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Abstract
There is enormous scope and prospective of crop yield prediction at finer scale for both farm-level crop management as

well as for crop insurance settlement at gram panchayat (GP) level in India. Now with the advent of satellite sensors like

the MSI from Sentilnel-2 with fine spatial resolution, the possibility of generating frequent information on crop condition at

field scale is increasing. This study demonstrated the combined use of high-resolution data from Sentinel-2 (10 m and

20 m); moderate-resolution data from MODIS (500 m) and coarser-resolution radiation data from INSAT-3D (4 km) for

estimating yield of three major crops of India at GP and taluka level using a semi-physical model based on crop-specific

radiation use efficiency. The novelty of this study lies in the data fusion approach using parameters from multiple spatial

resolution of Geostationary and Lower Earth Orbiting satellites within the basic semi-physical model framework. The

methodology has been demonstrated in Cuttack district of Odisha for rice; Rajkot district of Gujarat for cotton; and Indore

district of MP and Fatehabad district of Haryana for wheat. We validated our result at GP, taluka and district level. At GP

level, the root mean square error (RMSE) was found to be 16.5% for rice and 5.8% for wheat in Indore district. At taluka

level, the RMSE was found to be 15%, 5.7%, 4.4% and 7.4% for rice, wheat in Indore district, wheat in Fatehabad district

and cotton, respectively. The study concluded that high resolution remote sensing data would be of immense use for finer

scale yield estimation, which can be aggregated at GP and taluka level with satisfactory accuracy (p = 95%).

Keywords Crop yield estimation at gram panchayat and taluka level � Sentinel-2 � MODIS � Semi-physical model �
Rice � Wheat � Cotton

Introduction

Assessing crop yield at finer scale is necessary to under-

stand the yield variability at farm level, which in turn, is

useful to measure and improve the productivity of small

and marginal farm holdings through proper decision mak-

ing on managing the farm level problems. The finer scale

yield prediction at village and gram panchayat (GP) level is

also required for taking decisions on settling the crop

insurance. In India, currently the crop insurance schemes

were launched at insurance units, which in some states

consists of a single gram panchayat while in some other

states a group of gram panchayat forms the insurance unit.

Hence, for settling the claim at insurance unit the yield

must be predicted before harvest at gram panchayat level

for timely settlement with credibility.

All approaches of crop yield prediction using remote

sensing may be grouped into three major categories- Sta-

tistical models with spectral vegetation indices and linear

or non-linear (Artificial Intelligence-based techniques)

regressions, remotely sensed data assimilation into process-

based crop simulation models and the efficiency-based

semi-physical models with remotely sensed inputs. Statis-

tical models using observations from satellites to estimate

crop yields date back to the 1970s when spectral signature

from satellite imagery was found to be associated with crop
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yield estimation (Kanga and Özdoğanb 2019). Vegetation

index (VI) based regression models are location-specific

and cannot be extrapolated seamlessly over larger areas

with adequate accuracy (Moulin 1998). These models rely

on large number of in situ or synthetic yield data to train

statistical models or machine learning algorithms (Johnson

2014; Sibley et al. 2014). Since training data are available

only at political units, these studies tend to produce crop

yield maps at aggregated units or broad resolutions (Kanga

and Özdoğanb 2019). A few recent studies attempted at

producing finer-resolution yield maps based on Landsat

data by training statistical regression models with synthetic

yield data from crop-growth model simulations (Azzari

et al. 2017; Jin et al. 2017; Lobell et al. 2015). Such

methods are computationally efficient for large-scale

mapping but can suffer from potential bias, especially

when synthetic samples are not adequately representative

of real-world conditions (Kanga and Özdoğanb 2019). The

mechanistic and dynamic crop growth simulation models

(CSM) can describe the response of plants to their envi-

ronment both physiologically and quantitatively. Many

CSMs have been successfully used to simulate crop yield

in India like DSSAT (Singh et al. 2017; Timsina et al.

2008); CropSyst (Singh et al. 2008); InfoCrop (Aggarwal

et al. 2006; Aggarwal et al. 2006; Kumar et al. 2013);

ORYZA (Yadav et al. 2011).Many studies on the use of

remotely sensed data in different CSMs for crop yield

prediction have been reported (Tripathy et al. 2013; Liu

et al. 2015) and are recently reviewed by Jin et al. (2018).

Fully mechanistic approaches can be very accurate, pro-

vided they are properly calibrated but are the most com-

putationally demanding, making their use for macro-scale

applications limited, unless several simplifying assump-

tions are made (Grassini et al. 2015). Other methodology

adopted to predict regional crop yield at different spatial

scales is the efficiency-based semi-physical model that uses

the photosynthtically active radiation (PAR) and the

physiological parameter, fraction of PAR absorbed by the

plant and the maximum radiation use efficiency. These

models, also known as light-use efficiency or Production

Efficiency Models (PEMs) rely on the conservative and

positive response of carbon assimilation to increased solar

radiation (Monteith 1972; Monteith and Moss 1977). This

makes transferability to other regions less difficult. In

addition, the models are relatively easy to parameterize and

can be run efficiently over large areas (Marshall et al.

2018). PEM has been revised and used for yield estimation

of crops including rice, wheat and soybean by Marshall

et al. (2018). In India, this methodology has been used for

yield forecasting of wheat (Patel et al 2005, 2006, 2010;

Tripathy et al. 2014), mustard (Tripathy et al. 2017), rice

(Dwivedi et al. 2019) at district level. However, there are

very few studies carried out for crop yield prediction at

finer scale for aggregating at block, taluka and GP level.

Availability of the new satellite sensors with spatial reso-

lutions of 10 m or finer has opened up new possibilities for

farm-level monitoring of crops. With the 5-day revisit of

Sentinel-2 since early 2017 with a resolution of 10 m and

the roughly daily re-visit of Planetscope since late 2017

with a resolution of * 3 m, it is now possible to observe

smallholder fields at a much higher frequency than ever

before (Jin et al. 2019). The advantage of Sentinel 2 data

over other fine resolution data is that it is available free of

cost. The spatial resolution of the MSI of Sentinel 2 ranges

between 10 and 60 m, but the useful bands for agricultural

applications provide data either 10 m or 20 m spatial res-

olution. Due to their shorter revisit time of 10 days (5 days

combining Sentinel 2A and 2B) and more detailed spatial

resolution as compared to Landsat (16-day revisit and 30 m

spatial resolution) and AWiFS (5 days and 56 m pixel

size), more precision in sub-field monitoring can be per-

formed. Thus, the data from Sentinel 2 is gaining relevance

for use in agricultural context and even more specifically

smallholder farming systems in developing countries (Se-

garra et al. 2020). Previous studies have highlighted the

potential of Sentinel-2 to play a key role in estimating crop

yield (Battude et al. 2016; Lambert et al. 2017; Skakun

et al. 2017), but so far the potential for mapping within-

field variability in yield has yet to be fully explored (Hunt

et al. 2019). A simple downscaling technique based on

Enhanced Vegetation Index (EVI) from MODIS-TERRA

was developed by Shirsath et al. (2020) for generating yield

of two rabi season crops (wheat and sorghum) at 500 m

resolution. In a country like India where most of the

agricultural farms fall under small and marginal land

holding, crop yield prediction is required at still finer res-

olution for generating the aggregated yield at GP and

Taluka level. Any vegetation index with visible and NIR

bands can explain the greenness of the crop but not the

yield as a whole. There is much more challenge to predict

yield of kharif season crops using the satellite data in

visible bands. The indeterminate and multi-picking crop

yield estimation remains as a challenge even at coarser

resolution. Besides the prediction challenges, obtaining the

accurate reference yield also is equally necessary for the

validation of the methodology at such finer level. The

reference yield available is mainly the reported yield from

government source at higher administrative level like dis-

trict. These are also not available for the current season,

which poses difficulty in testing the model prediction. The

yield from crop cutting experiment (CCE) can solve this

issue. However, for a multi-picking crop like cotton, this

poses problems in terms of labour and time. To minimise

the cost one may think of crop cutting once and applying

some correction factor based on the actual crop cutting for

estimating the final cotton yield. The correction factor
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suggested in CCE manual for the missed picking is based

on the average of CCE conducted elsewhere in a village

(CSO 2008). Some reported studies used constant boll

weight for all the bolls throughout the crop season (Prostko

and Cothren 1998; McCarty and Bowman 2012). However,

agronomical, physiological studies showed that boll size,

and boll weight reduces at the later stages of crop growth

due to various stresses (El-Mohsen and Amein 2016;

Thakur 2020). Hence, there is a need to standardize a

methodology for generating the correction factor.

All these reviews indicate the gaps and need for yield

prediction at GP and taluka level, as well as to address the

challenges involved in this. Difficulties in generating ref-

erence yield at this finer scale for validation especially for

the multi-picking cotton crop states the need for a stan-

dardize methodology for the same. The availability and

potential of the high-resolution satellite data to address the

issue have also been shown. The objective of the present

study was to demonstrate the methodology for predicting

yield of three major crops of India (rice, wheat and cotton)

at GP, taluka and district level through fusion of fine

(10 m, 20 m), moderate (56 m, 500 m) and coarse reso-

lution (4000 m) satellite data in the efficiency-based semi-

physical model. The novelty of this study lies in the data

fusion approach using parameters from multiple spatial

resolution of different Geo-LEO satellites within the basic

semi-physical model framework. Here the crop yield refers

to threshed grain yield for wheat, paddy (rice grain with

cover) for rice and seed yield for cotton crops. As this study

directly computes yield at 10 m resolution using a semi-

physical model, no historical or synthetic yield data series

is required to develop model. The crops under study

include wheat that is a rabi season crop (Mid October to

April), rice, which is a kharif season crop (July-December)

and cotton, which is a long duration kharif crop (June–

February). In addition, this study also has developed a

methodology for estimation of reference yield from CCE of

the multi-picking cotton crop. The methodology and output

of the study will be useful for the insurance settlement at

GP level as well as for farm-scale crop management.

Study Area

The study was carried out in four districts of four different

states of India with three different crops. Rice crop was

taken in the Cuttack district of Odisha, wheat in Fatehabad

of Haryana and Indore district of Madhya Pradesh (MP)

while the cotton crop was considered in the Rajkot district

of Gujarat (Fig. 1) state of India. These districts fall under

different agro-climatic zones with different climate and soil

type. The average agricultural field sizes in these regions

range from 600 m2 in Cuttack to 6000 m2 in Fatehabad and

Rajkot to 1 ha in Indore district. Field size is based on the

ground truth sites and croplands in google earth images

over the respective districts. Cuttack district is situated in

the eastern part of Odisha and lies within geographical

bounds of 20�000N to 20�400N Latitude and 84�520E and

86�010E Longitude. The district is divided into 3 sub-di-

visions and 14 blocks with 342 GPs. The district is char-

acterized by tropical monsoon climate. Lowest and the

highest temperatures recorded for the district are 7.5 �C
and 42.0 �C, respectively. The normal annual rainfall is

1500 mm. Major soil types in the district are Alfisol,

Ultisol and Entisol. The major kharif season crop is rice

and the major rice varieties in the district for kharif season

are Lalat, Naveen, and Swarna. The district of Fatehabad is

bounded by 28�480N to 29�170N Latitudes and 76�290E to

77�130 E Longitude. It is divided into 3 talukas and 5

blocks. Climate of the district can be classified into tropical

desert and steppe, which is mainly dry with very hot

summer and cold winter. The normal annual rainfall of the

district is 373 mm. Mean maximum temperature is 41.6 �C
and mean minimum temperature is 5.5 �C. Major soil types

of the district varied from sandy loam to loamy sand. In

Fatehabad, the major rabi season crop is wheat and the

major variety is U P-2338, WH-711 and HD 2851. Indore

district lies in the Malwa plateau of MP state. The district

boundary falls between 22�310N and 23�050N Latitudes,

and 75�250E and 76�150E Longitudes. The district is divi-

ded into five talukas and four blocks. The climate of Indore

district is hot and humid. Normal annual rainfall of the

district is 960 mm. Major soil types in the district are

medium black soil. The major wheat variety in Indore is

Lok 1. Rajkot district of Gujarat lies between 20�300N and

23�120N Latitude and 70�000E and 71�450 E Longitude.

The district comprises of 14 talukas. The district has semi-

arid and sub-tropical climate. Mean annual maximum

temperature is 33.8 �C and mean annual minimum tem-

perature is 19.7 �C. Total annual rainfall is around

710 mm. The soils found in the district are mostly of

Inceptisol and Entisol order. Texture-wise soils are sandy,

loamy sand, clayey and silty type. The major cotton cul-

tivar in Rajkot that falls in the Waged area is G.Cot 12.

Data

The data products from both geostationary satellite (GEO)

and low earth orbiting satellites (LEO) at different spatial

and temporal resolutions were used for this study (Table 1).

In addition to the satellite data, data from ground

observation and ancillary data from published report has

been used. These include-
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• Interpolated minimum and maximum temperature data

(daily, 5 km) for May 2018-December 2019

• Maximum radiation use efficiency (e0) from literature

• CCE data averaged at GP, taluka and district level

Methodology

Data Processing

Daily insolation data product from INSAT 3D has been

downloaded from MOSDAC (www.mosdac.gov.in) over

the crop season. The processing of daily insolation

involved the conversion of daily insolation to 8-day pro-

duct (sum), resampling to 10 m resolution and conversion

of projection to geographic from the Transverse Mercator

projection.

MODIS surface reflectance, NDVI and fAPAR product

(8-day composites) with 500 m spatial resolution has been

acquired (https://lpdaac.usgs.gov). MOD09A1 or MODIS

Surface Reflectance 8-Day L3 Global 500 m file contains

seven spectral bands of data in the visible and infrared

region. The band widths of these bands are Band 1:

0.620–0.670 lm; Band 2: 0.841–0.876 lm; Band 3:

0.459–0.479 lm; Band 4: 0.545–0.565 lm; Band 5:

1.230–1.250 lm; Band 6: 1.628–1.652 lm and Band 7:

2.105–2.155 lm. For this study, we used band 2 and 6 for

computing Land Surface Water Index (LSWI). The

MOD13A1 v6 data product contains the MODIS/TERRA

Vegetation Indices 8-day L3 Global 500 m data from

Terra. MOD15A2H data product from MODIS contains the

Fig. 1 Four districts (marked as

magenta boundary) in four

states (marked as cyan filled

polygons) of India taken as

study area with the respective

taluka boundaries and crop

name under study

Table 1 Satellite data and data products with the respective source

Type of

satellite

Data/product Satellite/sensor Spatial

resolution

Temporal

resolution

Source

GEO Insolation INSAT-3D 4000 m Daily MOSDAC

LEO fAPAR Terra/MODIS 500 m 8-day LPDAAC@usgs.gov

LEO Surface

reflectance

Terra/MODIS 500 m 8-day LPDAAC@usgs.gov

LEO NDVI Terra/MODIS 500 m 16-day LPDAAC@usgs.gov

LEO Surface

reflectance

Sentinel 2 MSI 10 m 10-day Copernicus Open Access

Hub

LEO Crop mask Resourcesat-2A-AWiFS/

Sentinel-2

56 m/10 m Once MNCFC

Period of data taken is 15 May 2018–31 December 2019
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MODIS/TERRA FPAR 8-day L3 Global 500 m data from

Terra. The processing of all MODIS data included the

mosaicking of tiles for the study area, resampling to 10 m

resolution and conversion to geographical projection from

the sinusoidal projection.

Cloud free Sentinel-2A data Level 1C product over the

study area was collected for the whole crop season of the

respective crops from the Copernicus Open Access Hub.

MultiSpectral Instrument (MSI) of Sentinel-2A consists of

13 bands in the visible to the shortwave infrared region of

the electromagnetic spectrum at different spatial resolution.

These constitute four bands at 10 m in the classical

broadband in visible (blue (0.490 lm), green (0.560 lm),

red (0.665 lm)); and near-infrared (0.842 lm) region; six

bands at 20 m, four narrow bands in the vegetation red

edge spectral domain (0.705, 0.740, 0.775, and 0.865 lm),

and two longer SWIR bands (1.610 and 2.190 lm); and

three bands at 60 m dedicated to atmospheric correction

(0.443 lm for aerosols and 0.940 lm for water vapor) and

for cirrus detection (1.380 lm) (Segarra et al. 2020). In the

present study, we used the two bands at 10 m resolution,

red (0.665 lm), NIR (0.842 lm), for computing NDVI and

two bands in 20 m resolution, NIR (0.865 lm and SWIR

(1.610 lm) for computing the LSWI. These four bands

were mosaicked and subset for the respective districts

under study were extracted.

Generation of Model Inputs

The surface reflectance in the red andNIR at 10 m resolution

from the Sentinel-2A level 1C product was used to compute

NDVI for each image. Maximum NDVI of each month was

derived at 10 m spatial resolution, monthly composite for

each month of the rice-season was generated and used for

further analysis. The relationship between the NDVI from

Sentinel-2A and MODIS fAPAR at 500 m resolution was

derived for each month. Rice is a kharif crop and in Cuttack

district, rice season comprises of mid July to end December.

MSI-Sentinel 2 cloud-free data was not available for the

whole month of August. For the month of September,

October, November and December cloud-free data was

available only for one or two five-day periods. Hence, the

relationship was derived using the monthly composite of

NDVI and fAPAR for September, October, November and

December. For the month of August, fAPAR of September

was used. For wheat, similar regression equation developed

by Bairagi et al. (2018 ) was used to generate the fAPAR at

10 m resolution. For cotton, the ratio of fAPAR to Sentinel

NDVI was used to generate the fAPAR at 10 m resolution.

Maximum radiation use efficiency (e0) for each crop was

taken from literature. The e0 of 2.2 g MJ-1 PAR for rice

crop (Kiniry et al. 1989), 3.0 g MJ-1 PAR for wheat crop

(Stockle et. al. 1992) and 1.8 g MJ-1 PAR for cotton crop

(Pinter et al. 1994) were used. The eight-day sum of

insolation was used to compute the PAR for the whole crop

season and 50% of the insolation was assumed as PAR

based on literature (Tsubo and Walker 2005). Water scalar

(Tripathy et al. 2014) was computed through normalization

of LSWI (Xiao et al. 2002) with respect to LSWImax. The

LSWI was computed using surface reflectances in NIR

(0.865 lm) and SWIR (1.610 lm) bands of the sentinel

data at 20 m resolution. The crop mask was applied before

computing the water scalar. Daily average temperature was

computed from the daily maximum and minimum tem-

perature of IMD weather data, interpolated to 5 km grid

using thin-plate spline technique (Nagori and Chaudhari

2020). The temperature scalar (Raich et al. 1991) in a scale

of 0–1 was computed for each 8-day period over the crop

season using the daily average temperature and the cardinal

temperature for the respective crop (Tripathy et al. 2014).

As for kharif crops the temperature scalar is almost one for

the regions under study, temperature scalar was used only

in case of rabi crop, wheat. Cardinal temperature used for

wheat are-Tmax: 35, �C; Tbase: 6 �C and Topt: 25 �C (Tri-

pathy et al. 2014). Planting date for rice was derived using

ISODATA classification scheme over the time-series

NDVI from MODIS at 16 days interval. Polynomial curve

fitting was used to smooth the NDVI of each class. The first

positive change in the NDVI of each class was noted as the

date of spectral emergence date (SED). A threshold of

10 days prior to SED was noted as the transplanting date of

rice. For wheat and cotton, most frequent date of sowing

among the selected CCE sites in the district under study

was taken as the planting date of the respective district. All

of the above input data were resampled to a common target

resolution of 10 m. Field observed biomass and grain yield

from the CCE were used to calculate the harvest index of

the respective crop in the respective taluka. Past two years

CCE data were used to compute harvest index (HI) and

then averaged for each taluka to avoid human error while

collecting CCE data.

Semi-Physical Model for Yield Estimation

We used a semi-physical model based on radiation use

efficiency which computed biomass of each crop for a

given time step (here 8-day period) from sowing to harvest

for each crop using the periodical PAR, fAPAR, Wscalar,

Tscalar and maximum radiation use efficiency using Eq. 1

(Tripathy et al. 2014).

Biomass ¼
XHarvest

planting

e0 � PAR � fAPAR �WS � TS ð1Þ

where PAR: Sum of incident photosynthetically active

radiation over 8-days (MJ m-2 day-1), fAPAR: fraction of
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incident PAR which is intercepted and absorbed by the

canopy (dimensionless), e0: Maximum radiation-use effi-

ciency (g MJ-1); WS is the water scalar and TS is the

temperature scalar (varies from 0 to 1).

Total biomass was computed for each crop by summing

up the 8-day biomass over the crop duration (planting date

to harvest date). Harvest date for rice and wheat was

derived using the crop duration for the respective cultivar

from literature. For rice, the major varieties in Cuttack

district were found to be Swarna, Lalat and Naveen (CCE

data) and the duration varies from 110 to 160 days [Pathak

et al. (2019), NRRI bulletin no 13]. The duration of the

major wheat varieties in Fatehabad and Indore district

ranged from 160 to 180 days (Directorate of Wheat

Development 2016). For cotton, in Rajkot, the crop dura-

tion of 170 days (Singh and Kairon 2019), Technical

Bulletin, CICR, Nagpur, www.cicr.org.in) was considered.

Grain yield was computed using the harvest index derived

for each crop for each taluka in each district under study.

The whole methodology is shown in Fig. 2.

Reference Yield for Validation from CCE

For rice and wheat, CCE was carried out at harvest of the

crop from the selected locations of each taluka in the

respective districts under study. The plot size was 5 9 5 m

for rice and wheat while 10 9 5 m for cotton crop. For all

three crops, CCE locations were generated using a stratified

procedure, so-called smart sampling, based on remote

sensing and GIS (Chaudhari et al. 2019).

For cotton crop, a new robust methodology based on

boll count and adjusted boll weight at the time of second

picking was developed. Number of empty bolls available

during the second picking was counted, which were picked

at first picking. Similarly, number of remaining immature

bolls for latter pickings was also counted along with the

actual bolls picked during the second picking. The average

boll weight of 100 randomly selected cotton bolls was

taken at the time of second picking, which was then

adjusted with boll weight reduction factor expected at the

later pickings. The following equation was used to estimate

cotton yield from CCE at second picking.

Total boll count Nð Þ
¼ Numbers of Empty bolls of First Picking

þ Number of bolls at IInd Picking

þ Number of Immature bolls remained on the plant

for later pickings

ð2Þ

The reduction factor was computed based on the CCE

observations in different strata representing the different

vigour of cotton crops (Eq. 3).

Reduction Factor RFið Þ ¼ 0:3 � BWi � BWmin

BWmax � BWmin

ð3Þ

where BWi is the average boll weight of 100 random bolls

for the ith CCE (in g).

An adjusted average boll weight (in g) for ith CCE

observation was computed as:

Adjusted BollWeight BWað Þ ¼ RFi � BWi ð4Þ

Finally, the seed cotton yield (t/ha) for the ith CCE plot

was computed as:

SeedCottonYield ¼ BWa � N
100 � PLOT SIZE m2ð Þ ð5Þ

Statistical Evaluation of the Yield Estimation

The model was validated by comparing the estimated and

CCE yield data at GP, taluka and district level for the three

Fig. 2 Methodology for

estimating crop yield at 10 m

resolution (PAR—

Photosynthetically Active

Radiation, fAPAR—fraction of

PAR absorbed by crop,

APAR—Total Absorbed PAR

by the crop, LSWI—Land

Surface Water Index, NDVI—

Normalized Difference

Vegetation Index, e0 and e—

Maximum and actual Radiation

Use Efficiency (g MJ-1),

respectively)

276 Journal of the Indian Society of Remote Sensing (February 2022) 50(2):271–284

123



crops under study. Four different statistical metrics, such as

correlation coefficient (r), Root Mean Square Error

(RMSE), Mean Absolute Error (MAE) and Index of

Agreement (IoA, Wilmot 1982) were used to test the

model. Following equations were used to compute these

statistical indicators.

r ¼ nð
P

xyÞ �
P

xÞð
P

yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2 � ð
P

xÞ2
h ir

n
P

y2 � ð
P

yÞ2
h i ð6Þ

where x and y are predicted and observed yield values

RMSE ¼ n�1
Xn

i¼1

x Pi� Oið Þ2
" #0:5

ð7Þ

MAE ¼ n�1
Xn

i¼1

Pi� Oij j ð8Þ

IoA ¼ 1�
Pn

i¼1 Pi� Oið Þ2
Pn

i¼1 Pi
0j j þ Oi

0j jð Þ2
; 0� IoA� 1 ð9Þ

where n is the number of cases, Pi and Oi are predicted and

observed value of ith case, respectively. Pi
0 ¼ Pi� Oi., and

Oi
0 ¼ Oi� Oi. (Oi is the mean of observed value f all cases).

Results and Discussion

Planting Date of Rice

Two dates of transplanting of rice crop were observed (1st

and 2nd week of August 2019) in in Cuttack district of

Odisha. Around 75% of the rice pixels showed planting in

the second week of August 2019 (Fig. 3). These dates are

within the range of the observed dates in the respective

talukas.

Finer Scale fAPAR for Rice Crop

The relationship between fAPAR from MODIS at 500 m

and the NDVI derived from the red and NIR reflectance of

Sentinel 2 showed strong linear relation in each of the four

months. The R2 of the relationship varied from 0.88 in

October to 0.95 in September and December (Fig. 4). The

slope of the regression lines varied from 0.79 to 0.96 with

the highest corresponding to the month of October while

the intercept was found be the lowest (0.033) in October

and highest (0.105) in November. These equations were

used to derive the fAPAR at 10 m resolution using the

Sentinel 2A NDVI of the respective months. For the month

of August, fAPAR was assumed to be the same as that of

September as no clear sky Sentinel data was available for

developing the relationship in August.

Finer Scale Yield Variability of Rice, Wheat
and Cotton Crop

Estimated paddy yield was found to vary from 0.9 to

6.8 t ha-1 at pixel-level of 10 m spatial resolution (Fig. 5).

Distribution indicated that number of pixels is highest in

the yield range of 4–5 t ha-1 category followed by

3–4 t ha-1 and 5–6 t ha-1 category (Fig. 5).

The highest yield was estimated in Mahanga

(4.98 t ha-1) Taluka followed by Niali (4.86 t ha-1) and

lowest in Banki (3.88 t ha-1) taluka. District average yield

was found to be 4.35 t ha-1.

In Indore, the wheat yield varied from 2.5 to 4.5 t ha-1

while in Fatehabad it ranged from 2.5 to 5.5 t ha-1.

Maximum number of pixels fall in the range of

3.5–4 t ha-1 followed by[ 4.5 t ha-1 range in Indore

while in Fatehabad, maximum number of wheat pixels fall

in the range[ 5.5 t ha-1 followed by 4.5–5.5 t ha-1 range

Fig. 3 Transplanting date of

rice using time-series NDVI
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(Fig. 6a, b). The highest yield was obtained for the taluka

of Sanwer (4.2 t ha-1) and the lowest yield was estimated

in the taluka of Moho (3.3 t ha-1) in Indore district. The

yield range from CCE matches with this estimation. In

Fatehabad, the lowest yield was estimated in the taluka of

Bhuna (4.5 t ha-1) and the highest yield was obtained in

Ratia (5.5 t ha-1).

In Rajkot district, the estimated seed cotton yield varied

from 0.75 to 1.75 t ha-1 in different cotton pixels. Maxi-

mum number of pixels (80% of total cotton pixel) fall in

the range of 0.75–1.25 t ha-1 (Fig. 7). The lowest seed

yield estimate was obtained in the taluka of Jasdan

(0.8 t ha-1) and the highest yield was in the talukas of

Jamkandorna and Kotda Sangani (1.6 tha-1).
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Fig. 4 Month-wise relationship between Sentinel-2 NDVI to MODIS

fAPAR for rice crop season

Fig. 5 Rice yield (t ha-1) at

10 m resolution and distribution

of yield range in Cuttack district

Fig. 6 Wheat yield (t ha-1) at

10 m pixel level and

distribution of yield range in

a Indore district of MP and

b Fatehabad district of Haryana
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Validation of Estimated Yield

The model results were validated at three different levels

GP, Taluka and District. Comparison was made with the

CCE yield at these levels and four statistical indicators

were generated to evaluate the results. GP level validation

was carried out for rice crop in Cuttack district and wheat

crop in Indore district. Taluka level validation was carried

out for all the crops in the four respective districts.

Validation at GP Level

At GP level, for rice crop in Cuttack district of Odisha,

comparison of estimated rice yield with the average rice

yield from CCE at the respective GP showed absolute

difference of less than 25% for 219 GPs out of the 249 GPs

within the 14 talukas of Cuttack district (Fig. 9a). Corre-

lation between estimated and reported yield of these 249

village was found to be 0.44 and RMSE was found to be

16.5% of the mean CCE yield (Table 2). Mean relative

deviation for all 249 villages was found to be around 9%.

In Indore 18 villages were selected in the 5 talukas for

validation at GP level which is well distributed over Indore

district to represent the overall wheat crop of the district.

Comparison of estimated wheat yield with the average

wheat yield from CCE in the respective GP showed

absolute difference of less than 10% for all the selected

GPs (Fig. 9b), the highest being in the GP of Khemana

(8.3%). Correlation between the estimated and CCE yield

of those 18 GPs was found to be 0.91 and RMSE was found

to be 5.8% of the mean GP yield (Table 2). Mean relative

deviation was found to be - 4.15% for the all 18 GPs. The

index of agreement was 0.6 for rice and 0.87 for wheat. In

majority of the GPs the model underestimated the yield

both in rice and wheat (Fig. 8). These results showed that

rabi crop (wheat) yield estimation using the current

methodology is more accurate than the kharif crop espe-

cially in east India (rice in Cuttack district).

Validation at Taluka Level

For rice crop in Cuttack district of Odisha, comparison of

estimated rice yield with the average rice yield from CCE

at the respective taluka showed absolute difference of less

than 20% for all talukas except for Nischintkoili (33%)

(Figs. 9a, 10a). Correlation between estimated and reported

yield is 0.43 and RMSE was found to be 15.1% of the mean

CCE yield (Table 3). For wheat crop in Indore district of

MP, comparison of estimated wheat yield with the average

wheat yield from CCE in the respective taluka showed

absolute difference of less than 12% for all talukas. Cor-

relation between the estimated and CCE yield was found to

be 0.89. In Fatehabad, the absolute difference between the

estimated and CCE yield at the five talukas was less than

8% the correlation coefficient was found to be 0.61

(Fig. 9b). The lowest deviation was found in the taluka of

Tanwer (1.03%) in Indore district while in Fatehabad the

lowest deviation was found in Fatehabad taluka (0.46%).

The deviation was highest in the taluka of Hatod (11.4%)

in Indore and in Bhuna taluka of Fatehabad (7.38%)

(Fig. 10b). Comparison of estimated cotton yield (seed)

with the average cotton yield from CCE in the respective

taluka of Rajkot district of Gujarat showed absolute dif-

ference of less than 15% for all the talukas except for

Jasdan taluka where it was around 26% (Fig. 10c). Cor-

relation between the estimated and CCE yield was found to

be 0.98 (Fig. 9c). Lowest deviation was found in the taluka

of Kotda Sangani (2.5%) (Fig. 10c).

The statistical error metrics indicated that the model

estimation was the best for cotton crop followed by wheat

and rice (Table 3). The correlation coefficient is the highest

for cotton (0.98) and the least for rice (0.43). Index of

agreement was the highest for cotton crop (0.95). The

Fig. 7 Seed yield of cotton

(t ha-1) and distribution of yield

range in Rajkot district of

Gujarat

Table 2 Statistical indicators

for evaluating the model

performance at GP level

Name of the crop No of cases (n) r RMSE MAE IoA

Rice_Cuttack 249 0.44 0.79 t ha-1 (16.5%) 0.66 0.60

Wheat_Indore 18 0.91 0.25 t ha-1 (5.84%) 0.23 0.87
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RMSE was the lowest for wheat in both the districts

(Table 3).

For wheat, the results from the present study showed a

RMSE of 0.23 and 0.21 t ha-1 in Indore and Fatehabad

district respectively, which is found to be better than the

previous study by Hunt et al. (2019) that reported RMSE of

0.69 t ha-1 for wheat yield estimation at field scale using

the vegetation index from MSI-sentinel 2 data. They have

also shown improvement in yield estimation with the use of

environmental data like temperature and rainfall at 5 km

resolution along with the VIs (RMSE 0.61 t ha-1). The

better accuracy in wheat yield estimation could be due to

the use of PAR and fAPAR, which are related to crop

physiology. The accuracy of the kharif rice crop is com-

parable to the error in other kharif crop as reported by

Shirsath et al. 2020 (RMSE of 15.1% as compared to the

RMSE of 15.4% for another kharif crop, soybean) and the

accuracy for wheat was found to be better than the reported

result (RMSE: 5.8% and 4.4% in Indore and Fatehabad

districts, respectively as compared to 10.5% in the previous

study by Shirsath et al. 2020).

Validation at District Level

The difference in estimated rice yield and the average rice

yield of the Cuttack district as derived from CCE was

found to be 10.3%. The difference in wheat yield between

the estimated and CCE yield of the district was 3.6% in

Indore and 1.7% in Fatehabad. In cotton, the difference was

found to be - 2.9% for the Rajkot district of Gujarat

(Fig. 11). This study with the use of fine resolution data

(10 m) has shown better accuracy at district level for wheat

crop as compared to the use of moderate resolution data

(250 m and 500 m) from MODIS that had resulted a mean

deviation of around 25% as reported by Tripathy et al.

(2014) and 7–9% as reported by Patel et al. (2006).

Discussion

This study used the semi-physical model that uses physi-

ological concepts such as the Photosynthetically Active

Radiation (PAR), and the fraction of PAR absorbed by the

crop (fAPAR) of crop as well as the major scalars

responsible for reducing the potential yield at 10 m spatial

resolution and hence, expected to predict yield with higher

accuracy at 10 m resolution as compared to the vegetation

index alone. Previous study also reported that the effi-

ciency-based semi-physical model represents an important

class of remote-sensing based approaches for estimating

biomass/yield (Marshall et al. 2018). This study showed the

acceptable limits of accuracy for all the three crops under

Fig. 8 Comparison of estimated

crop yield and the observed

yield from CCE at GP level

a rice in Cuttack district,

b wheat in Indore district (CI
confidence interval)
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study at GP level, Taluka level as well as district level. The

yield estimation of the challenging kharif crop like rice in

east India was demonstrated with satisfactory level of

accuracy at GP and taluka level (RMSE of 16.5 and 15.1%,

respectively). The new crop insurance scheme in India is

being implemented with the GP as the insurance unit

(Gulati et al. 2018) and the insurance product design and

price is based on estimated yield values at the GP level.

This methodology is the first step towards getting yield

map at the GP and taluka level using satellite input at fine

resolution of 10 m with reasonable accuracy, hence has

immense importance as far as crop insurance study is

concerned. This study will also help for the crop man-

agement at farm scale.

There are certain factors that might lead to observed

difference between satellite-based fine-scale yield esti-

mates and measured yield data. These are enumerated

below:

1. Resampling of satellite-based inputs from various

native spatial resolutions including coarser resolution

(e.g. PAR, fAPAR) to target finer resolution (10 m)

could propagate the errors in the final yield estimates.

2. Determination of certain important biophysical factors

such as planting date is definitely associated with

certain uncertainty, which is generally prominent

especially at finer-scale. This also could contribute to

error in yield estimates.

3. Certain assumptions (e.g. extrapolation of September

fAPAR to July–August for rice and cotton crops due to

data gap, use of reported crop duration single and use

of single value for e0 throughout the crop growth (it

varies with growth stage in actual situation) were other

source of uncertainty in this approach.

From the results, it was noticed that the error of yield

estimates got reduced at coarser administrative units (e.g.

Taluka, District) for all the three crops. It was noticed that

the RMSE was the highest in the kharif rice followed by

cotton and wheat crop at all the administrative units. This

can be explained based on availability of optical remote

sensing data and crop duration. Wheat being the rabi crop

could have been assessed with required number of clear-

sky high-resolution satellite data throughout the major

growth period. Cotton being long duration kharif crop

spreads from June to February. Therefore, availability of
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Fig. 10 Mean deviation of estimated crop yield from the average

taluka yield from CCE a for rice, b for wheat and c for cotton

Table 3 Statistical indicators

for evaluation of the model

estimation at taluka level

Crop No. of observations (n) r RMSE t ha-1

(% mean yield)

MAE (t ha-1) IoA

Rice_Cuttack 14 0.43 0.74 (15.1) 0.58 0.58

Wheat_Indore 5 0.89 0.22 (5.8) 0.17 0.87

Wheat_Fatehabad 4 0.61 0.23 (4.4) 0.19 0.78

Cotton_Rajkot 10 0.98 0.11 (7.4) 0.10 0.95
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Fig. 11 Comparison of estimated yield with the average of CCE yield

at district level
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high-resolution optical remote sensing data was less than

what we could get for rabi crop such as wheat. In case of

kharif rice crop with duration of July/August–December,

the high-resolution optical remote sensing data was avail-

able only during fifty percent of growth period (September

to December).

All these source of uncertainty clearly indicates that

availability of the fine-resolution optical data during kharif

season and the availability of other model input like PAR at

fine resolution are the major challenges that need to be

answered through future research for improving the yield

prediction at fine-scale. One solution towards this may be

through the use of high-resolution Synthetic Aperture

Radar (SAR) backscatter data and different polarimetric

signatures in combination with the high-resolution optical

data that will reduce the uncertainty of optical data avail-

ability during consistent cloudy-sky period and improve

the accuracy in yield prediction especially for kharif crops.

Conclusions

The study has demonstrated a methodology for finer scale

yield prediction of three major crops of India namely rice,

wheat and cotton at 10 m resolution primarily with optical

remote sensing data through fusion of the data at various

resolutions from multiple satellites in a semi-physical

model. The methodology was validated at GP, taluka and

district level. The results of this study showed the immense

use of fine resolution remote sensing data for finer scale

yield estimation, which can be aggregated at GP and taluka

level. The applicability of this research lies in the crop

management at farm scale and for insurance settlement as

per the new policy of PMFBY where the insurance unit is

GP not sub-district. However, the accuracy needs to be

validated for more number of years and at other locations

for its operational application and the methodology may be

tested for other crops. The future thrust area will be to use

the fine-resolution satellite data with other modelling

approaches like simulation model and machine learning

approach for crop yield estimation. One major thrust area

will be comparison of various data assimilation and

downscaling approaches for using multi-source satellite

data for increasing the accuracy in high-resolution crop

yield prediction. In addition, the combined use of optical-

SAR high-resolution remote sensing data needs to be

explored especially for kharif crops for seamless primary

productivity simulation using a semi-physical model at fine

resolution.
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