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Abstract
Soil erosion is a key concern for the environment and natural resources since it leads to a decline in-field productivity and

soil quality, resulting in land degradation. In this study, assessment of uncertainty in soil erosion modelling of the Karso

watershed, India, was carried out by employing the revised universal soil loss equation (RUSLE) and geospatial tech-

nologies to evaluate the effect of multi-source digital elevation models (DEMs) [Advanced Spaceborne Thermal Emission

and Reflection Radiometer (ASTER), Cartosat and Shuttle Radar Topography Mission (SRTM)] with resampled multi-

resolution grids. The rainfall erosivity factor (R) was computed using the mean monthly Tropical Rainfall Measuring

Mission rainfall estimates for 1998 to 2012. The slope length factor was derived using the ASTER and Cartosat DEMs at

grid sizes of 30 m, 50 m, 100 m, 150 m, 200 m, and 250 m, and for the SRTM DEM at 100 m, 150 m, 200 m and 250 m

resolutions for the Karso watershed, Jharkhand, India. Significant differences were obtained in the soil loss estimates across

the different DEM sources and resampled grid sizes. The Cartosat DEM with a 200 m grid was found to estimate the soil

loss the best out of all the DEM combinations considered. The Cartosat DEM proved to be more reliable than the ASTER

and SRTM DEMs. The results indicated that the RUSLE is a scale-dependent model since the model estimates were

affected not only by the DEM source but also by its resolution. The prediction of erosion potential by employing the

multisource, multiresolution DEMs and the RUSLE helped to identify the soil erosion’s spatial pattern within the

watershed. The study provided an impact analysis of the uncertainties when selecting the multisource, multiresolution

DEMs for soil erosion modelling.
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Introduction

Soil erosion is a severe environmental problem in devel-

oping countries (Keesstra et al. 2018a, b; Rodrigo-Comino

2018; Wuepper et al. 2020). Soil losses are no sustainable

in agricultural lands such as vineyards (López-Vicente

et al. 2020; Rodrigo-Comino et al. 2018), citrus (Keesstra

et al. 2019), Persimmon (Cerdà et al. 2017), and olive

plantations (Rodrigo-Comino et al. 2020) and also in forest

land due to forest fires and grazing (Alcañiz et al. 2020;

Cerdà et al. 2020). Soil erosion induces the loss of organic

matter, soil compaction, and soil biodiversity loss, resulting

in reduced soil quality and soil fertility, influencing land

degradation processes (Novara et al. 2019).

In India, about 5334 m-tonnes of soil is being detached

annually due to various reasons and its rate is about

16.40 Mg ha-1 year-1(Narayana 1983). Erosion levels are

high in Asia, Africa and South America, where its rate

varies from 30 to 40 Mg ha-1 year-1 (Barrow 1991).

Erosion leads to loss of the topsoil that provides water- and

nutrient-holding capacity (Keesstra et al. 2018a, b).

Several soil erosion studies have been carried out by

several researchers (Chen et al. 2011; Demirci and

Karaburun 2012; Ghosal and Bhattacharya 2020; Pandey

et al. 2007) using geospatial technologies. Thomas et al.

(2018) modelled soil erosion and deposition in a tropical

mountainous river basin in a rain shadow region of the

southern Western Ghats (India) using RUSLE and the

transport-limited sediment delivery function in GIS.

A DEM is a quantitative representation of the terrain relief

and is one of the most important spatial data sources for

hydrological modelling (deVente et al. 2009). The

increased availability of DEMs from different sources at

global and regional scales offers new opportunities to apply

models for various environmental applications (Li and

Wong 2010; Lin et al. 2013). DEMs with higher accuracy

were used by various researchers (Prasuhn et al. 2013;

Quiquerez et al. 2014) to improve soil erosion estimation

accuracy. In recent years, multiresolution DEMs, namely

(1) ASTER (Advanced Spaceborne Thermal Emission and

Reflection Radiometer) at 30 m, (2) Cartosat-1 at 30 m,

and (3) SRTM (Shuttle Radar Topography Mission) at

90 m resolutions, are freely available in the web. Hence,

the data availability problem about terrain relief, one of the

most critical parameters for soil erosion modelling

(Wechsler 2007), has become less important. However,

uncertainties do exist in the DEM and are rarely accounted

in hydrological studies (Datta and Schack-Kirchner 2010).

The DEM source and resolution affect the accuracy of the

extracted topographical parameters (Sharma et al. 2011).

The arbitrary choice of grid resolution for the contour-

derived DEM is one of the major sources of uncertainty in

the hydrological modelling process (Zhang et al. 2008).

The uncertainty associated with DEM-derived topographic

parameters can reduce the reliability of the modelled ero-

sion estimates (Sharma et al. 2011). DEMs are affected by

the delineation of hill slopes and channel systems, leading

to discrepancies in the erosion estimates (Walker and

Willgoose 1999). Thus, the selection of the DEM is vital

for environmental applications (Li and Wong 2010).

Furthermore, the functional relationship between the

effect of the grid size and the sediment yield modelling was

studied by various researchers using different empirical,

conceptual and physical models (Chaubey et al. 2005;

Cochrane and Flanagan 2005; Cotter et al. 2003; Lin et al.

2010; Renschler and Harbor 2002). Molnár and Julien

(1998) reported that the USLE model underestimated the

soil loss with increased grid size. Wu et al. (2005) and

Nikolakopoulos et al. (2006) also reported that the grid size

effect on a USLE-based soil estimate is significant.

deVente et al. (2009) used a USLE-based soil loss model

called WATEM–SEDEM to illustrate ASTER and SRTM

DEMs’ effect on sediment yield.

Researchers have evaluated relevant topographic

parameters derived from different DEMs for accuracy

assessment (Ahmed et al. 2007; Hancock et al. 2006;

Hayakawa et al. 2008; Hirt et al. 2010; Mukherjee et al.

2013; Muralikrishnan et al. 2013). deVente et al. (2009)

reported that the SRTM DEM provides more accurate

estimates of the slope gradient and upslope drainage area

than the ASTER DEM. Hancock et al. (2006) recom-

mended the SRTM DEM for the qualitative assessment of

large catchments. They found that calibrated sediment

transport parameters were almost five times higher with a

10 m DEM than with the 90 m SRTM DEM. Kääb (2005)

reported that the SRTM DEM is better than the ASTER

DEM. Thus, the uncertainties associated with the DEM-

derived topographical parameters for soil erosion mod-

elling can reduce the predicted erosion estimates’ relia-

bility. Several researchers used the spatially distributed

erosion model RUSLE to assess annual soil erosion esti-

mates due to the effect of water (Van Oost et al. 2000; Van

Rompaey et al. 2001).

The justification for employing a particular grid size in a

DEM lacks in most of the relevant literature. However,

researchers have suggested that the DEM size should be

selected appropriately to reflect spatial variations (Niko-

lakopoulos et al. 2006) adequately. Topographical param-

eters, namely the slope and slope length (LS) factor, are

essential for erosion modelling, computed using multi-

source and multiresolution DEMs. Therefore, the present

study was carried out with the objective to assess the

uncertainty in soil erosion modelling using the revised

universal soil loss equation (RUSLE), multisource and

multiresolution DEMs (SRTM, ASTER and Cartosat).
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Study Area

The study area, Karso watershed, is a part of the Damodar–

Barakar catchment and is geographically located between

85�230 to 85�280E longitude and 24�120 to 24�180N latitude

(Fig. 1). The total area of this watershed is approximately

28 km2. The average annual rainfall in this watershed is

nearly 1300 mm and 75% of the total annual rainfall occurs

during the monsoon season (June to October) (Pandey et al.

2008). The minimum and maximum temperatures vary

from 3 to 42 �C. The main soil textural class is sandy loam

and its depth varies from 0 to 45 cm (Pandey et al. 2008).

The majority of the watershed’s land slope ranges between

0 and 8%, while the highest slope up to 22% is observed in

some parts of the watershed. Paddy is the dominant crop in

the study area.

Methodology

The soil erosion modelling for the case study area was

carried out using the RUSLE model, while the model

parameters were derived using remote sensing and GIS

technologies. One of the important parameters of the soil

erosion model, i.e., the LS factor, was derived using mul-

tisource, multiresolution DEMs (SRTM, ASTER and

Cartosat-Dem). The methodology flowchart for the esti-

mation of the soil loss is given in Fig. 2.

Erosion Modelling Using the RUSLE

The application of the RUSLE in the grid environment with

GIS helped us to model the soil erosion process in a spa-

tially distributed manner. This model is a simple multi-

plicative model and is widely reported in the literature

(Angima et al. 2003; Pandey et al. 2008). The average

annual soil loss was estimated using the following

equation:

A ¼ R� K � LS� C � P ð1Þ

where A is the annual soil loss per unit area

(Mg ha year-1), R is the rainfall erosive factor

(MJ mm ha-1 h21 year-1), K is the soil erodibility factor

(Mg h MJ-1 mm-1), LS is the dimensionless slope length

factor, C is a dimensionless land cover and management or

cropping factor and P is a dimensionless conservation

practice factor. Analogous to the DEM, all RUSLE input

layers, i.e., the R, K, C, and P factors, were prepared at

different grid resolutions, namely 30 m, 50 m, 100 m,

150 m, 200 m, and 250 m, for assessing the soil erosion at

different resolutions.

Rainfall Erosivity Factor (R)

The R factor is the product of the total storm kinetic energy

(E) and the maximum 30 min rainfall intensity (I30) (Re-

nard et al. 1997). In general, the monthly, seasonal, and

annual rainfall statistics are usually available from nearby

hydrological or meteorological stations and are used as a

substitute for EI30 when estimating the rainfall erosivity.

To overcome the absence of rain gauge stations in the study

area, remotely sensed Tropical Rainfall Measuring Mission

(TRMM) data was used to compute the rainfall erosivity

factor. Satellite-based precipitation data are especially

useful in semi-arid regions, where ground measurements

are scarce or not present (Katiraie-Boroujerdy et al. 2013).

The TRMM data has been available since 1997 (Kum-

merow et al. 1998).

Various researchers have reported that the TRMM-

derived rainfall is well correlated with the ground-based

precipitation measurements (Collischonn et al. 2008;

Karaseva et al. 2011; Islam et al. 2007; Duncan and Biggs

2012). Particularly, in developing countries, the availability

of continuous long-term rainfall data records is scarce

(Cohen et al. 2005; Diodato et al. 2007; Shamshad et al.

2008). Hence, in this study, TRMM rainfall that was

archived from http://disc.sci.gsfc.nasa.gov/precipitation/

tovas/ was used. Vrieling et al. (2008) and Vrieling et al.

(2010) utilized the TRMM rainfall data for estimating the

average annual R factor in their studies. Thus, for assessing

the R factor, the relationship between the annual rainfall

and the EI30 values proposed by Singh et al. (1981) forFig. 1 Map of the study area. DEM digital elevation model

Journal of the Indian Society of Remote Sensing (July 2021) 49(7):1689–1707 1691

123

http://disc.sci.gsfc.nasa.gov/precipitation/tovas/
http://disc.sci.gsfc.nasa.gov/precipitation/tovas/


different climatic zones of India was used. Mean monthly

rainfall data extracted from the TRMM rainfall grid for the

period 1998–2012 was used for computation of R factor as

given below:

R ¼ 79þ 0:363Pn ð2Þ

where R is the rainfall erosivity factor (MJ mm ha-1 -

h-1 year-1) and Pn is average annual rainfall (mm).

Soil Erodibility Factor (K)

The K factor was computed using the following

relationship:

K ¼ 2:8� 10�7 �M1:14 � 12� að Þ þ 4:3� 10�3

� b� 2ð Þ þ 10�3 � c� 3ð Þ ð3Þ

where M is the particle size parameter = (percent

silt ? percent very fine sand) (100 - percent clay), a is the

percentage of organic matter, b is the soil structure code

used in soil classification and c is the soil permeability

class. The soil erodibility factor (K) computed by (Pandey

et al. 2007) was adopted in this study.

Slope Length Factor (LS Factor)

Topography affects the runoff and transport processes of

sediment at the watershed scale (Pandey et al. 2007). The

LS factor, the combined slope length and the slope steep-

ness factor are some of the most important inputs for the

RUSLE model and were computed for multi-resolution and

multi-source DEMs. The LS factor characterizes the effect

of topography and hydrology on the soil loss. Soil loss

estimates are more sensitive to the slope steepness than the

slope length (Nikolakopoulos et al. 2006). The LS factor

was computed in GIS using the relationship proposed by

(Moore and Burch 1986), which is given as follows:

LS ¼ k
22:13

� �m
sin a
0:0896

� �n
ð3Þ

where k is the field slope length (m), and a is the slope

gradient in degrees. The value of m depends on the slope

steepness value: 0.5 for slopes exceeding 5%, 0.4 for 4%

slopes, and 0.3 for slopes less than 3% and the value of n is

1.3. Several researchers computed the LS factor using

Eq. (4) with similar assumptions (Fistikoglu and Harman-

cioglu 2002; Onyando et al. 2005; Pandey et al. 2007).

Further, the effect of LS factor on the RUSLE model

estimates derived using multiple DEM grid sizes was

studied and compared to the observed soil loss data for the

period 1998–2001. The SRTM, ASTER and Cartosat-1

DEMs that were available at 90, 30 and 30 m resolutions,

respectively, were resampled to multiple grid resolutions

(50, 100, 150, 200 and 250 m) using bilinear interpolation

techniques in ESRI ARC-GIS 10.2 for extraction of the LS

parameters that are important for regional erosion

modelling.

Fig. 2 Methodology flowchart for the estimation of soil loss. ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer, SRTM
Shuttle Radar Topography Mission, TM Thematic Mapper, TRMM Tropical Rainfall Measuring Mission
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Crop Management Factor (C-Factor)

The C factor in the RUSLE model represents the crop/

vegetation in the study area. Cloud-free digital data from

the Landsat TM satellite (30 m spatial resolution) acquired

from http://glovis.usgs.gov/ was used for generation of the

land-use/land-cover map of the study area. Ground truth

collected during filed visits and information from Google

Earth were used for the supervised classification of the

satellite data using digital image processing software.

The classified images depicting the various land-use/-

land-cover classes of the study area derived from the digital

interpretation of the satellite imagery were used for

assigning a crop management factor (C-factor) to each

land-use/land-cover class. A C-factor of 0.28 was assigned

to agriculture and paddy fields based on the previous

studies carried out in different parts of India (Dabral et al.

2008; Pandey et al. 2009; Rao 1981).

Conservation Practices Factor (P-Factor)

The RUSLE conservation practices factor (P-factor) was

assumed to be 0.28 for agricultural lands (paddy and

upland cultivation), as mostly cultivation is done using

bunded fields, while the value of 1 was assigned to other

land-use/land-cover classes as suggested by (Mondal et al.

2017; Pandey et al. 2007).

Multisource, Multiresolution DEMs

ASTER DEM

The ASTER has three spectral bands in the visible near-

infrared (VNIR), six bands in the shortwave infrared

(SWIR), and five bands in the tier regions (Yamaguchi

et al. 1998). The ASTER DEM with a 30 m resolution was

downloaded from http://gdem.ersdac.jspacesystems.or.jp/.

Cartosat-1 DEM

The Cartosat DEM was obtained from BHUVAN-ISRO’s

Geoportal/Gateway to the Indian Earth Observation http://

bhuvan-noeda.nrsc.gov.in. (Hancock et al. 2006) reported

that the DEM produced from the Cartosat 1 stereo pair is

suitable for operational use in planning and is better than

the other publicly available DEMs, such as the SRTM and

ASTER DEMs. The depression-less DEM was used for

generating the relevant parameters for erosion modelling.

The planimetric and vertical accuracies of the national-

level Carto DEM were 15 m (CEP 90) and 8 m (LE90)

(Murthy et al. 2008).

SRTM DEM The SRTM dataset is freely available from

http://srtm.csi.cgiar.org/. Various researchers have reported

(Rabus et al. 2003) a vertical accuracy of 16 m, a hori-

zontal positional accuracy of 20 m, and a relative vertical

accuracy of 6 m for the SRTM-1 DEM. A comparison

between ASTER, Cartosat-1 and SRTM DEMs elevations

in the study area is presented in Table 1.

Validation of the RUSLE Model Soil Erosion
Estimates

For the validation of the RUSLE model estimates, the

sensitivity analysis of the LS factor derived from multi-

source DEMs was carried out using the observed sediment

yield data for the period 1998–2001 from the Damodar

Valley Corporation (DVC), Hazaribagh. The annual soil

loss was estimated by summing up the measured soil loss

of all individual rainfall events measured for all the rainfall

events in a particular year for 1998–2001. Subsequently,

the annual soil loss in Mg ha-1 was obtained by dividing

the total annual sediment in tonnes by the total area of the

watershed. The sediment concentration was considered to

be 1.4 g/cm3 in this study.

Results

Spatial Inputs for the Erosion Modelling using
the RUSLE

The rainfall erosivity factors were computed for each year

using the TRMM rainfall data for 1998–2012 (Table 2).

The spatial distribution of the soil erodibility factor

(Mg ha h ha-1 MJ-1 mm-1) is given in Fig. 3a.

The spatial distribution of eight different land-use/land-

cover classes in the watershed and its area statistics are

given in Fig. 1b and Table 3, respectively. The error matrix

that indicates the accuracy of the supervised classification

is given in Table 4. The estimated accuracy based on 477

random samples representing various land-use/land-cover

categories exhibited an overall accuracy of 77.36%. The

kappa coefficient (j), which was originally developed to

measure the observer agreement for categorical data (Co-

hen 1968), was estimated to be 0.73. The C-factor and

P-factor for different land-use/land-cover classes is pre-

sented in Table 5. The magnitude and the spatial distri-

bution of the C-factor and P-factor are presented in

Fig. 1c–d.

In this study, RUSLE model was used to assess the

uncertainties in soil loss of the Karso watershed using the

TRMM-derived R and LS factors from multi-source DEMs

(ASTER DEM, Cartosat DEM and SRTM DEM) with

multi-grid resolutions. Variations in the minimum and
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maximum elevations between the three DEMs are evident

in Table 1. The minimum and maximum elevations for

ASTER and SRTM were nearly the same; conversely, the

average elevation was nearly the same for SRTM and

Cartosat. The mean elevation of the ASTER DEM was

lower than the SRTM and Cartosat-DEMs by 58 m and

50 m, respectively. LS factor’s mean and maximum values

were derived using ASTER, Cartosat and SRTM DEMs for

different grid resolutions (Table 6 and Fig. 4), where the

slope length factor (LS) is the most relevant parameter for

erosion modelling. The spatial distribution of these LS

factors computed for different combinations of DEM and

grid resolution is presented in Fig. 5a–c. The Cartosat-

DEM-based LS factors had the lowest mean and maximum

values, while the ASTER and SRTM DEMs produced

higher LS values (Table 6). For ASTER DEM, the maxi-

mum value of the slope length factor increased as the

DEMs were resampled from 50 to 100 m grid sizes, and

this value decreased with the increase in the grid sizes from

150 to 250 m. However, a similar trend was observed in

case of the Cartosat and SRTM DEMs, but the changes

were more prominent for ASTER DEM, which could be

attributed to the averaging effect due to increased grid

sizes.

Furthermore, it was observed that the averaging effect

was more in case of ASTER DEM that likely influenced

the spatial patterns and magnitude of the sediment sources

and sinks. The resampling of DEM resolutions also greatly

affected the distribution of the slopes, and subsequently, on

the channel network and slope length factors. Sharma et al.

(2011) and Nikolakopoulos et al. (2006) also reported that

the LS factor decreased with the increase in DEM grid size.

Evaluation of the Grid Size on the Soil Erosion
Estimates

Soil erosion from the Karso watershed was estimated using

the RUSLE model with multi-resolution grid parameters

derived from multi-source DEMs and the TRMM-based

rainfall erosivity factor (R) during the period 2002–2012.

The percentage deviation of the RUSLE erosion estimates

for the period 1998–2001 varied from 1.85 to 16.99%; we

found that the soil loss computed using the 200 m Cartosat-

DEM-derived parameters for multiple grid resolutions was

close to the observed sediment yield, except for the 250 m

grid. (Table 7). The spatial distribution of the average

annual soil loss estimated using the ASTER-, Cartosat- and

SRTM-derived parameters is presented in Fig. 6a–c.

Furthermore, the soil losses computed for the period

1998–2012 are presented in Table 8. The estimated soil

loss of the watershed varied for different source DEMs

from the highest [9.87 Mg ha-1, ASTER (30 m)] to lowest

[2.19 Mg ha-1, Cartosat (200 m)] for the years 1998 to

2012 (Table 8). It can be seen from Table 8 that the

computed soil losses using the ASTER-DEM-based

parameters were found to be the most overestimated, fol-

lowed by the SRTM-DEM-derived parameters. The per-

centage variation in the soil loss estimates for different grid

resolutions in the case of the Carto DEM was marginal,

while it was prominent in the ASTER DEM case (Table 8).

The resampling of the ASTER DEM from 30 m resulted

in a decrease in the average annual soil loss by 6.16%,

while it decreased by 2.22% for the Carto DEM. The

Table 1 Comparison between the ASTER, Cartosat-1 and SRTM DEMs elevations

DEM

source

Generation and

distribution

Data acquisition period Minimum elevation

(m)

Maximum elevation

(m)

Average

(m)

SD

ASTER METI/NASA February 2000

(Fujisada et al. 2005)

378 657 384.67 40.96

Cartosat-1 NRSC/ISRO May 05, 2005

(Muralikrishnan et al.

2013)

327 555 434.33 50.18

SRTM NASA/USGS February 11–22, 2000

(Hayakawa et al. 2008)

385 665 442.46 48.65

Table 2 Estimation of the rainfall erosivity factor using the TRMM

data

Year R factor Year R factor

1998 635.22 2006 577.33

1999 632.41 2007 656.1

2000 498.78 2008 567.21

2001 498.07 2009 413.82

2002 480.48 2010 416.36

2003 540.54 2011 635.72

2004 499.92 2012 525.03

2005 410.54 – –
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decrease in soil loss with an increase in DEM resolution

was reported by many researchers (Cho and Lee 2001; Di

Luzio et al. 2004; Molnár and Julien 1998; Nikolakopoulos

et al. 2006). Conversely, (Verstraeten 2006) reported a

higher RUSLE-based soil loss with SRTM DEM than a

20 m DEM in the Scheldt River basin. The average annual

soil losses computed using topographic parameters derived

from ASTER, SRTM, and Cartosat with 100 m resolution

grids were found to be 5.75, 3.69 and 2.98 Mg ha-1 -

year-1, respectively. The soil losses in the case of 150 m

grid resolution was increased by 9.3% for ASTER, 6% for

Cartosat and 7.5% for SRTM. The lower slope gradients

that were aggregated for coarse resolution DEMs might

have led to steeper slopes in low-slope categories and high-

resolution DEMs were less smooth than the low-resolution

Fig. 3 a Spatial distribution of

the soil erodibility factor,

b classified land-use/land-cover

map, c spatial distribution of the

crop management (C) factor,
d spatial distribution of the

conservation management

factor (P) factor

Table 3 Land-use/land-cover statistics of the Karso watershed

Land use/land cover Area (ha) Area (%)

Water body 76.5 2.74

Open forest 293.31 10.5

Paddy 1210.77 43.35

Degraded forest 605.88 21.69

Settlement 98.01 3.51

Dense forest 60.3 2.16

Wasteland 226.08 8.09

Agriculture (upland crop) 222.21 7.96

Total 2793.06 100
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DEMs (Li and Wong 2010). The estimated average annual

soil losses for SRTM (200 m), ASTER (200 m) and Car-

tosat (200 m) DEMs were 3.54, 4.53 and 2.96 Mg ha-1,

respectively. Compared to estimated soil loss for the grid

resolution of 150 m, the soil loss decreased by 39.95% for

ASTER, 7.09% for Cartosat and 12.71% for SRTM. For

the grid size of 250 m, the computed average annual soil

loss increased by 2.58% for ASTER, 12.16% for Cartosat

(150 m) and 11.72% for SRTM. The soil loss estimate

decreased with a coarser resampled DEM, which was

consistent with (Chaubey et al. 2005).

Discussion

The RUSLE is a scale-dependent model, where the soil loss

estimates observed in this study were affected not only by

the DEM source but also by its resolution (Table 8). The

DEM used is one of the important parameters that are

likely to induce uncertainty in soil erosion estimates, along

with rainfall and soil erodibility factors. In this analysis, the

mean and maximum LS factors increased with an increase

in the DEM resolution up to 50 m and 100 m, respectively,

and subsequently decreased with an increase in the DEM

resolution.

These changes were more prominent in the case of

ASTER DEM. Contrary to these results, (Mondal et al.

2017) reported that the mean slope and mean LS factor

decreased with increased DEM resolution in their studies

carried out in the west-flowing Narmada River basin.

However, they reported poor results when the ASTER

DEM was used for soil erosion modelling. In this study, the

predicted soil loss with ASTER DEM (30 m) was also

much higher than Cartosat (30 m) for each DEM resolu-

tion. Prasuhn et al. (2013) also reported the poor perfor-

mance of the ASTER DEM for soil erosion estimation in

Table 4 Classification accuracy

assessment
Class W OF P DGF S DF WL A Row total EC EO

W 33 0 0 0 3 3 3 0 42 21.43 0.00

OF 0 57 0 0 0 0 0 0 60 5.00 26.92

P 0 6 87 9 0 0 6 12 120 27.50 14.71

DGF 0 6 6 45 0 0 0 0 60 25.00 31.82

S 0 0 0 0 30 0 12 3 45 33.33 9.09

DF 0 3 0 3 0 24 0 0 30 20.00 20.00

WL 0 6 3 0 0 0 48 3 60 20.00 33.33

A 0 0 3 9 0 0 3 45 60 25.00 28.57

Column totals 33 78 102 66 33 30 72 63 477

Table 5 Crop management factor and conservation practice factor for

different land-use/land-cover classes

Land use/land cover C factor P factor

Water body 0 1

Open forest 0.08 1

Paddy 0.28 0.28

Degraded forest 0.08 1

Settlement 0.02 1

Dense forest 0.04 1

Wasteland 0.18 1

Agriculture (upland Crop) 0.28 0.28

W water body, OF open forest, P paddy, DGF degraded forest,

S settlement, DF dense forest, WL wasteland, A agriculture (upland

crop)

Table 6 Mean and maximum LS factors for different grid sizes

Grid size (m) ASTER Cartosat-1 SRTM

Mean Max Max Mean Max Mean

30 1.68 15.80 13.31 0.88

50 1.70 17.78 12.47 0.90

100 1.48 19.33 13.42 0.90 18.39 1.37

150 1.44 15.14 10.47 0.90 19.81 1.39

200 1.40 14.37 9.03 0.86 17.42 1.39

250 1.33 13.15 8.96 0.85 14.63 1.29
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Fig. 4 Mean and maximum LS factors for different grid sizes
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Fig. 5 a Spatial distribution of

the slope length factor for

different grid sizes (ASTER),

b spatial distribution of the

slope length factor for different

grid sizes (Cartosat-1) and

c spatial distribution of the slope
length factor for different grid

sizes (SRTM)
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comparison to the SRTM DEM despite the better vertical

accuracy. The Cartosat DEM at 100 m and 150 m grid

sizes appear to be a threshold, where the RUSLE estimates

for these grid resolutions match reasonably with the

observed soil loss. In the SRTM DEM case, the parameters

derived using a 200 m resolution grid yielded better esti-

mates compared to other grid resolutions. Although the

percentage deviations between the observed and simulated

sediments were reduced with the increase in the ASTER

DEM gird sizes from 30 to 250 m, the ASTER DEM inputs

performed worst among all the DEMs, followed by the

SRTM DEM. Soil erosion studies carried out by (Mondal

et al. 2017) using GTOPO30, SRTM (90 m), Cartosat

(30 m), ASTER and SRTM (30 m) indicated that the soil

erosion results were better in the case of SRTM (30 m) and

very poor in the case of GTOPO30. This observation is

consistent with Lin et al. (2013), as the SRTM-DEM-based

erosion estimates were better compared with the field

measurements.

Vieux and Needham (1993) reported that the grid size of

400 m appears to be a critical value, below which the

channel erosion and shorter flow lengths dominate the

erosion process. The flow path length response to the cell

sizes is expected since the flow path meanderings are short-

circuited with larger cell sizes. Channel erosion and shorter

flow lengths dominate the erosion process with smaller

DEM grid sizes. Thus, contrary to the general perception

that a finer resolution gives better results while an

increased grid size gives a generalized soil erosion estimate

(Mondal et al. 2017), a distinct pattern in the LS values was

shown with an increase of the DEM size in this study. The

study by Yu (1997) also reported that a 183 m spacing

Fig. 5 continued
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could be an appropriate compromise between the quality of

hydrologic simulations and the amount of required com-

puting time. Liu et al. (2009) evaluated the S factor’s

accuracy for different DEM resolutions and reported that

the accuracy of the S factor decreases as the horizontal

resolution decreases. Thus, coarse-resolution DEMs can be

used in large river basins to avoid large memory data

usage. Overall, the results suggested that the selection of

DEM sources and grid sizes has a major influence on soil

erosion estimation. Soil loss is most dependent on the flow

path length. Thus, erosion modelling without considering

the grid size or other lumping effects will drastically

change the decisions concerning non-point source pollution

control (Verstraeten, 2006). The reasons for the varied

thresholds were due to the nonlinear nature of the erosion

process (Chaplot 2005).

Variations in erosion estimates for multisource and

multiresolution DEMs are attributed to the drainage net-

work connectivity, which in turn influence the sediment

transport capacity of the network. Furthermore, a satellite-

based TRMM-gridded rainfall product facilitated the R

factor’s computation, which is a critical factor for under-

standing the hydrological and surface geomorphological

processes at the watershed scale. Particularly, the avail-

ability of the total rainfall energy and maximum 30 min

rainfall intensity (I30) of storm events for the R factor’s

computation is rarely available in developing countries.

Soil erosion assessments using the relationship between the

annual rainfall and EI30 values proposed by Singh et al.

(1981) for India’s climatic regions yielded better results.

One of the RUSLE model’s major limitations is that it does

not account for the transportation and deposition of the

eroded sediments and provides only gross estimates of the

soil erosion from the watershed. In the study area, the

sediment transport efficiency is very high, considering the

watershed and land-use/land-cover distribution, where

more than 65% of the area is occupied by agriculture and

non-forest classes. Furthermore, out of the 35% of the area

covered by forest classes, only 2% is under dense forest,

meaning that sediment’s transport capacity is likely to be

high. A well-distributed drainage network further aggre-

gates the transport capacity of sediments. Hence, in this

study, the concepts of either the sediment delivery ratio or

transport-limited sediment delivery were not considered

when assessing the soil erosion/deposition, as suggested in

the literature (Jain and Kothyari 2000). Higher agricultural

areas, plantations, and degraded forests also reflect the

various anthropogenic activities that increase the transport

capacity (deVente et al. 2009). Thus, this study helped to

assess the impact of the multisource and multiresolution

DEMs on the erosion processes, which can be used when

providing guidelines for the input data preparation

requirements and computational resources needed for theTa
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Fig. 6 a Spatial distribution of

the average annual soil loss

(ASTER), b spatial distribution

of the average annual soil loss

(Cartosat-1) and c spatial

distribution of the average

annual soil loss (SRTM)
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Fig. 6 continued
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effective utilization of soil erosion models. Furthermore,

accurate soil erosion estimation and its spatial distribution

at the watershed, sub-watershed, and catchment scales are

required to plan and effectively implement soil and water

conservation interventions.

Conclusions

The study evaluated the effect of three DEMs, i.e., ASTER,

Cartosat-1 and SRTM on erosion modelling over the Karso

watershed using RUSLE and TRMM rainfall data. The

TRMM-derived rainfall was used for the estimation of the

R factor of the RUSLE model. Variations in the slope

length factor were observed with a coarser resampled grid

size, which consequently affected the soil loss estimate.

When estimating the soil loss using the RUSLE model, the

Cartosat-DEM-derived parameters produced better results

than the SRTM-DEM and ASTER-DEM derived parame-

ters. The Cartosat-DEM at 100 m and 150 m appeared to

be a threshold, where the RUSLE estimates for these grid

resolutions matched reasonably well with the observed soil

loss. In the SRTM-DEM case, the parameters derived using

the 200 m resolution grid yielded better estimates com-

pared to other grid resolutions. The ASTER DEM was

found to be the poorest of all the tested DEMs. The results

showed that the DEM source and grid size selection pro-

foundly influenced soil loss estimation using the RUSLE

model. The spatial distribution of the soil erosion in the

watershed helps to identify cells that contribute to soil

erosion and characterize the transport path. The present

study was an effort to highlight the possible uncertainties

Fig. 6 continued
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associated with the use of multisource and multiresolution

open-source DEMs during soil erosion modelling. The

prediction of the erosion potential at the grid level using

the RUSLE model helped to identify the soil erosion’s

spatial pattern within the watershed. Thus, assessment of

the soil loss by RUSLE and multisource and multiresolu-

tion open-source DEMs helped to evaluate the effect of the

topographic parameter on soil erosion processes.
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Cerdà, A., Rodrigo-Comino, J., Yakupoğlu, T., Dindaroğlu, T., Terol,
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