA, as observed in the land cover

change analysis (Arulbalaji et al., 2020).

Further, it was observed that many cities in Kerala,

including Thiruvananthapuram, exhibited a rise in urban

areas primarily through dispersion (Pandey et al., 2013; V

et al., 2017). A similar land cover change pattern in areas

surrounding Thiruvananthapuram, wherein growth in built-

up areas and decline in vegetation, water bodies, and fallow

land cover was also identified by other researchers (Arul-

balaji et al., 2020). Few of the other mid-sized cities of

India also exhibited rapid growth of built-up areas at the

cost of natural land covers, such as Ranchi (Kumar et al.,

2011), Dehradun (Deep & Kushwaha, 2020), Udaipur

(Mondal et al., 2020), Lucknow (Shukla & Jain, 2019), and

Ludhiana (Singh & Kalota, 2019).

Urban Sprawl Detection

Urban sprawl was detected using Shannon’s entropy index

(Hn), wherein during 1987, Hn was 1.92, which increased

to 1.95 in 1997, 1.98 in 2007, and 2.02 in 2017. As per Hn

values, urban sprawl exhibited an increasing trend in

Thiruvananthapuram UA. Similar trends of Shannon’s

entropy index were observed in Kozhikode UA (Krish-

naveni & Anilkumar, 2020). The major drivers of urban

Table 2 Training parameters to customize the ANN-MLP model

S. No Parameter setting Value

1 Neighborhood 1 px

2 Learning Rate 0.001

3 Maximum iterations 10,000

4 Hidden layers 10

5 Momentum .050
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sprawl are the location of development projects in

peripheral areas, mostly due to the rising real-estate market

and land crunch in the core city. Comparatively, during the

2018 floods in Kerala state, Thiruvananthapuram UA was

least affected due to its undulating terrain, but the people

residing in encroached low-lying areas and wetlands were

drastically affected. Although, for the planned and orga-

nized development of Thiruvananthapuram and its sur-

rounding area (295.35 km2), TRIDA (Thiruvananthapuram

Development Authority) was constituted. However, after

the 74th CAA legislation in 1992, the power and functions

of TRIDA were curtailed, and it remained as a small-scale

project implementing agency within its limited jurisdic-

tions. Therefore, UGB delineation is necessary for

Thiruvananthapuram UA combined with the formation of a

metropolitan body, which would administer the urban

growth holistically, monitor implementation of UGB, and

enhance the coordination among multiple sub-administra-

tive units.

Urban Growth Prediction

Future urban growth was predicted based on the combi-

nation of the ANN-MLP and CA model in the MOLUSCE

plug-in of QGIS 2.8.4. As mentioned in MOLUSE Section,

the model was calibrated by simulating land cover for 2017

based on 1987, 1997, and 2007 land cover maps. The

geometry of all the selected urban growth drivers and land

Fig. 4 Land cover Map of

Thiruvananthapuram Urban

Agglomeration; a 1987, b 1997,

c 2007, and d 2017

Table 3 Accuracy assessment

of Landsat-based land cover

maps (1987, 1997, 2007, and

2017)

S.No Accuracy assessment Thiruvananthapuram UA

1987 (%) 1997 (%) 2007 (%) 2017 (%)

1 Overall accuracy 86.39 88.53 90.78 92.18

2 Kappa coefficient 85.04 86.32 88.06 90.67
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cover maps were checked, and later area change analysis

was conducted. The transition matrix obtained from the

tool highlights that vegetation land cover significantly

contributed to the rise of built-up growth from 1987 to

2007.

After training the neural network through the ANN-

MLP model and then obtaining a satisfactory kappa coef-

ficient, the land cover map for 2017 was simulated.

MOLUSCE displayed the delta overall accuracy as -

0.00249 (the difference between the minimum reached

error and current error), minimum validation overall error

as 0.01047 (the minimum reached error after validating the

sample set). The kappa value represented by the current

validation kappa was 0.91354. Thereafter, the CA model

produced a simulated land cover map for the year 2017

(Fig. 6). The accuracy of the model was assessed by

comparing the reference pixels from the 2017 MLC land

cover map of Thiruvananthapuram UA (Fig. 4d) with the

simulated 2017 land cover map. As per the simulated map

of 2017, the built-up land cover was 146.85 km2, while the

actual built-up (MLC) was 140.69 km2. The comparison

between the actual and simulated land cover maps exhib-

ited that the built-up land cover occupied the most over-

estimated area, i.e., 6.16 km2, followed by agriculture

(3.03 km2), water body (0.36 km2). However, the simu-

lated vegetation land cover exhibited less occupied areas

(4.86 km2), followed by the fallow land cover (4.69 km2)

than the actual land cover. Comparatively, the growth

pattern of the core city areas was predicted more accurately

than the distant peripheral areas. The simulated built-up

land cover was excessively predicted in some parts of

Thiruvananthapuram UA, such as Nedumangad, Sreekar-

yam, Kudappanakunnu, and Neyyattinkara. The overall

accuracy and kappa value obtained after validating the

simulated land cover with the actual land cover were

90.89% and 88.17%. Thus, after obtaining satisfactory

results from the calibration of the MOLUSCE model, the

future land cover map for the year 2027 was predicted, as

shown in Fig. 7.

In 2027, the built-up land cover exhibited a further

increase to 173.31 km2, followed by agriculture

99.05 km2. Other land covers presented a declining trend,

such as vegetation (161.84 km2), fallow land (102.51 km2),

and water body (5.86 km2). Overall, there was a significant

rise in built-up land cover from 1987 to 2027 in Thiru-

vananthapuram UA (Fig. 8). The rise in built-up growth

had followed the previous trend, i.e., through the conver-

sion of vegetation and fallow land. Such a pattern of urban

growth will primarily occur in the northern direction, i.e.,

the areas surrounding Technopark Phase II and Phase III at

Attinkuzhi. In the southern direction, considerable built-up

Fig. 5 Land cover classification of Thiruvananthapuram UA (1987,

1997, 2007, and 2017)

Fig. 6 Simulated land cover

map of Thiruvananthapuram

UA for the year 2017
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growth is expected to occur due to the Vizhinjam Inter-

national Deepwater Multipurpose Seaport at Vizhinjam.

Moreover, the availability of a better quality of life due to

capital city favoritism by the politicians and policymakers

has also triggered urban growth (Abhishek et al., 2017).

Urban Growth Boundary Delineation

The predicted land cover raster data of 2027 were con-

verted to vector format, containing multiple polygons.

Hexagon cells of one square kilometer were intersected

with the built-up layer in ArcGIS 10.3 to extract the con-

tiguous built-up area. The current UGB delineation method

considers the amount of land proposed for conservation

under the SMART city scheme (Smart City Thiruvanan-

thapuram Limited, 2018). The restricted areas for future

urban growth were highlighted within the UGB, such as

airports, railways, CRZ (Coastal Regulation Zone), and

wetlands. Such steps are necessary to be considered while

delineating UGB for its effective implementation in future

without harming the local ecology (Tayyebi et al., 2011).

Finally, the sub-administrative units of Thiruvananthapu-

ram UA within which the CGB passes were selected for the

delineation of UGB. Figure 9 displays the CGB and UGB

of Thiruvananthapuram UA for 2027.

The total area within CGB is 213.58 km2, while UGB

accounted for 355.59 km2, which included 16 sub-admin-

istrative units (one Municipal Corporation, three Munici-

palities, 10 Census Towns, and two Outgrowths). After

excluding restricted land for future development, the areas

within UGB would be planned for high-intensity devel-

opment. The areas outside UGB are proposed for low-in-

tensity development, which includes rural uses, such as

agriculture, forests, water bodies, orchards, and open lands.

Despite the various benefits of UGB, it has often been

associated with higher housing and land prices and might

lower the rate of economic development (Dempsey &

Plantinga, 2013; Sinclair-Smith, 2014). Since India is a

developing country, there is a regular requirement of land

supply for development purposes in urban areas. Moreover,

there is a capacity constraint and weak coordination among

the concerned authorities, which creates complexities while

implementing a growth containment strategy (Jain et al.,

Fig. 7 Predicted land cover map

of Thiruvananthapuram UA for

the year 2027

Fig. 8 Built-up land cover map of Thiruvananthapuram UA from

1987–2027
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2019). Cumulatively these issues are responsible for

uncontrolled urban growth and environmental degradation.

Hence, researchers recommended a combination of flexible

and rigid boundaries to ensure the success of UGB

implementation (Jiang et al., 2016; Zhuang et al., 2017).

These measures would balance the supply and demand for

land in future for development. The delineation of CGB

and UGB in this study serves the purpose in this context.

CGB was delineated based on the contiguous urban growth

by 2027 and can act as a flexible boundary. The urban

growth within CGB will be strictly regulated, and only

after achieving the level of proposed urban growth, the

boundary can be expanded toward rigid UGB. The ultimate

expansion of urban growth in Thiruvananthapuram UA can

be extended only till the delineated UGB.

Conclusion

This paper utilized the machine learning approach and

local area information to delineate UGB for Thiruvanan-

thapuram city. The UGB was delineated through simple yet

effective methods and can be implemented in knowledge

and resource constraint developing countries. A hybrid

model that combines ANN-MLP and CA with environ-

mental protection policies was adopted in this study. Such

a combination of multiple tools captures urban growth

dynamics and thus assists decision-makers and urban

planners prepare a better urban growth containment strat-

egy. Furthermore, to trade off the drawbacks of UGB,

especially in developing countries, this study incorporated

the use of a flexible and rigid UGB boundary. The

MOLUSCE model used in this study was calibrated by

producing a simulated land cover map of 2017 based on the

actual land cover maps of 1987, 1997, and 2007. For the

validation of the model, the 2017 land cover map obtained

through the MLC process was compared with the simulated

land cover map of 2017. The overall accuracy achieved

was more than 85%, thus allowing the further use of the

model to predict land cover of 2027, and thereafter UGB

was delineated. UGB delineation is a complex process, so

models that solely depend on scientific programming may

not capture real-world externalities. Therefore, the local

area information such as restricted areas, ecologically

sensitive areas, and areas designated for conservation was

considered while delineating UGB. Such a process alto-

gether enhances the accuracy and precision of the model

and avoids the prevalence of arbitrary growth and damage

to natural resources in future. Compared to other studies,

this paper exhibits the combination of ANN-MLP and CA

models for the urban growth prediction and delineation of

UGB. Unlike other studies where complex tools are used to

delineate the contiguous built-up area, this paper utilized

hexagon cells of one square kilometer. Such easy and

effective techniques are required in developing countries

due to capacity constraints and limited resource availabil-

ity. Moreover, using a sub-administrative boundary to

delineate UGB was attempted for better governance within

the UGB and lower the confusion among the stakeholders.

The major conclusion derived from this study exhibits

rapid built-up growth in Thiruvananthapuram UA, pri-

marily at the cost of vegetation and fallow land cover. The

city has been affected by urban sprawl; moreover, the

future land cover prediction indicated a further rise in the

built-up areas and a decrease in vegetation land cover.

Such a pattern of urban growth tends to disturb the sensi-

tive ecology of the coastal plains region, and hence for

effective land utilization within the city, UGB was delin-

eated. The future scope of work includes the formulation of

detailed growth containment policies to be implemented

within CGB and UGB. Further, an investigation of urban

sprawl factors, such as socio-economy and demography, on

the future growth pattern of Thiruvananthapuram UA could

be analyzed. Such practical UGB delineation models can

be implemented in developing countries to promote urban

sustenance.
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