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Abstract
In this paper, a novel remote sensing (RS) image fusion algorithm based on Multi-scale convolutional neural network is

proposed. The most important innovation is that the proposed remote sensing image fusion method utilizes a set of

convolutional neural networks (CNN) to perform multi-scale image analysis on each band of a multispectral image in order

to extract the typical characteristics of different band of multispectral images. In addition, to prevent losing the information

of the original image, the max-pooling layer of the traditional CNN is replaced with a standard convolutional layer, and the

standard convolutional layer has one step size of 2. The RS image fusion results presented in this paper demonstrate that

the proposed method is not only competitive with the most advanced methods, but also superior to other classical methods.

Keywords Remote-sensing � Convolutional neural network � Image fusion

Introduction

Electromagnetic waves reflected on the Earth’s surface can

be detected and recorded by satellite sensor, while remote

sensing (RS) images are the carriers for storing such

information (Deng et al., 2019). The purpose of RS image

is to extract information on the structure and content of the

Earth’s surface, to monitor the environment and climate

(Plowright et al., 2017; Posselt et al. 2012) and to detect

and classify land cover changes (Matikainen et al., 2017;

Zhang et al., 2016). Mainstream Earth observation satel-

lites (e.g., Ikonos, Landsat, Gaofen-1 and Quick-Bird) can

simultaneously capture panchromatic (PAN) images and

multi-spectral (MS) images in the same coverage area.

PAN images contain rich spatial resolution information

that helps distinguish different substances in the scene. Due

to its strong recognition ability, it has been widely used,

especially for Earth observation applications. However,

due to the judge and weigh between image spatial resolu-

tion and image spectral resolution, the spectral resolution

of PAN images is often limited. MS images have a wider

bandwidth than PAN images and generally have a higher

spectral resolution. Combining high quality spatial reso-

lution panchromatic images with hyperspectral resolution

multispectral images is an important technique for inte-

grating spatial and spectral information, both of these

information are contained in panchromatic and multi-

spectral images (Yokoya et al., 2017; Zhu et al., 2018),

which is a process that is called RS image fusion.

In recent years, three types of RS image fusion methods

have been widely used, they are component substitution-

based methods, multi-resolution analysis-based methods

and Optimization-based methods, respectively.

The first type is CS-based methods, which convert the

MS image to the appropriate transform domain. Then, a

specific component representing the MS image space

information is replaced with a PAN image, and the fused

RS image is reconstructed through an appropriate inverse

transformation. Intensity-hue-saturation (IHS)-based image

fusion method (Gillespie et al., 1987; Tu et al., 2004), the

Gram–Schmidt (GS) image fusion method (Laben &

Brower, 2000), the principal component analysis (PCA)

image fusion method (Chavez & Kwarteng ., 1989), and
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adaptive component substitution (ACS)-based image

fusion method (Choi et al., 2011) are the most typical

example based on the component substitution methods.

Still need to pay attention to that analyzing the correlation

between the PAN image and the replaced MS component

has a large effect on the fusion result.

The second type based on the multi-resolution analysis

methods, which generally protect spectral information

during fusion rather than most classical component sub-

stitution-based methods. On the whole, multi-resolution

analysis-based methods first extract the spatial structures

from the PAN image by transformation method, such as

Laplacian pyramid, wavelet transform, the extracted typi-

cal spatial structure information is then injected into the

up-sampled MS image in order to yield a fused RS image.

The RS image fusion methods wavelet transform-based

(Aiazzi et al., 2002a) or curvelet transform-based (Nencini

et al., 2007), the modulation transfer function (MTF)-based

(Palsson et al., 2016), and the smoothing filter intensity

modulation (SFIM)-based method (Liu, 2000) are the most

typical example based on the multi-resolution analysis

methods. However, a potential drawback with these

methods is that they usually produce spatial distortion.

The third type is Optimization-based methods, which

based on the RS image observation model, the fusion

image is regarded as solving ill-posed problems. In gen-

erally, the RS images fusion can be to deal with by mini-

mizing the loss function during the fusion process with the

prior constraints, for example, Bayesian posterior proba-

bility (Fasbender et al., 2008), the minimum mean square

error (Garzelli et al., 2008), normalized Gaussian distri-

bution-based (Zhang et al., 2012), total variation operators

(TVO) (Shen et al., 2016), and sparse representation (SR)-

based fusion methods (Dian et al., 2019). Especially, the

selected image fusion strategy has a profound effect on the

fusion performance of Optimization-based methods, but

the choice of integration strategy is usually more difficult.

The above summarizes the traditional RS image fusion

methods, and finds many ways to extract and select fea-

tures. In other words, researchers need to select not less

than one tool to transform the RS image to extract features

from the beginning in the traditional method. Then

researchers also were asked to design a specific fusion rules

to determine which image characteristics obtained from

MS and PAN image should be injected into the fused

results. Ultimately, the fused result is inversely trans-

formed to obtain a fused image.

For RS images, in most low-level image processing

tasks, such as image superresolution, deblurring, inpainting

(He et al., 2015; Krizhevsky et al., 2017; Ouyang et al.,

2015), in recent years CNN-based algorithms have been

reached the optimum accuracies, and their processing

quality is constantly improving. However, in the field of

remote sensing image fusion, the introduction of the CNN

model in recent years is still limited. Inspired by the

immensely distinguished performance of CNN in the RS

image field, a novel remote-sensing image fusion algorithm

based on MSCNN is presented. Compared with the above-

mentioned three typical RS image fusion algorithms, the

MSCNN method can validly extract and fuse the features

of the image well without artificially designing a particu-

larly complex fusion rule. The main contributions of this

article are as follows:

First, the presented fusion algorithm utilizes a set of

CNN to perform multi-scale analysis on each band of a

multispectral image in order to validly extract the typical

characteristics of different band of multispectral images.

Second, to prevent losing the information of the original

image, the max-pooling layer of the traditional CNN is

replaced with a standard convolutional layer, and the

standard convolutional layer has a step size of 2.

The remainder of this article is arranged as follows.

Section 2 is the basically theoretical and application of

CNN for RS image fusion. Section 3 introduces the pro-

posed MSCNN sensing image fusion method. The experi-

mental results and corresponding subjective and objective

results analysis are presented in Sect. 4. Section 5 is the

conclusion and summary.

CNN Model for Remote Sensing Image
Fusion

CNN Model

CNN is a kind of deep learning (DL) network, which

mainly used to learn images at different levels of abstrac-

tion, so as to obtain multiple features of images. Figure 1

shows a classic example of CNN structure, which mainly

composed of four parts.

The input information of the CNN is usually the original

image X. In this paper, the characteristic map of the i-th

convolutional layer of the CNN (H0 ¼ X) is represented by

Hi.

Hi ¼ f ðHi�1 �Wi þ biÞ ð1Þ

where f ð�Þ is the activation function, ReLU function is

selected as the activation functionis in this paper, bi is the

bias, Wi is the convolutional kernel and the convolutional

operation is represented by �.

Following the convolution layer is the max-pooling

layer. A fully connected network is employed to classify

the extracted image features based on the input in CNN, in

order to get a satisfactory probability distribution Y . CNN’s

basic operation is a typical mathematical model, which

maps the original input image matrix to a whole new
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feature expression Y through a series of dimensionality

reduction or multiple levels of data transformation.

YðiÞ ¼ PðL ¼ li H0; ðW ; bÞj Þ ð2Þ

Minimizing the loss function LðW ; bÞ is the ultimate

goal of CNN training, the training parameters W and b of

the each convolutional layer is updated layer by layer.

Wi ¼ Wi � g
oEðW ; bÞ

oWi
ð3Þ

bi ¼ bi � g
oEðW ; bÞ

obi
ð4Þ

where, EðW ; bÞ ¼ LðW ; bÞ þ k
2
WTW ,k is the weight decay

parameter, g is the parameter of learning rate (https 2017).

RS Image Fusion Based on CNN

Most existing RS image fusion methods usually consist of

two components: image characteristic extraction and image

characteristic fusion. When the SR or multi-resolution

analysis is used for image fusion purposes, step one is to

represent the input image through a string of appropriate

atoms or base filters in the dictionary obtained by learning.

After deriving the expression, step two is to select the

appropriate strategy to fuse the expression of the source

image, so as to generate the expression of the fused image.

It is worth noting that all processes can also be balanced to

accomplish image characteristic extraction and image

characteristic fusion using different convolution kernels.

Therefore, because the convolution layer can reach the

same effect as the traditional RS image fusion method, it is

more reasonable to obtain the fused RS image through

extract the features of different RS images by using CNN.

The CNN is employed to classify images is currently a

popular practice (Krizhevsky et al., 2017). The output of

CNN is the distribution probability of each category of

features in RS image belonging to each category by putting

a source image into the networks. The designed CNN does

not have a max-pooling layer when using CNN to process

image super-resolution reconstruction problems. The out-

put image of CNN is a reconstructed image whose size is

the same as the size of the input image. In particular, labels

and inputs for CNN training are high-resolution images and

low-resolution images, respectively (Dong et al., 2016;

Kim et al., 2016). To reduce the difference between the

output of network and label, the network will continue to

learn the parameters suitable for label. To achieve the

purpose of fusion RS image using CNN, the same con-

sideration from the field of RS image super-resolution

reconstruction is employed. The purpose of RS image

fusion is fuse PAN images with MS images to produce an

image with both spectral resolutions and high spatial.

Multi-Scale CNN Method

Algorithm Execution

The conceptual workflow of the proposed RS fusion

algorithm is presented in Fig. 2. The number of spectral

bands is indicated by Z in the multi-spectral source image,

and the number of CNN per band is represented by T.

Some similarities will be found by compare convolu-

tional operations with traditional RS image fusion algo-

rithms. For the method based on SR, the image is first

decomposed into sparse coefficients according to the dic-

tionary, and these sparse coefficients are considered to be

characteristic of the subsequent fusion process. While in

the MSCNN method shown in Fig. 2, the characteristics of

RS images are extracted through a string of different

convolutional kernels. These convolutional kernels are

regarded as the dictionary of SR, the characteristic maps

obtained by the network can regard as an expression

through the dictionary mentioned above. In the image

fusion process based on SR algorithms, it is often necessary

to artificial design image fusion rules to determine which

input layer convolution
layer

max-
pooling

convolution
layer

max-
pooling

fully
connected

layer

output
layer

Fig. 1 A typical CNN structure
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sparse coefficients in the input image require further fusion.

In the proposed method, convolutional kernels are

employed to fuse extracted features, and during the CNN

training all the convolutional kernels are automatically

updated in order to yield state-of-the-art fusion results

(Shao & Cai, 2018).

Multi-Scale Analysis

Set I to be the input RS image, so

I ¼ fpðx; yÞ : 1� x�X; 1� y� Yg, where pðx; yÞ is the

pixel value of ðx; yÞ in the source RS image I, with X � Y

image spatial resolution. Suppose there is a patch Pðx; yÞ,
the pixel ðx; yÞ is surrounded by the w� w window, so

Pðx; yÞ can be defined as

Pðx; yÞ ¼ fpðx� w=2b c; y� w=2b c; � � � ; pðxþ w=2b c; y
þ w=2b cÞg

ð5Þ

where �b c represents the floor operation. The input source

RS image is broken down into a string of overlapping

image blocks with plaques of different sizes firstly, such as

a Gaussian pyramid (GP), which can be described as

follows:

wt ¼
wb t ¼ T
2T�t � wb otherwise

�
ð6Þ

where T denotes the number of convolutional neural net-

works per channel (T ¼ 3), wtðt ¼ 1; � � � TÞ is the base

patch size of CNN1,CNN2,LCNNT . The large image blocks

are dimensioned to the same size as the smallest image

block (wb � wb), and the procedure of multi-scale blocks

extracted is shown in Fig. 3, the same CNN structure is

used in Fig. 3.

CNN Architecture

The proposed MSCNN algorithm has three convolutional

layers in the network.

(1) The input of the CNN is a patch of 16� 16 pixels.

(2) The first convolution layer can obtain 64 feature

maps, by 3� 3� 64 filters, and a stride of convo-

lutional layers is set to 1.

(3) The second convolution layer can obtain 128 feature

maps, by 3� 3� 128 filters, and a stride of convo-

lutional layers is also set to 1.

(4) To obtain 256 feature maps, the size of filters of

another convolution layer is set to 3� 3� 256

(5) The 256 feature maps are forwarded to be fully

connected.

(6) The output of the CNN is a feature map.

Network Training

In this section, a training program whose purpose is to find

the best parameters that fully express the entire network is

presented. Let x1 and x2 indicate one pair of down sampled

multi-spectral and panchromatic images, respectively. y is

employed to represents the label of original MS image.

fxi1; xi2; yig
N
i¼1 is a training set, where the number of sam-

ples is represented by N. To obtain a function

f : ŷ ¼ f ðx1; x2Þ, the training program was executed in the

CNN, in which the predicted high-resolution multi-spectral

image is represented by ŷ. In order to evaluate the differ-

ences between predicted results and labels correctly, the

mean squared error (MSE) is employed as the loss function

in the ordinary way:

L ¼ 1

n

Xn
i¼1

yi � f ðxi1; xi2Þ
�� ��2 ð7Þ

PAN

MS

Band 1

Band Z

CNN1

CNNT

…
…

…

CNN1

CNNT

…
…

CNN

M11

M1T

MZ1

MZT

Mpan

…
…

…

C M1

C MZ

…
… C MMS

+ MFsuion

Fig. 2 The proposed MSCNN

fusion method
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where yi is the high-resolution multi-spectral image, n is

the batch size and f ðxi1; xi2Þ is the predicted result.

Similar to the task based on CNN (Farfade et al., 2015;

Long et al., 2015), the soft max loss function is used as the

objective function of the proposed CNN network.

Researchers minimize the soft max loss function by

selecting stochastic gradient descent (SDG) in this paper.

The momentum is set to 0.9 and the weight decay is set to

0.0005. The weights in the CNN are renewed stepwise by

the following equation:

viþ1 ¼ 0:9 � vi � 0:0005 � h � wi � h � oL

owi
; owiþ1

¼ owi þ viþ1 ð8Þ

where v,h,i and L is the momentum parameter, learning rate

parameter, iteration index parameter, and loss function,

respectively. oL
owi

is the derivative of the loss function at wi.

The CNN framework proposed in this paper employs the

popular DL framework Caffe (Jia et al., 2014). The Xavier

algorithm is used to initialize the parameters used by CNN

in this paper (Glorot & Bengio, 2010). The biases are

initialized to 0 in every convolutional layer. The learning

rate is equal and is initialized to 0:0001 in all of the con-

volutional layers. The learning rate dropped once during

the entire training process.

Experiment Results and Analysis

Experimental Setting

The validity of the proposed algorithm is effective evalu-

ated through RS images from the IKONOS and Quick-Bird

satellites in this section. These compared fusion methods

include three CS-based methods, i.e., Gram Schmidt (GS)

(Laben et al., 2000), Principal Component Analysis (PCA)

(Chavez & Kwarteng, 1989), Nonlinear Intensity Hue

Saturation(NIHS) (Ghahremani & Ghassemian, 2016); two

MRA based algorithms, i.e., Generalized Laplacian Pyra-

mid (GLP) (Aiazzi et al. 2002b), Additive Wavelet

Luminance Proportional (AWLP) (Otazu et al., 2005); and

one regularization based methods, i.e., Coupled

Nonnegative Matrix Factorization (CNMF) (Yokoya et al.,

2012); two CNN-based method, i.e., Convolutional Neural

Network(CNN) (Zhong et al., 2016), Deep Convolutional

Neural Network(DCNN) (Shao & Cai, 2018). The original

application source codes of some compared RS image

fusion algorithms in this section are can be downloaded

free of charge on the website.1 Specifically, the number of

bands set to 4 for IKONOS and Quick-bird datasets (i.e.,

z = 4).

Considering that images acquired by different satellites

have different characteristics, in order to fully evaluate the

method, they are divided into two categories according to

the preparation process of the test images: (1) the original

multi-spectral images are considered the referenced high-

resolution multi-spectral images. The low frequency analog

multi-spectral and panchromatic images get ready ahead of

time through Wald’s protocol (Wald et al., 1997). The

original multi-spectral and panchromatic images are

simultaneously down sampled through a scale factor,

which is set as 4. Such test data are addressed as simulated

data. (2) The origin multi-spectral and panchromatic ima-

ges are directly employed as inputs, such test data are

addressed as real data.

The spectral quality of RS image fusion results is a very

important evaluation criterion, but it is difficult to visually

evaluate the spectral quality. In order to compare the

spectral feature and spatial characteristics of different

fusion algorithms for remote sensing images, there are

several indices, including the ERGAS (Wald, 2000), SAM

(Alparone et al., 2007), PSNR, UIQI (Wang & Bovik.,

2002), CC, and RMSE, are used as the objective evaluation

index of RS image fusion performance of different meth-

ods. Specifically, ERGAS, SAM, PSNR, UIQI, RMSE, and

CC are employed to evaluate the RS image fused results

based on analog data. In particular, the larger UIQI, CC

and the smaller SAM, ERGAS, RMSE are shown, the

better performance of fused image is obtained. In order to

fair comparisons and unified computing of metrics, all

computed images are normalized to the range [0, 1].

1 For PCA, GS, AWLP, GLP and CNMF methods, the source codes

can be download from: http://openremotesensing.net/knowledgebase/

a-critical-comparison-among-pansharpening-algorithms/.

Extract

CNN1

CNN2

CNNT

Downsclale

Downsclale

Downsclale

Pre-process

Pre-process

Pre-process…
…

…
…

…
…

…
…

Input iamge

Fig. 3 The procedure of multi-

scale blocks extracted
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Comparisons Based on Simulate Data

Firstly, we take a simulated data named ‘‘Dashan’’, which

collected from the IKONOS sensor to evaluate different RS

image fusion algorithms, which data can be downloaded

from the website.2 Figure 4a–c is the reference MS image

(REF), the simulated PAN image and the simulated low-

spatial resolution MS image (LRMS), respectively. Fig-

ure 4d–k displays the fused image results of PCA, GS,

AWLP, GLP, CNMF, CNN, DCNN, and the proposed

MSCNN method.

By comparing the fusion images displayed in Fig. 4 in

detail, although it can be seen that all fusion algorithms can

improve the space resolution of MS to a greater or lesser

extent, some of fusion methods lead to undesirable effects

such as severe spectral distortion. Although the PCA and

GS methods can improve the space resolution of MS

images effectively, they cause the fused image to darken as

a whole. The AWLP and GLP methods significantly

increase the space resolution of the MS while also pro-

viding severe spectral distortion to the fusion results. As

can be seen from Fig. 4(h), there causes ringing effect and

spectral distortion in the CNMF method at the same time.

As can be seen from the enlarged area in the lower left

REF PAN LRMS

PCA GS AWLP GLP

CNMF CNN DCNN Proposed

a

e f gd

h i j k

b c

Fig. 4 Fused results on the first

simulated ‘‘Dashan’’ image

Table 1 Quantitative results on IKONOS dataset (Dashan) for dif-

ferent methods

SAM ERGAS PSNR UIQI RMSE CC

PCA 5.9192 8.5064 22.1698 0.6736 0.1723 0.7738

GS 5.0989 5.2288 25.2566 0.6904 0.1654 0.7923

AWLP 6.1350 5.1501 25.6254 0.7218 0.1587 0.8319

GLP 6.8087 5.3411 25.3338 0.7196 0.1638 0.8296

CNMF 4.5503 2.3224 29.8108 0.8873 0.0857 0.9436

CNN 4.4296 2.4682 29.7341 0.8763 0.0903 0.9457

DCNN 4.3864 2.3815 30.0095 0.8912 0.0835 0.9582

Proposed 4.0823 2.3238 30.1428 0.9034 0.0748 0.9624

Ideal value 0 0 ? ! 1 0 1

2 http://glcf.umd.edu/data/ikonos/.
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corner of Fig. 4i and j, although the CNN and DCNN

methods have no spectral distortion, the spatial resolution

of MS is much less improved. The proposed method pre-

served spectral features from the source input multi-spec-

tral images, which indicate the proposed method can

extract spectral features very effectively and can accurately

inject the extracted remote sensing image features into the

fusion results. Table 1 reports the objective evaluation

index comparisons of fusion results (Bold is the best).

From Table 1, it can be easily seen that the proposed fusion

algorithm has a very competitive advantage in most indi-

cators, except ERGAS, but the indicators of the proposed

RS fusion method are very close to the indicators of the

best method, which demonstrates the effectiveness of the

proposed method.

Secondly, a simulated data acquired from Quick-bird

sensor to evaluate different RS image fusion algorithms,

which can be downloaded from the website.3 Figure 5a–c

is the reference MS image (REF), the simulated PAN

image and the simulated LRMS, respectively. Figure 5d–k

shows the fused image results of PCA, GS, AWLP, GLP,

CNMF, CNN, DCNN, and the proposed MSCNN method.

From Fig. 5, we can see that the visual results by PCA

show insufficient protection of spectral information. For

REF PAN LRMS

PCA GS AWLP GLP

CNMF CNN DCNN Proposed

a

h i j k

ed f g

b c

Fig. 5 Fused results on the

secondly simulated image

Table 2 Quantitative results on quick-bird dataset for different

methods

SAM ERGAS PSNR UIQI RMSE CC

PCA 2.1849 2.9649 24.9388 0.5837 0.1834 0.7527

GS 2.2152 2.9514 24.9937 0.6003 0.1769 0.7564

AWLP 1.7772 1.8851 29.6728 0.6223 0.1693 0.8174

GLP 1.6315 1.6694 30.6675 0.6186 0.1748 0.8183

CNMF 2.5169 1.6939 30.3471 0.7863 0.0963 0.9247

CNN 1.6134 1.6843 31.6935 0.8163 0.0814 0.9395

DCNN 1.5038 1.4683 32.5784 0.8618 0.0758 0.9563

Proposed 1.4827 1.2694 34.8746 0.8953 0.0649 0.9598

Ideal value 0 0 ? ! 1 0 1

3 http://www.digitalglobe.com/product-samples.
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example, remote sensing images obtained by the PCA

fusion method have poor spectral conservation and color

contrast, which are clearly inconsistent with REF images.

(i.e., Fig. 5 a). In addition, although the fused image

obtained by the GS and AWLP algorithms shows satis-

factory spectral preservation ability, they will lose a lot of

spatial details, which may lead to poor visual effects of

fused images. Although GLP approach performs excel-

lently on preserving spectral information and increasing

spatial details of the RS image, the improvement of image

spatial resolution for the MS is not ideal. (e.g., see cars on

the road). As shown in Fig. 5h, CNMF method causes

ringing effect and spectral distortion in the fused image. A

zoomed view of a particular area is provided in each fused

image and is marked with a larger blue rectangle. The

fusion results of CNN and DCNN are very similar to the

original MS image, the spatial resolution of the DCNN is

improved, and the spectral distortion is almost impercep-

tible, but CNN method also gives rise to the phenomenon

of spectral distortion. As can be seen from the enlarged

area in the lower left corner of Fig (j), although the DCNN

methods have no spectral distortion, the spatial resolution

of MS is much less improved. Based on the above obser-

vations, it can be proved that the proposed method can

effectively extract more spatial image information from the

panchromatic to preserve spectral information, increase the

visual quality of the multi-spectral image, and avoid

spectral distortion. Therefore, the results of the above

fusion experiments show that the method is competitive in

terms of visual performance.

In order to objectively evaluate the performance of the

various fusion methods involved in this paper, corre-

sponding to the results of the RS fusion shown in Fig. 5,

the evaluation index values are shown in Table 2, respec-

tively. From the quantitative evaluation in Table 2 (in each

table the best fused results are indicated in bold), we can

find that in all the algorithms used in this paper for quan-

titative comparison, the proposed method is the most

competitive method. This means that the fusion method

proposed in this paper can better preserve the spectral

information and inject more spatial information into the

fused image in a better way.

LRMS PAN

PCA GS AWLP GLP

CNMF CNN DCNN Proposed

a

g

h i j k

d e f

b

Fig. 6 Fused results on the real

Quick-Bird data
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Comparisons Based on Real Data

Each fusion method was evaluated on real data without real

reference in this section. Figures 6 and 7 show the fused

images on the real Quick-Bird and WorldView-2 data,

respectively. The Quick-Bird data including the natural

landscape and the river, and the main content of World-

View-2 data is a town. Figs 6 and 7a are interpolation

images, which based on real low spatial resolution multi-

spectral images. Figure 6 and 7b are the panchromatic

images accordingly. Figure 6d–k and Fig. 7d– k display

the fusion results of PCA, GS, AWLP, GLP, CNMF, CNN,

DCNN, and the proposed MSCNN method.

Due to the lack of a real reference image, we can only

display visual results for real data sets. For better obser-

vation, a zoomed view of a particular area is provided in

each fused image and is marked with a larger blue rect-

angle. Compare with the actual low spatial resolution

multispectral image displayed in Fig. 6 and 7a, the PCA,

GS, and CNMF algorithms still suffer from some severe

spectral distortion in the enlarged blue rectangular area

near the river. The fused RS image obtained by the GLP

method produces a ringing effect along the river bank in

Quick-Bird. The fused image yielded by the AWLP

method is blurry in the whole region. Although the hyper-

spectral quality of the fusion results obtained by the CNN

and DCNN methods is satisfactory, compared to low-res-

olution multispectral images, it does not improve much

spatial resolution. In contrast, this method achieves a good

fusion effect in the case of untraceable spectral distortion

and significantly improved spatial resolution. However, the

detail information of fused image in MSCNN is much clear

than other fusion methods. From Fig. 6 and 7, it is very

powerful proof that the proposed MSCNN RS image fusion

method can gets very competitive visual effects. Through

the experiments of these two real data, the effectiveness of

the proposed method is proved.

Conclusions

CNN has proven to be an effective method in the field of

image processing. However, in the field of remote sensing

image fusion, the introduction of the CNN model in recent

LRMS PAN

PCA GS AWLP GLP

CNMF CNN DCNN Proposed

a

g

kjih

d e f

b

Fig. 7 Fused results on the real-

WorldView-2 data
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years is still limited. Inspired by the immensely distin-

guished performance of CNN in the RS image field, a novel

remote-sensing image fusion algorithm based on MSCNN

is presented. Compared with the above-mentioned three

typical RS image fusion algorithms, the MSCNN method

can validly extract and fuse the features of the image well

without artificially designing a particularly complex fusion

rule. The most important innovation is that the proposed

remote sensing image fusion method utilizes a set of con-

volutional neural networks (CNN) to perform multi-scale

image analysis on each band of a multispectral image in

order to extract the typical characteristics of different band

of multispectral images. In addition, to prevent losing the

information of the original image, the max-pooling layer of

the traditional CNN is replaced with a standard convolu-

tional layer, and the standard convolutional layer has one

step size of 2. The RS image fusion results presented in this

paper demonstrate that the proposed method is not only

competitive with the most advanced methods, but also

superior to other classical methods.
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