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Abstract
In this study, we tried to address the applicability of using dynamic remotely sensed data into a static crop model to capture

the yield spatiotemporal variability at the field scale. Taking the example of the crop environment resource synthesis for

wheat (CERES-wheat), the model was calibrated, improved, and validated using three years of winter wheat field mea-

surement data (growing seasons of 2017–2019). We assimilated the Landsat-based leaf area index (LAI) into the model

using the particle filter approach. Four vegetation indices, including NDVI, SAVI, EVI, and EVI-2, were evaluated to

identify winter wheat LAI’s best estimator. A linear regression of Landsat-EVI-2 was found to be the most accurate

representation of LAI (LAI = 10.08 9 EVI-2 - 0.53) with R2 = 0.87, and mean bias error = - 2.04. The higher LAI

accuracy from EVI-2 was attributed to the soil and canopy background noise reduction and accounting for certain

atmospheric conditions. Assimilating the LAI based on Landsat-EVI-2 into the CERES model improved the model’s

overall performance, particularly for grain yield and biomass simulations. The default model predicted LAImax, grain yield,

and biomass at 5.1 cm2 cm-2, 8.3 Mg ha-1, and 14.9 Mg ha-1 with RMSE of 1.44, 0.91 Mg ha-1, and 1.2 Mg ha-1,

respectively, while the modified model (using the Landsat-EVI-2 data) predicated these values at 6.6 cm2 cm-2,

9.9 Mg ha-1, and 16.6 Mg ha-1 with RMSE of 0.81, 0.54 Mg ha-1, and 0.62 Mg ha-1, respectively.

Keywords Winter wheat � CERES-wheat � EVI � EVI-2 � Landsat � Leaf area index � NDVI � Particle filter �
SAVI

Introduction

Agricultural production managers, natural resource man-

agers, and strategic decision-makers require accurate,

timely, and cost-effective information to maintain quality

food and fiber supply for the nation and the world (Chenu,

2017). Wheat (Triticum aestivum), in particular, is the

most widely grown of all crops and the cereal (Shewry,

2009), with over 730 million ton (MT) of production in

2018 (Faostat, 2018). In Iran, wheat production reached

over 13 MT in 2017 as the county’s highest cultivated grain

crop (Ahmadi et al., 2017). However, the country has been

experiencing a prolonged drought condition with limited

water resource availability (Jamshidi, 2020), particularly in

southern Iran, where the largest wheat cultivated areas are

located. The current situation has posed a challenge for

growers and decision-makers to evaluate and optimize the

region’s cost and benefit. In this regard, crop models can

provide the required asset to simulate the growth and yield

amount and optimize the water productivity for the region

(Jin, 2018).

Early crop models were developed during the 1960s

using a simplified version of water-balance equations for

crop growth simulations (Monteith, 1996). The crop

models have been evolving by improving two prime

functions: (1) the physic and (2) the structure of the model.

The crop model physic has been improving by imple-

menting explicit mathematical methods such as using

advanced numerical algorithms (Bartzanas, 2013; Noshadi

& Jamshidi, 2014; De Wit & Van Diepen, 2007) and
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machine learning techniques (Folberth, 2019; Kuwata &

Shibasaki, 2015; Liakos, 2018). The structure of crop

models has been enhanced considering the advancement in

the accuracy of the input datasets considering both ground-

based data and remotely sensed methods and algorithms to

generate crop-based datasets. For example, (Jamshidi,

2019a, b; Niyogi, 2020) used multiresolution data sources

(MODIS, Landsat, and reanalysis) to estimate evapotran-

spiration over winter wheat and forage cornfields.

Accordingly, several crop models with different physics

and structures, including empirical (Choudhury, Idso, &,

Reginato, 1987; Gustafson, 2005), logistic (Overman,

Scholtz, & Martin, 2003; Sepaskhah, Fahandezh-Saadi, &

Zand-Parsa, 2011) and mechanistic (Bezuidenhout, 2000;

Estes, 2013), have been developed for predicting the

growth, development, and yield of different crops. The

CERES (Crop Environment Resource Synthesis)-Wheat

model was initially developed by the USDA-ARS (Ritchie,

1985) and has been used in several studies (Dettori, 2011;

Hlavinka, 2010; Singh et al., 2008; Xiong, 2008). In a

review study by Timsina and Humphreys (Timsina &

Humphreys, 2006), the CERES-Wheat showed high accu-

racy in simulating the anthesis and maturity dates with

4–5% of RMSE (root mean squared error) and reasonable

accuracy for predicting the yield (RMSE f 13–16%). The

moderate accuracy of the model for predicting the grain

yield has been primarily attributed to the poor estimates of

leaf area index (Dente, 2008; Hussain et al., 2018).

Multi-spectral remote sensing from satellites (particu-

larly the visible and near-infrared bands) has been widely

applied for crop monitoring (Jamshidi, Zand-Parsa, &

Niyogi, 2021a; Wu, 2015). In particular, vegetation indices

such as NDVI (normalized difference vegetation index),

LAI (leaf area index), SIF (sun-induced chlorophyll fluo-

rescence) have been used as a proxy to monitor the plant

condition (Duan, 2017; Hosseini, 2015; Jamshidi et al.,

2021a) and has been used as yield estimators (Cai, 2019;

Huang, 2015). The crop-based product driven from the

satellite data could also be coupled with the crop models.

This approach is particularly beneficial considering a data-

void region with limited in situ observations or low accu-

racy in situ data as well as the poor functionality of a crop

model for simulating a particular vegetation index (e.g.,

CERES-wheat for LAI estimates).

Therefore, in this study, we attempted to calibrate the

CERES-wheat model over the study region and identifying

the area in which the model does not perform optimally.

Based on the analysis, we integrated the LAI values

derived from the Landsat satellite into the CERES-wheat

model to evaluate its performance of the model, particu-

larly for simulating the grain yield. This study provides the

first trial for applying the CERES-wheat model over the

study region and links the model to remotely sensed data

that will provide the fundamental step toward applying the

model at a regional scale.

Material and Methods

Study Site

The experiments were carried out near Firouzabad city in

southern Iran (Fig. 1) for three cropping seasons from 2015

to 2019. The climate of the study area is classified as a

semiarid region with a mean annual rainfall of 321 mm.

The winter is mild, with a mean air temperature (Tair) of

5 �C and relative humidity (RH) of 65%. The summer is

extreme, with a mean Tair of 41 �C and RH of 20%.

Weather data, including rainfall (P), Tair, RH, wind speed

(U2), and radiation, were recorded from a nearby weather

station.

The experiment plots included a 25-hectare agricultural

farm planted with winter wheat (Pishtaz cultivar) during

mid-December in each cropping season. Winter wheat was

planted with a grain drill to a depth of 2.5 to 3.5 cm at a

seeding rate of about 80 kg ha-1 and a row spacing of

0.22 m. Crop irrigation requirement was determined based

on the amount of actual evapotranspiration using the fol-

lowing equation:

ETc ¼ KC � ETo ð1Þ

where ETc is the crop evapotranspiration or actual crop

water requirement, Kc is the crop coefficient, and ETo is the

reference evapotranspiration. For each growing stage, the

crop coefficient was retrieved from the study by Moghimi,

Sepaskhah (Moghimi et al., 2015) for a similar climatic

condition in the north of the province, and reference

evapotranspiration was determined using the Penman–

Monteith equation:

ETo ¼
D� ðRn� GÞ � qa � Cp � De

ra

Dþ c 1þ rc
ra

� ��
� k

ð2Þ

where Rn is the net radiation; G is the ground heat flux; c is
the psychrometric constant; D is the rate of change of

saturation specific humidity with air temperature; c is the

psychrometric constant; k is the latent heat; Cp is the air

specific heat capacity; qa is the dry air density; ra and rc are

the aerodynamic and canopy resistance, respectively; De is
the difference between the saturated and actual vapor

pressure in kPa.

Furrow irrigation was applied in a 10-day interval by

monitoring the soil water status in different parts of the

field. Soil analysis was performed to determine the physical

and chemical properties of the study field (Table 1).

According to the soil analysis, 32 kg ha-1 of phosphorus

286 Journal of the Indian Society of Remote Sensing (February 2022) 50(2):285–298

123



fertilizer (P2O5) and 155 kg ha-1 of nitrogen fertilizer as

urea (46% N) were applied at planting and stem elongation

stages. We attempted to control weeds using herbicides

effectively, and the field was pets and disease-free during

the study. The fields were harvested at the end of May.

The effective wheat LAI (cm2 cm-2) was measured

through the growing season on a weekly basis using the

LAI-2200 plant canopy analyzer (Li-Cor, Inc., Lincoln,

NE, USA). The average effective LAI was measured in

eight different field locations (30 * 30 boxes) associated

with 8 Landsat pixels. The multiple measurements were

taken in each area box based on the average value of one

above-canopy and four below-canopy LAI measurements.

CERES-Wheat Model

The CERES-wheat model is a deterministic model (im-

plemented in the DSSAT) that can simulate the effects of

environmental conditions (i.e., weather and soil proper-

ties), genotype, and management aspects on the growth and

development of wheat (Attia, 2016; Bannayan, Crout, &

Hoogenboom, 2003).

The model is fed with four major inputs, including the

meteorological, crop (physiological parameters), soil, and

management data. The minimum meteorological data

required by the model include daily solar radiation, Tair

(maximum and minimum), and rainfall amount. For these

input sets, we used the daily meteorological data measured

by the nearby weather station. The soil parameterization

Fig. 1 The location of the study area in southern Iran, Firouzabad city. The red boxes show the locations where the samples for the measurements

were collected

Table 1 The physical and

chemical properties of soil in

the study area

Soil properties Depth (cm)

0–15 15–30 30–60 60–90

Texture Silt clay Silt clay Clay Clay

Sand (%) 12 8 15 11

Silt (%) 42 40 32 33

Clay (%) 46 52 53 56

Bulk density (g cm-3) 1.3 1.3 1.2 1.2

Field capacity (cm3 cm-3) 0.38 0.38 0.41 0.42

Permanent wilting point (cm3 cm-3) 0.19 0.19 0.23 0.24

Saturated soil water content (cm3 cm-3) 0.48 0.5 0.53 0.54

Saturated hydraulic conductivity (cm h-1) 0.22 0.2 0.15 0.13

Organic carbon (%) 91 64 44 32

pH 7.5 8.2 8.5 8.3

EC (dS m-1) 4.2 3.8 3.1 1.9
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inputs include the hydraulic and chemical properties,

including initial soil moisture and nitrogen content, field

capacity and saturated water content, bulk density, PH,

factors related to the root growth, soil albedo and evapo-

ration during the first stage, deep percolation and runoff

coefficient. We measured the physical and chemical soil

properties by collecting the soil samples from the experi-

mented area. The main management input data consist of

sowing date and depth, sowing density, and the amount of

applied irrigation and fertilizer. The management data were

historically available for the study site, and those that were

not available were measured during the study. The model

simulates the physiological processes using genotype

coefficients (e.g., photoperiod sensitivity, kernel number

per biomass). Therefore, these coefficients need to be

provided to the model and typically involve a calibration

process. The approach used to calibrate the genotype

coefficient was an iterative procedure (Boote, 1998) that

generated the genetic coefficient values with the lowest

RMSE between the measured and simulated data. The

calibration was done when the RMSE of the observed and

simulated values was lower than 10% (Bannayan &

Hoogenboom, 2009).

To simulate vegetative and reproductive growth, the

model divides the phenological development into nine

stages according to heat unit accumulation. The number of

leaves is calculated as a function of the vegetative growth

stage and based on the duration of grain filling (P5) and

phyllochron interval, the number of developing leaves is

computed. The model then uses the leaf-related factors

(i.e., LAI, leaf expansion, and appearance rate) and envi-

ronmentally driven inputs, including solar radiation and its

use efficiency, canopy extinction coefficient, and plant

population to partition the carbon assimilation to the plant

parts. Grain yield is simulated using the plant population,

grain number, and weight at physical maturity (G1 and G2,

respectively).

The CERES-wheat model applies a one-dimensional

soil water-balance approach to calculate the variation of

soil water content. The approach considers the feedback

among the rainfall and irrigation (as the main sources of

input water to the soil) and runoff, drainage, evapotran-

spiration (soil evaporation and plant transpiration), and

plant water uptake (as the main sources of output water of

the soil). Rainfall is imported as a user input to the model

and is divided into two parts: (1) runoff (calculated based

on the curve number method) and (2) stored in the soil

profile. The model divides the soil profile into different soil

compartments, and each compartment is specified with a

drained upper and lower limit (DUL and LL, respectively)

and saturated water content (SAT). When the water content

of a soil layer is between LL and DUL, the model considers

an unsaturated upward flow, and when the water content

exceeds the DUL, downward saturated flow occurs.

The model calculates crop evapotranspiration (ETc)

using the typical equation using ETo and Kc (Eq. 1). The

reference evapotranspiration in the model can be calculated

using multiple options (e.g., Priestly–Taylor (Priestley &

Taylor, 1972) or Penman–Monteith (Allen, 1998). The Kc,

in the model (named as Kcs), is calculated using the fol-

lowing equation:

Kcs ¼ 1þ EORATIO� 1ð ÞLAI
6

ð3Þ

where EORATIO is the maximum of Kcs when LAI equals

6. The ETc is then partitioned into the potential evaporation

(ESo) and transpiration (Tp) using the following equations:

ESo ¼ ETc � expð1� KEP � LAIÞ ð4Þ
Tp ¼ ETc � ES0 ð5Þ

where KEP is the energy extinction coefficient of the

canopy (ranging from 0.5 to 0.8). The detailed model

algorithm and processes can be found in Tsuji, Uehara

(Tsuji, Uehara, & Balas, 1994).

Remotely Sensed Data and LAI Calculations

For remotely sensed data, we used the spectral imagery of

Landsat 8 to calculate multiple vegetation indices. The

non-cloudy images were retrieved from the USGS Earth

Explorer website (www.earthexplorer.usgs.gov) from path/

row of 162/40 from December to May (sowing to harvest)

of 2017, 2018, and 2019. The Landsat 8 provides images at

16-day temporal resolution and 30 m spatial resolution and

includes eleven spectral bands. The dates at which the

images were retrieved during each growing season and

according to the winter wheat development stage are pro-

vided in Table 2.

The LAI cannot be directly calculated from the multi-

spectral data of Landsat imagery; rather, vegetation indices

(VIs) are investigated, and empirical correlations are

developed to construct the LAI (Li, 2017a). Accordingly,

we employed four vegetation indices that are widely used

to estimate biophysical parameters. These parameters

include the normalized difference vegetation index (NDVI)

(Rouse, 1974), the soil-adjusted vegetation index (SAVI)

(Huete & Huete, 1988), the enhanced vegetation index

(EVI) (Huete et al., 1994) and the two-band EVI or EVI-2

(Jiang, 2008). The following formulations were used to

calculate these indices.

NDVI ¼ qNir � qRed
qNir þ qRed

ð6Þ
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SAVI ¼ qNir � qRed
qNir þ qRed þ L

ð1þ LÞ ð7Þ

EVI ¼ 2:5� qNir � qRed
qNir þ 0:6� qRed � 7:5� qBlue þ 1

ð8Þ

EVI - 2 ¼ 2:5� qNir � qRed
qNir þ 2:4� qRed þ 1

ð9Þ

The correlation between the in situ measurements of

LAI and the VIs was evaluated using the data during the

first year (December to May of 2017). VI with the highest

correlation was selected as the LAI representative, and the

correlation was validated based on the data from 2018 and

2019. The LAI based on Landsat data was termed as

LAIRS and was ingested into the model as a replacement

of LAI calculated by the model.

Assimilating LAI into the CERES-Wheat Model

To assimilate the LAIRS (LAI based on Landsat8 data)

into the CERES-wheat model, we used the residual

resampling particle filter algorithm. The particle filter (PF,

particle filter) is based on Monte Carlo methods, which use

particle sets to represent probabilities. A detailed descrip-

tion of the algorithm is provided in Canty (2019), and a

schematic flowchart is presented in Fig. 2.

The LAI in the dynamic state-space CERES-wheat

model is not represented as a state variable as the model

uses the plant leaf area to calculate LAI at each time step

independently. However, the plant leaf area can be con-

sidered a state variable since it is presented as a heat unit

function, and the number of leaves sets its potential value.

One common issue with the PF method is its particle

degradation phenomenon that requires high computational

power and time. Therefore, we applied residual resampling

to resolve the degeneracy issue of the PF method. To

account for the problem of sample impoverishment (i.e.,

lack of particle diversity), the Gaussian repetitious pertur-

bation was used to the states’ particles.

Based on the LAIRS assimilated into the model and PF

method, the optimum yield was estimated and compared to

the yield estimates based on the default LAI in the model.

Results and Discussion

Model Calibration and Evaluation

This study’s first objective was to calibrate the CERES-

wheat model so it can be used in the region of study to

simulate winter wheat growth and yield accurately.

Accordingly, certain parameters, including initial condi-

tions, cultivar genetic coefficient, species, and ecotype

determination, were calibrated, and the results are pre-

sented in Table 3. The calibration process was done based

on the data acquired during the first year of the study (2017

growing season). The cultivar genetic information (i.e., G1,

G2, G3) has been typically addressed as the parameters that

need calibration in the model (Iglesias, 2006; Timsina,

2008). Adjusting these coefficients to 10 (G1), 50 (G2), and

2 (G3) resulted in accurately simulating anthesis and

physiological maturity dates (97 and 132, respectively),

compared to the observed phenological dates (94 and 138,

respectively). The other important cultivar parameter was

PHINT (intervals between the successive appearance of

leaf tip), which was set to 100. This adjustment allowed the

model to simulate the main-stem leaves during the heading

growing stage as 7 to 8, which is recommended for winter-

wheat simulation in a semiarid region (Attia, 2016). Cali-

brating the genotype information was not adequate for the

model to accurately simulate all crop specifications. Large

errors were still observed in the simulated leaf emergence

stages and terminal spikelet initiation, as reported in Joh-

nen, Boettcher (Johnen et al. 2012) and Andarzian,

Hoogenboom (Andarzian, 2015). To account for these

caveats, the ecotype information, including duration of

phase end juvenile to end grain fill lag, i.e., P1, P2, P3, and

Table 2 The acquired dates of

Landsat images and

corresponding to the

development stages of winter

wheat

Landsat images acquired dates Development stage DOY

2017 2018 2019

1/7/2017 1/19/2018 6/1/2019 Tillering 85

2/8/2017 2/20/2018 2/7/2019 Beginning of stem elongation 112

2/24/2017 3/8/2018 2/23/2019 Mid of stem elongation 126

3/12/2017 3/24/2018 3/11/2019 End of stem elongation 150

3/28/2017 4/9/2018 3/27/2019 Flowering 165

4/13/2017 4/25/2018 4/12/2019 Heading (early Yield formation) 195

4/29/2017 5/11/2018 4/28/2019 Heading (end of yield formation) 208

5/15/2017 5/27/2018 5/14/2019 Maturity 213

5/31/2017 6/12/2018 5/30/2019 Harvest 225
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P4, was adjusted to 420, 305, 195, and 195 �C, GDD.
Additional ecotype information including SLAS, LSPHE

(for better simulation of leaf area expansion) was calibrated

to 405 cm2 g-1 and 6, respectively, and PARUE and

Fig. 2 The flowchart of the

process used for retrieving the

assimilated and remotely sensed

LAI using Landsat images,

CERES-wheat model particle

filter (PF) method

Table 3 The calibrated parameters used in the CERES-wheat model for simulating winter wheat (cultivar Pishtaz)

Crop file Parameter Description Calibrated value Unit

Initial condition parameters PDATE Sowing date 290 Day of year

PPOP Sowing population 460 Plant m-2

IDATE & FDATE 1 Irrigation and fertilization date 1 80 Day of year

FAMN Nitrogen fertilizer at sowing 100 kg ha-1

FAMN1 Nitrogen fertilizer at date 1 155 kg ha-1

Species RRESP

fr Root respiration fraction 0.65 %

PHL1 Number of leaves produced during phyllochron phase 3.2 Number

Ecotype P1 Duration of phase end juvenile to terminal spikelet 420 �C, GDD
P2 Duration of phase terminal spikelet to end leaf growth 305 �C, GDD
P3 Duration of phase end leaf growth to end spike growth 195 �C, GDD
P4 Duration of phase end spike growth to end grain fill lag 195 �C, GDD
SLAS Specific leaf area 405 cm2 g-1

PARUE Conversion to dry matter ratio before the last leaf 3.2 g MJ-1

PARU2 Conversion to dry matter ratio after the last leaf 3.3 g MJ-1

TIFAC Tiller initiation 1.7 %

LSPHE Final leaf senescence ends 6 Growth stage

Genotype G1 Kernel number per unit of canopy weight 10 Number g-1

G2 The standard size of the kernel 50 mg

G3 The standard weight of the tiller 2 G

P1V Vernalization duration 35 Days

P1D Photoperiod response 95 %

P5 Grain-filling phase 550 �C, GDD
PHINT Phyllochron interval 100 �C, GDD
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PARU2 (for better simulation of biomass production) were

calibrated to 3.2 and 3.3 g MJ-1, respectively, and have

also been adjusted.

The calibrated model was evaluated using the data from

the next two growing seasons (2018 and 2019). The

evaluation results are presented in Table 4. It should be

noted that the information shown in Table 4 presents the

results before assimilating satellite data. In the evaluation

stage, the model simulated the phenological dates with an

overall RMSE of 11.5, MBE of 9.2, and R2 of 0.79. The

maximum LAI values were simulated as 4.8 and 5.5

compared to 6.9 and 6.6, for growing seasons of 2018 and

2019, respectively. The grain yield and biomass were

simulated with RMSE of 910 and 1215 Mg ha-1. The

calibration results were comparable with the values

reported from Mehrabi and Sepaskhah (Mehrabi &

Sepaskhah, 2019), which was done over a region with a

similar climatic condition and cultivar. Andarzian,

Hoogenboom (Andarzian, 2015) and Attia, Rajan (Attia,

2016), for a similar climatic condition, reported a relatively

similar range for the calibrated parameters; however, they

planted a different cultivar, and certain differences are

expected. For example, Andarzian, Hoogenboom (An-

darzian, 2015) set the vernalization coefficient as zero for

their spring-type cultivar, but in our study, the value was

set to 35 as a winter-type cultivar.

Evaluation of Vegetation Indices

We investigated the correlation between four commonly

used vegetation indices and the observed LAI to identify

the VI that could represent the LAI more accurately. The

results of these comparisons and the statistical analysis are

provided in Fig. 3 and Table 5. The yielded correlation

from all the VIs was statistically significant

(P value\ 0.05), corresponding to the LAI values with

R2[ 0.73. The NDVI estimates from the Landsat-8 ima-

ges showed a moderately good correlation with - 2.94 of

MBE and 3.46 of RMSE. The SAVI–LAI resulted in a

slightly better correlation with a lower range of error

(MBE = - 2.89 and RMSE = 3.32). The higher accuracy

from SAVI could be linked to the index’s ability to remove

the soil background bias, while this bias has embedded in

the NDVI. Notably, when the LAI is low for the early

growing stages, the soil background in the NDVI correla-

tion with the LAI could result in a large error. Removing

this source of error using the SAVI index improved the

accuracy of the relationship. EVI correlation with LAI was

higher compared to NDVI and SAVI with R2 = 0.82,

MBE = - 2.45, and RMSE = 3.01. EVI corrects specific

atmospheric conditions and canopy background noise and

is more sensitive in areas with dense vegetation. In areas of

the dense canopy where the leaf area index (LAI) is high, Ta
bl
e
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the VI values can be improved by leveraging information

in the blue wavelength (Zhao, 2011), enhanced in the EVI.

These enhancements allowed the index to reduce the

background and atmospheric noises, which resulted in a

higher correlation with in situ LAI values. Among the VIs,

EVI-2 showed the highest correlation with R2 = 0.87,

MBE = - 2.04, and RMSE = 2.64. While the information

from the Landsat blue band (used in EVI) can help achieve

more accurate LAI estimates, it does not necessarily

account for additional biophysical information on vegeta-

tion characteristics, particularly for the atmospheric con-

ditions with low particulate matters. For our study area

with an insignificant atmospheric aerosol effect, the blue

band’s information increased the complexity of the index

more than its positive impact on atmospheric correction as

using EVI-2 improved the accuracy of the index for LAI

estimates. It should be noted that, since the investigated

VIs have a typically smaller range of values (typically

below 1) compared to LAI (with the values ranging from 0

- 6), the MBE showed negative error values. We should

also highlight that we only presented the linear fitting while

we tested different fitting equations, but EVI-2 returned the

best result in other cases.

Based on the resulted equation between the EVI-2 and

LAI (Table 5), we selected the EVI-2 index for further

analysis. Accordingly, we validated the correlation by

considering the two years of data (2018 and 2019). The

resulting comparison is plotted in Fig. 4 on each of the

growing stages, separately.

Fig. 3 The resulting correlations from the Landsat-derived vegetation indices and observational leaf area index (LAI) based on data from the

2017 growing season

Table 5 The statistical analysis

of the resulting equation

between the Landsat-derived

vegetation indices and

observational leaf area index

(LAI)

Vegetation index SD Equation R2 MBE RMSE

NDVI 0.21 LAI = 8.91 9 NDVI ? 0.21 0.73 - 2.94 3.46

SAVI 0.21 LAI = 9.49 9 SAVI - 0.005 0.78 - 2.89 3.32

EVI 0.20 LAI = 9.71 9 EVI - 0.0534 0.82 - 2.45 3.01

EVI-2 0.20 LAI = 10.08 9 EVI-2 - 0.53 0.87 - 2.04 2.64

292 Journal of the Indian Society of Remote Sensing (February 2022) 50(2):285–298

123



Evaluation of the Assimilated CERES-LAI
Trajectories

As the LAI based on the EVI-2 index showed the best

performance (discussed in the previous section), the LAI-

EVI-2 data was coupled with the CERES-wheat model.

The resulting LAI simulated with the default model

(without LAI assimilation) and the modified model (as-

similated LAI based on EVI-2 index) is plotted in Fig. 5. In

both growing seasons, the LAI assimilated using the

Landsat EVI-2 data showed a closer agreement with the

observed data. Based on observation for the growing sea-

son 2018, the LAI increased from 70 days after planting

and reached 3.8 by the end of the stem elongation period

(* 150 days after planting). The LAI reached the maxi-

mum (LAImax) of 6.8 ± 0.4 during the maturity and then

decreased. A similar trend was observed during the 2019

growing season with a marginally smaller LAImax

(6.4 ± 0.3). The CERES model underestimated the LAI

when the default model was used. The LAI was accurately

simulated during the early growing seasons, particularly

before stem elongation. However, the simulation started to

deviate from the observation with a large error during the

maximum greenness of the plant. The default CERES

model simulated the LAImax with - 2.08 of MBE. When

the model was coupled with the assimilated Landsat EVI2-

LAI, the simulation error was reduced significantly to -

1.14. The assimilated LAI resulted in higher LAI values

from the CERES model; nevertheless, the values were still

underestimated compared to the observation. During the

second year of the experiment (2019 growing seasons), the

assimilated LAI resulted in a better simulation with

- 0.75 of MBE. The difference between the simulated LAI

from the CERES default mode and EVI2-LAI was not

statistically significant during the early growing stages

(beginning of the stem elongation), and the maximum

difference was observed during the plant maturity.

The improvement in LAI simulated with Landsat EVI2-

LAI could also be detected when the results were compared

with one-to-one line (Fig. 6). During the 2018 growing

season, RMSE reduced from 1.32 to 0.81, and during the

2019 growing season, RSME reduced from 1.37 to 0.78 by

implementing Landsat EVI2-LAI into the CERES-wheat

model. Considering all growing seasons, the MBE of the

model simulated LAI was reduced by 38% when the

satellite data was incorporated in the model.

Evaluation of the CERES Components
with Assimilated Data

After using assimilated LAI, the model accuracy has

improved in several areas that are presented in Table 6. The

model accurately simulated the anthesis and maturity dates

(as the day of the year) with an overall RMSE of 5.8, MBE

of 4.7, and R2 of 0.90. The most significant improvement

was observed in the maximum LAI, which has already

been discussed in the previous section. The LAI improve-

ment led to a better simulation of grain yield and biomass

Fig. 4 The validation result of the correlation between the Landsat-

derived EVI-2 and the observational leaf area index (LAI) based on

data from 2018 and 2019 growing seasons

Fig. 5 Time series of the observed and simulated winter wheat leaf area index based on the model using default and Landsat EVI2-LAI during

the 2018 and 2019 growing seasons
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production. The model simulated the average grain yield as

9.8 and 10.1 Mg ha-1 compared to 10.5 and 10.8 Mg ha-1

during the 2018 and 2019 growing seasons, respectively.

Considering the biomass production, the model simulation

resulted in 16.3 and 16.9 Mg ha-1 compared to 17.2 and

17.8 Mg ha-1 during the 2018 and 2019 growing seasons,

respectively.

A more detailed analysis was performed on the har-

vested yield of the model considering the default settings

and using the assimilated Landsat EVI2-LAI. The results

were compared against the measured field data and are

demonstrated in Fig. 7. The harvested yield for the winter

wheat of the study site ranged from 7.9 to 12 Mg ha-1. The

CERES-wheat model in the default mode simulated the

crop yield with an RSME of 0.87–0.94 kg ha-1 and R2 of

0.49–0.51. A better LAI representation in the model could

significantly improve simulated yield accuracy in both

growing seasons. When the model was configured with the

assimilated Landsat EVI2-LAI, the RMSE was reduced to

0.51–0.58 kg ha-1, and R2 was increased to 0.69–0.71. In a

study by Dente, Satalino (Dente, 2008), when the CERES-

wheat model was configured with assimilated LAI from

ASAR (ENVISAT Advanced Synthetic Aperture Radar),

the model was able to simulate the yield with an accuracy

of 360 to 420 kg ha-1. In another study by Li 2017b), the

assimilated LAI into the CERES-wheat model resulted in

the predicted yield with R2 of 0.61 and RMSE of

523 kg ha-1, which is comparable with that of our study.

Discussion

The growth and development of a plant is a complex

process that involves the interactions between the plant,

soil, and atmosphere. More complexity evolves as the

environmental conditions tend to change against the opti-

mal growth condition. For example, in the study region,

limited water supply and severe drought have altered the

optimal condition for crop growth. We could rely on two

aspects to reduce this complexity under this situation,

either by testing new irrigation/management techniques or

by improving the simulation model performance. For

Fig. 6 Comparison of the observed and simulated winter wheat leaf

area index (LAI). The observed LAI refers to the in situ measure-

ments. The simulated LAI refers to values estimated by coupling the

default CERE-wheat model with Landsat EVI2-LAI data during the

2018 and 2019 growing seasons. Black solid lines are 1:1 lines, and

blue dotted lines are the best fit to the data
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example, Jafari, Kamali (Jafari, 2021) and Jamshidi, Zand-

Parsa (Jamshidi, Zand-Parsa, & Niyogi, 2021b) have tested

different irrigation techniques on citrus species under the

study region’s climate. Considering the model improve-

ment aspect, we should note that the simulation models

often simplify certain phenological and chemi-physiologi-

cal plant development aspects. Therefore, the uncertainty

inherent in the model’s structure leads to the deviation of

the model’s results and the true process. One approach to

enhance the model outcome is to improve the model’s

structure; however, this approach would add more com-

plexity to the model routine (Tao, 2018). As an alternative

approach to alleviate the uncertainties of the crop models,

the state variables with high simulation errors and signifi-

cant impact on the model’s outcome can be provided from

other sources with higher precision. Considering our initial

calibration and validation results (Table 4), the LAI was

identified with large errors during the validation process. A

similar result has also been reported in a study by Hussain,

Khaliq (Hussain et al., 2018), in which the poor LAI

simulation of the CERES-wheat model was demonstrated

by comparing against other crop models. A poor LAI

simulation can negatively impact the carbon assimilation

processes and its partitioning to the crop components (i.e.,

stem, root, grain) (Basso, Cammarano, & Carfagna, 2013).

Several studies have highlighted the potential of remo-

tely sensed data of satellite optical sensors for monitoring

crop water status (Jamshidi et al., 2021a) and particularly

for retrieving LAI (Wang, 2013; Yi, 2008; Zheng &

Moskal, 2009). The LAI cannot be directly achieved from

satellite data, and vegetation indices are typically used as a

proxy to retrieve it. However, using different vegetation

indices may result in discrepancies as the spectral response

function varies among the VIs (Yang, 2015). In our study,

the difference between the LAI acquired from the different

VIs remained in an acceptable range (0.72\ R2\ 0.87),

and the highest agreement with the ground measurements

was found from EVI-2. The differences between the LAI

acquired based on NDVI, and the rest of vegetation indices

(i.e., SAVI, EVI, and EVI-2) were particularly evident

during the early growing stages. This was occurred due to

the noise signals coming from soil backscattering because

of the low vegetation covers during the early growth stages.

The inconsistency between NDVI and LAI in sparse or low

vegetative period and areas has also been addressed in

other studies (Houborg & McCabe, 2018; Pontailler,

Hymus, & Drake, 2003). From an applicability viewpoint,

Fig. 7 Comparisons of the CERES-wheat simulated grain yield (using the default and assimilated LAI) with the harvested yield during the 2018

and 2019 growing seasons
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the soil backscattering issue could be particularly prob-

lematic for coarser spatial resolution platforms (e.g.,

MODIS) as the canopy signals cannot be differentiated

from the soil background in VIs that do not account for soil

impact. Therefore, the VIs occluding soil responses (e.g.,

SAVI, EVI, and EVI-2 in our study) resulted in higher

accuracy for LAI estimates. Li, Chen (Li, 2017a) used EVI-

2 for estimating winter wheat LAI from Landsat (Huang,

2015) used SAVI for grapevine LAI from Landsat and

MODIS, Herrmann, Pimstein (Herrmann, 2011) used REIP

(Red-Edge Inflection Point) to retrieve LAI from Sentinel

satellite. Therefore, the optimal selection of a vegetation

index that accurately represents LAI is crop-specific and

may vary depending on the optical sensor

characterizations.

The calibrated model reasonably simulated the overall

yield on its default mode (R2 = 0.49–0.51). Other studies

such as Mehrabi and Sepaskhah (Mehrabi & Sepaskhah,

2019) and Andarzian, Hoogenboom (Andarzian, 2015),

however, reported a significantly higher accuracy of grain

yield simulation by the CERES-wheat model compared to

our results. These studies, however, only consider a small

area (\ 1 ha) in their analysis. Applying the crop model

over small farmland reduces the field heterogeneity in soil

characteristics, irrigation uniformity, and fertilization dis-

tribution. The different pattern of these elements has been

reported to affect the grain yield (Rathore, 2017) signifi-

cantly. In our study, the grain data has been collected over

25 ha of winter wheat fields that may have been subjected

to different agricultural practices. Therefore, a lower

accuracy in the simulated grain yield by the CERES-wheat

was expected.

Improving the accuracy of the CERES-LAI by using

satellite data showed positive impacts on the accuracy of

the different model sections comparing Table 4 (results

before LAI-assimilation) with Table 6 (results after LAI-

assimilation). In particular, the simulated biomass and

grain yield were significantly improved considering the

31% improvement of R2 and 62% of error reduction (av-

erage improvement of RMSE and MBE). Consistent with

our results, Li (2017b) reported a higher accuracy (RMSE

of 0.31 to 0.44) and significant improvement in CERES-

wheat simulated LAI when high-resolution satellite ima-

gery was used to assimilate leaf area index into the model.

Li (2017a), however, used multiple satellite data (i.e.,

Landsat, GF-1, HJ-1), which increased the temporal reso-

lution of the remotely derived data. This was likely resulted

in higher accuracy of the simulated LAI compared to our

study. Landsat revisit time is every 16 days, and it may

extend longer if it encounters cloudy. Jamshidi, Zand-Parsa

(Jamshidi, 2019a) showed that the optimal temporal reso-

lution for satellite imagery to capture the crop phenology is

one week during vegetative growth and two weeks during

reproductive growth. Therefore, our results could have

been further enhanced if supported by the platforms with a

more frequent revisit time, such as Sentinel or MODIS. It

should be noted that the spatial resolution is also essential

to capture the phenology change; thus, data from MODIS

(spatial resolution of 500 m) could be more suitable for

regional assessment rather than field-scale experiments.

Conclusion

Given the importance of crop models for assessing yield

and regional water productivity and sustainability, we

evaluated the Crop Environment Resource Synthesis for

Wheat (CERES-Wheat) model in an agriculturally domi-

nated area in southern Iran, Firouzabad. The model was

first calibrated using the field measurement data of the

growing season of 2017 and evaluated during 2018 and

2019. Based on our analysis, the CERES model perfor-

mance was found relatively poor in simulating the LAI. To

improve the accuracy of the model, a remotely sensed leaf

area index (LAI) was assimilated into the model using the

particle filter approach. Four vegetation indices, including

NDVI, SAVI, EVI, and EVI-2, were evaluated to identify

the best estimator of winter wheat LAI from the Landsat

optical sensor. All the vegetation indices resulted in the

acceptable range of LAI (0.72\R2\ 0.87) with NDVI as

the lowest and EVI-2 as the highest accurate estimators.

Using NDVI was particularly problematic during the early

growth stage due to the noise signals coming from soil

backscattering. While benefiting from the Landsat data at

three spectral bands (NIR, red, and blue), the EVI index did

not improve the LAI estimates compared to EVI with only

two bands’ data (NIR and red). Therefore, for our study

area with an insignificant atmospheric aerosol effect, using

blue band information would contribute to more com-

plexity than improving accuracy, and the EVI-2 index is

preferred. Applying the PF method to assimilate data into

the CERES model was relatively simple and user-friendly

over the study site (*25 ha); however, the complexity and

computational power may increase if the model is applied

at a regional scale. Assimilating the LAI based on Landsat-

EVI-2 into the CERES model improved the model’s

overall performance, particularly for grain yield and bio-

mass simulations (as RMSE and MBE were reduced by

*62% on average). The LAI heterogeneity increases by

expanding the study area from field to catchment and

regional level. Using the remotely sensed LAI helps cap-

ture the dynamic of LAI more accurately at larger scales. In

this context, the methodology and framework used in our

research to assimilate LAI into the model and apply it at a

regional scale will be particularly useful. Our study also

provides practical information on the CERES model’s
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calibrated parameters for simulating winter wheat (a cul-

tivar of Pishtaz) in the study region, which facilitates the

regional application of the model.
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