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Abstract
The shallow seawater depth inversion based on remote sensing technology is important for water depth detection, which is

of considerable significance to marine engineering, shipping, and marine military security. In this study, we took the

Taiping Island and its adjacent waters in the South China Sea as a test bed and developed a water depth inversion model on

the basis of extreme learning machine (ELM) and extreme learning machine optimized by genetic algorithm (GA-ELM). In

GA-ELM, the input weights and the hidden layer biases were optimized by genetic algorithm. The two models allowed the

evaluation of nonlinear relationships between the reflectance of high-resolution imagery from WorldView-2 and actual

water depth obtained from the S-57 sea chart. The eight bands of the high-resolution image and the actual water depth were

used as the input layer and the output layer, and the sigmoid function was introduced as activation function. Finally, the

model accuracy was evaluated by using mean relative error (MRE), root mean square error (RMSE), mean absolute error

(MAE), coefficient of determination (R2), and the regression analysis between the retrieved water depth and the actual data.

The simulation results showed that the two models had better stability than the second-order polynomial regression, BP

neural network, and RBF neural network. Furthermore, GA-ELM had a more compact network structure and better

generalization ability than ELM. Thus, we concluded that GA-ELM had higher precision and could achieve a better

inversion result in the experimental area.
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Introduction

Water depth is an important parameter of the marine

environment, and its detection is of considerable signifi-

cance for marine aquaculture, marine transportation,

coastal science applications, marine engineering

construction, and marine military as well as shipping

safety. Compared with traditional measurement methods

such as shipborne sonar and airborne laser sounding, the

water depth inversion method based ōn remote sensing has

notable advantages in some aspects, such as short cycle,

large monitoring coverage, high precision, and low cost,

particularly in the territorial power dispute regions that the

measurement vessel cannot reach. However, these models

are not well applied in some special environments. In

contrast, the nonlinear water depth inversion model based

on multiband reflectivity has more advantages in data

acquisition convenience, geographic and temporal

extensiveness.

The theoretical interpretation model is relatively simple,

but a lot of unknown parameters need to be addressed

(Lyzenga 1978; Lee et al. 1999; Eugenio et al. 2015;

Kanno et al. 2011; Tian et al. 2007). So, its promotion and

application are greatly restricted. The error of depth result

caused by the transformation of seafloor reflectivity or
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water attenuation is an important difficulty of the model.

The traditional model has poor portability and is not suit-

able to the complex environment in which the strong sea-

water absorption to light waves leads to the energy

attenuation of light propagation and the weak echo signal

of the substrate. We can evaluate the correlation between

the actual water depth and the spectral reflectance by

constructing a statistical model, but the internal optical

parameters of the water body don’t need to be addressed.

So, the statistical models can meet this requirement well.

Based on the known water depth points, the linear rela-

tionships between the relative value and the absolute value

of water depth such as the ratio model are established

(Lyzenga 1985; Van et al. 1991; Clark et al. 1987; Stumpf

et al. 2003; Eugenio et al. 2015b). In the ratio method,

there is no need to remove dark water. The method is

convenient and stable because the number of empirical

coefficients required is less. Compared with linear penalty,

the ratio method has better depth penetration ability in

relatively clear water area, but it still has some limitations,

especially in the condition of increasing noise. However,

the statistical model is simple but inefficient comparing

with artificial neural networks. The main reason is that the

modeling result of the statistical model on the unknown

nonlinear function relation is not ideal. So, the water depth

retrieved by the statistical model to retrieve water depth is

not accurate enough. Compared with the traditional linear

water depth inversion model, nonlinear models such as

neural network and support vector machine can quickly

establish the nonlinear relationship between the in situ

depth measurement and the multispectral multiband

reflectivity (Ceyhun and Yalçın 2010; Wang and Zhang.

2005; Heddam 2016; Zhu et al. 2013; Ghose et al. 2010;

Zheng et al. 2017b; Huang et al. 2011).

However, a nonlinear water depth inversion method

such as a neural network may face several issues, including

difficult determination of the size and structure of neural

network in advance, premature, weak generalization,

overfitting, sticks to local optimum easily, low local search

ability, and slow speed of convergence and learning. The

methodology proposed in this study use the model of

extreme learning machine (ELM) to estimate shallow

seawater depth, which makes it has faster learning speed

and better generalization performance than other traditional

models Due to the nonlinear structure of ELM, we can

estimate the nonlinear relationship between water depth

and reflectivity of multiband remote sensing image. The

water depth inversion can be carried out without consid-

ering environmental factors related to optical remote

sensing such as water turbidity, bottom material, and water

phytoplankton. In order to dissolve the problem of local

optimization, an optimized method was proposed by using

genetic algorithms, in which the top structure and related

parameters (weights and thresholds) can be obtained

simultaneously. The advantages of the model are fast

training speed, low polymerization, and far away from the

local optimum. Meanwhile, the requirements of spatial and

repetitive depth measurement are also reduced. The simu-

lation showed that the method was effective for water

depth inversion.

Study Area and Dataset

The study area covered the Taiping Island and its adjacent

waters, located in the northwest of the Zheng He Group

Reef of the northern of the Nan Sha Islands. It lies between

10�2005000N and 10�2302500N latitude and between

114�2004000E and 114�2503000E longitude and has an

approximate area of 56 km2 (Fig. 1). The upper right

quarter of the figure shows the WorldView-2 remote

sensing image of the entire study area. The sampling points

are plotted in the graph, where green points (280 datasets)

represent the training dataset and red points (70 datasets)

represent the test dataset. We selected a subarea of the

study area as the experimental area, which is displayed in

the red box of the figure. The TP Island is very important to

navigation safety, shipwreck notification, meteorological

monitoring, and international flight intelligence monitor-

ing. Remote sensing is suitable for water depth inversion

because the area near the island is far from the mainland,

where there is a good ecosystem with clear seawater

quality.

The data used in the study were a high-resolution image

of the WorldView-2 satellite obtained on March 18, 2011,

when the season was very dry, the sky was clear, and the

clouds over the study area are relatively thin. The image

covered the entire research area where the image quality

was considerably good to identify the edges of the item. It

contained eight multispectral bands with a spatial resolu-

tion of 1.8 m, such as the blue band (450–510 nm), green

band (510–580 nm), red band (630–690 nm), near-infrared

band (770–895 nm), and four additional bands such as the

coast band (400–450 nm), yellow band (585–625 nm), red

edge band (705–745 nm), and near-infrared band 2

(860–1040 nm), along with one panchromatic band with a

spatial resolution of 0.5 m.

The band selection of bathymetric inversion is very

important, in order to find out which bands are the most

suitable input layer neurons for the network model, we

explored the correlation coefficient of the reflectivity and

the corresponding water depth at each band of the sampling

point in the early stage. Correlation analysis shows that the

absolute values of the correlation coefficient between

reflectivity and water depth of each band are less than 0.5,

and the distribution is relatively concentrated between
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0.3–0.5, only the values of correlation coefficient of coastal

band and blue band are small. Therefore, it can be con-

cluded that all the bands except the coastal band and the

blue band can be used as the input layer of the model.

However, both the coastal band and the blue band have the

largest reflectance, the best penetrability and the least

attenuation in water. Considering the correlation and

spectral characteristics, all eight bands of worldview-2

remote sensing images were selected as the input layer.

The actual water depth derived from the S-57 in the format

of the electronic chart data of the same period was used as

the output data of ELM, as shown in Fig. 2.

Methodology

ELM

Huang et al. proposed the extreme learning machine

(ELM), which is a kind of machine learning algorithm

designed for a feed forward neural network based on the

traditional neural network (Huang et al. 2005, 2006).

Compared with traditional neural network, it can improve

learning efficiency and optimize parameter setting. Fig-

ure 3 shows the network structure of the model.

The single hidden layer feed forward neural network

(SLFNs) is a kind of feed forward neural network with only

one hidden layer, which has been widely used due to its

simple network structure and excellent function fitting

ability. The ELM is a typical model of SLFNS, the feature

mapping from input layer to hidden layer is given manually

or randomly, and all it has to do is calculate the output

weight. Therefore, it reduces the training time and the

global optimal solution can be obtained easily. It consists

of an input layer, a hidden layer, and an output layer. Here,

it makes sense to connect each input layer neuron to each

of the hidden layer neurons and each hidden layer neuron

to each of the output layer neurons. For N arbitrary distinct

samples (Xi, ti), where Xi = [xi1, xi2, …, Xin] T\Rn,

ti = [ti1, ti2, …, Tim] T\Rm. Assume that the hidden

layer neuron is L; then, N represents the input layer neuron,

and M represents the output layer neuron. Therefore, the

SLFNs with N hidden nodes and the activation function

g(x) can be described as follows:

XL

i¼1

bigðWi � Xj þ biÞ ¼ ojði; j ¼ 1; 2; . . .;NÞ ð1Þ

Wi ¼ ½wi1;wi2; � � � ;win�T

bi ¼ ½bi1; bi2; � � � ; bim�T

where Xj and oj are the input and the output vectors,

respectively; g(x) is the hidden layer output function (ac-

tivation function) of node i; Wi represents the connection

weights between the input layer and the ith node in the

Fig. 1 Study area marked by the red box (color figure online)
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hidden layer; bi is the bias of the i th hidden node; and bi
represents the connection weights between the ith node in

the hidden layer and the output layer.

Activation function can help neural network model to

understand and learn complex nonlinear relations. Due to

the nonlinear relationship between band reflectivity and

water depth, the activation function is introduced into the

model to encode the nonlinear expression and capture the

nonlinear factors of the data. Considering the characteristic

of water depth inversion, we choose sigmoid activation

function, which uses nonlinear method to normalize the

data and map all real numbers to (0, 1) interval. The sig-

moid function is as follows:

g xð Þ ¼ 1

1þ e�x
ð2Þ

The standard SLFNs with L hidden nodes with the

activation function g(x) can approximate these N samples

with zero error, implying that
PL

j¼1

oj � tj
�� �� ¼ 0. Further,

there exist Wi, bi, and bi such that (Huang et al. 2006; Feng

et al. 2009):

XL

i¼1

bigðWi � Xj þ biÞ ¼ tjði; j; . . .;NÞ ð3Þ

Equation (3) can be written compactly as follows:

Hb ¼ T ð4Þ

where:

H ¼
gðW1 � X1 þ b1Þ � � � gðWL � X1 þ bLÞ

� � � � � � � � �
gðW1 � XN þ b1Þ � � � gðWL � XN þ bLÞ

2
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ð5Þ
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Fig.2 Actual bathymetric

contour extracted from S57 sea

chart
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Fig.3 ELM network architecture
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The complex matrix H is the hidden layer output matrix,

b is the weight vector connecting the hidden neurons and

the outputs, and T is the matrix of targets.

As rigorously proven in the theorems from Huang

(Huang and Chen 2007, 2008; Huang et al. 2010), the input

weights and the hidden layer biases can be randomly

assigned if only the activation function is infinitely dif-

ferentiable. Wi and bi are not necessarily adjusted, and H

can actually stay the same value once learning process

starts. The objective of training a feed forward neural

network is to minimize the training error and makes the

predicted value more in line with the expected value. We

can use the formula of min
b

Hb� Tk k to find the optimal

solution b of the equation Hb ¼ T .

HðW ;BÞb̂� T
���

��� ¼ min
b

HðW ;BÞb� Tk k

W ¼ w1; . . .;wL

B ¼ b1; . . .; bL

ð8Þ

If the number L of the hidden nodes is equal to the

number N of the distinct training samples, the matrix H is

square and invertible when the input weight vectors W and

the hidden biases b are randomly chosen, and SLFNs can

approximate these training samples with zero error. How-

ever, in most cases, the number of hidden neurons is

considerably less than the number of distinct training

samples, and thus, we can obtain the optimal solution b̂ of

the equation Hb ¼ T with the minimum output weights b:

b̂ ¼ HþT ¼ ðHTHÞ�1HTT ð9Þ

where Hþ is the Moore–Penrose generalized inverse of the

hidden layer output matrix H.

GA-ELM

The number of nodes in the hidden layer affects the

accuracy of the ELM greatly. Due to the randomness of the

input weight matrix and hidden layer bias initialized in the

ELM, the partial 0 value will make the hidden node invalid

and even reduce the precision of the model Although the

model accuracy can be improved by increasing the number

of neurons, this may results in poor generalization (Han

et al. 2013). Furthermore, even if it is same in the number

of hidden layer neurons, the difference of input weight

matrix and hidden layer bias will change the result of

calculation and affect the stability and generalization per-

formance of the inversion results. In this study, the

parameters in the model were optimized by using the

global search ability of genetic algorithm, during which

they were adjusted by repeated training until met the

accuracy requirement.

The input optimization of genetic algorithm is a global

optimization method which simulates the natural selection

and genetic mechanism of Darwin’s biological evolution

by referring to some features of biological evolution.

Genetic algorithm adopts probabilistic optimization

method, which can automatically acquire the optimized

search space without definite rules and can adjust the

search direction adaptively. Because the input weight

matrix and hidden layer deviation of the extreme learning

machine are given randomly, the hidden layer nodes will

fail. Genetic algorithm performs well in global search

ability and scalability. Therefore, the genetic algorithm was

used to upgrade the model accuracy. The related workflow

is shown in Fig. 4.

(1) The ELM model has a fixed network structure,

which is composed of the input neurons, the hidden

neurons, and the output neurons. The training dataset

and the test dataset constitute the data sample of the

model.

(2) The initial population of a group of input weights

and hidden layer biases of ELM is usually randomly

generated and can be of any desired size by the

binary coding of the genetic algorithm.

(3) Each member of the population is then evaluated by

the ‘‘fitness’’ of the individual, which is calculated

by how well it fits the desired requirements.

(4) The overall fitness of the population is constantly

improved by selection, which involves discarding

the bad designs and only keeping the best individuals

in the population.

(5) New individuals are created by crossover, which

combines various aspects of the selected individuals.

(6) Mutation typically works by making very small

changes at random to an individual’s genome.

(7) Once the next generation is generated, it automat-

ically returns to step (3) until the optimal parameters

are obtained and the network tends to converge.

(8) The output matrix of hidden layer H is calculated

according to the optimized weights and biases. The

weights of the output layer are calculated based on

the following equation: b̂ ¼ HþT .Finally, the simu-

lation test is completed by using the trained network

model.

Results

This study mainly includes the following two steps,

establish the shallow seawater depth inversion model based

on ELM and GA-ELM algorithm, and then evaluate the

model accuracy on the basis of simulation training. The
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input layer of ELM or GA-ELM consisted of reflectivity of

the WorldView-2 satellite image in eight multispectral

bands, and the actual water depth obtained from S-57 in the

format of electronic chart data as the output layer. In order

to improve the inversion accuracy, the remote sensing

images were preprocessed by means of geometric correc-

tion, atmospheric correction, and radiometric calibration.

The predefined coordinate system in the study area is used

to carry out the geometric correction. For each in situ

position, which was evenly distributed in the region and

was as similar as possible in each depth layers, the bands

reflectivity of a single pixel was extracted from the corre-

sponding image. In order to improve the efficiency of

training, the input datasets were normalized as follows:

X ¼ XN � XMIN

XMAX � XMIN

ð10Þ

where X is the normalized data, XN is the input data, and

XMAX and XMIN are the maximum and minimum values of

the input data, respectively.

Further, the output water depth of the network model

was anti-normalized as follows:

XN ¼ X XMAX � XMINð Þ þ XMIN ð11Þ

where X is the output water depth, XN is the anti-normal-

ized water depth, and XMAX and XMIN are the maximum

and minimum values of the water depth, respectively.

In the training process, either too many or too few

neurons will influence the training results. In order to

analyze the influence of different numbers of hidden layer

neurons on the accuracy of the model, we used the RMSE

as the evaluation index of the inversion results based on

different neurons, gradually increased from 1 to 55 with the

same model parameters. According to Fig. 5, we can

conclude that fewer neurons do not produce desired result,

the RMSE value decreased gradually with the increase in

the number of hidden layer neurons, and the model

obtained better generalization performance. Meanwhile,

we observed that the neurons in ELM model tended to

converge to 50 and that in GA-ELM model tended to

converge to 20; moreover, GA-ELM exhibited a faster

convergence speed than ELM.

The input layer weights and the hidden layer biases of

the ordinary ELM network were randomly generated and

left unchanged. The ELM model optimized by genetic

algorithm can adjust the weight of the input layer and the

(3)Evaluation population
fiff tness

(3)Evaluation population
fitness

(2)Encoding and
population initialization

(2)Encoding and
population initialization

4)Selection operation(4)Selection operation

(6)Mutation
operation

(6)Mutation
operation

(7)Seeking the better
population individudd al
(7)Seeking the better
population individual

hether met the
termination conditionst s

Whether met the
termination conditions

Calculating the new
individudd al fiff tness

Calculating the new
individual fitness

(5)Cross operation(5)Cross operation

dentifyff ing the new
population individudd als
Identifying the new

population individuals

1)Data pre-processing
and ELM network

construrr ction

(1)Data pre-processing
and ELM network

construction

ELM network simulation
test

ELM network simulation
test

opulation sizePopulation size

NN

Y

(8)Calculating the
optimal weight, biases

and MMatrix H

(8)Calculating the
optimal weight, biases

and Matrix H

Genetic AlgorithmGenetic AlgorithmELM NetworkELM NetworkFig. 4 The network structure of

ELM and GA-ELM

Fig. 5 Comparison of the RMSE values between ELM and GA-ELM

with different number of neurons

952 Journal of the Indian Society of Remote Sensing (April 2021) 49(4):947–957

123



bias of the hidden layer to get the optimal value. In order to

control the evolutionary search for a satisfactory solution

model, the genetic algorithm based on binary coding used

five parameters (namely population size, generation gap,

maximum evolution algebra, crossover rate, and mutation

rate). The population size was 30, generation gap was 0.95,

maximum evolution algebra was 100, crossover rate was

0.7 with the single-point crossover method, and the muta-

tion rate was 0.01 with the binary mutation method. The

iteration algorithm was used to obtain the optimal input

layer weights and hidden layer biases, as shown in Fig. 6.

As the evolution algebra increases, the training error

gradually reduced and the evolution algebra of the GA-

ELM network tended to converge to 44 in the iteration

algorithm.

The actual water depth and the corresponding image

data were selected as the sample datasets, and the simu-

lation process was carried out in the MATLAB 6.5 envi-

ronment. In all, 350 sets of sample data were used in this

study. The scaled data of the reference points were divided

randomly into the training dataset for the modeling and the

testing dataset for the validation. Out of the 350 datasets,

280 datasets (training data) were selected to train randomly

on the network, and 70 test datasets were used to evaluate

the accuracy of the network model. The ratio of the training

dataset to the test dataset was 4:1.

The value of mean relative error (MRE), root mean

square error (RMSE), mean absolute error (MAE), and the

coefficient of determination (R2) was used to evaluate the

model accuracy. A low MRE implied a small relative error;

a low RMSE meant a small discrete degree; a low MAE

value implied a narrow range of errors; and a high R2

meant a good correlation between the in situ depth and the

predicted value. Table 1 shows the inversion results, in

which MRE is small, RMSE is smaller than 0.8, and MAE

is less than 0.8 between the in situ depth and the predicted

value for ELM and GA-ELM. The performance compar-

ison between the in situ depth measurement and the water

depth inversion in the regression cases is given in the

scatter diagrams that display the error and the deviation

between them directly (Figs. 7 and 8). The sample point on

the diagonal indicates that the depth of inversion is almost

equal to the measured depth, and the sample point devi-

ating from the diagonal indicates that the depth of inversion

is quite different from the measured depth, in which case

the better the fitting degree between the retrieved water

depth and the measured water depth, the closer the

retrieved water depth to the measured water depth. It can

be seen that the values of R2 (coefficient of determination)

were all greater than 0.90 and reached 0.9258 and 0.9509,

respectively. The water depth retrieved by the two methods

is close to the measured water depth; however, the points in

Fig. 8 are more compact and close to the fitting line than

those in Fig. 7, which means GA-ELM method has better

fitting effect on the verification set. Compared with ELM

method, GA-ELM method has better fitting curve in the

range of 7–12 m water depth and can achieve a better

inversion result than the ordinary ELM. It can be seen

from the table and the scatter diagrams that both ELM and

GA-ELM achieved high inversion accuracy which indi-

cates that the inversion results are reliable.

Figures 9 and 10 show the results of the two methods in

the experimental area. It is obvious that the maximum

water depth of the experimental area is approximately

12 m, the boundary between the sea and the island is

clearly distinguished, the contour map based on GA-ELM

is smoother than ELM, and the water depth is gradually

increased from the island to the sea. A comparison with the

S-57 sea chart data revealed that the water depth inversion

results of the ELM and GA-ELM models were all consis-

tent with the S-57 sea chart data in the experimental area;

therefore, we concluded that the inversion results were

reliable. Comparing the inversion results of the two mod-

els, it can be found that the inversion results based on ELM

and GA-ELM are basically same in the 0–7 m water depth

region, which shows that the inversion result of the water

depth is better. In the 7–12 m water depth region, the

inversion results of the two models are basically the same,

but the edge is broken between the two adjacent water

depth layers in Fig. 9, while the edge breakage is less

obvious in Fig. 10; therefore, the inversion result based on

GA-ELM is slightly better than the normal ELM, according

to the analysis, it may be related to the optical attenuation

in water body. The inversion results of the two models may

differ in the details due to the accuracy.

Fig. 6 Evolutionary iterative graph of genetic algorithms
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Discussion

In addition to this study, we previously conducted shallow

seawater inversion based on the second-order polynomial

regression, a BP neural network, and an RBP neural net-

work in the same region (Zheng et al. 2017a). Now, we

compare the results of this study with that of the previous

three methods (Table 1).

GA-ELM and ELM (with R2 of 0.9509 and 0.9258)

exhibited an accuracy of 0.0696 and 0.0445 higher than the

second-order polynomial regression model (with R2 of

0.8813), but 0.0047 and 0.0298 lower than the BP model

(with R2 of 0.9556), and 0.045 and 0.0701 lower than the

RBF model (with R2 of 0.9959). Meanwhile, GA-ELM and

ELM (with RMSE of 0.6288 and 0.7734) exhibited better

stability than the second-order polynomial regression

model (with RMSE of 1.1616), the BP neural network

(with RMSE of 1.8321), and the RBF neural network (with

RMSE of 0.8922). F value is less than F crit (3.9097),

P value is more than 0.05, the results show that the

inversion result is similar to the real water depth, and GA-

ELM method has better stability than ELM algorithm.

The accuracy of the remote sensing water depth inver-

sion was affected by many factors besides the inversion

model, such as the marine environment, the S-57 electronic

chart accuracy, and the quality of the remote sensing

images. The specific influencing factors were as follows:

(1) The preprocessing of high-resolution satellite images

is a serious problem for the water depth inversion,

because satellite images are susceptible to the natural

variation of the sea level based on the normal wind

waves and the tides based on the moon. However,

the tide information cannot be obtained in the

experimental area when the satellite transits. The

water depth inversion may cause errors because

there is no tide and wave correction.

(2) The water depth inversion based on high-resolution

satellite imagery is affected by the marine environ-

ment (particularly the water body substrate) and the

difference in the optical properties of seawater. In

order to improve the inversion precision, it is

necessary to remove or reduce the influence of these

environmental factors on the water depth inversion

in the data preprocessing and data input.

(3) The number of measured points on the S-57

electronic chart and the number of pixels on the

image will affect the accuracy of the water depth

inversion. They are too small to meet the accuracy

requirements of the water depth inversion.

Table 1 Accuracy evaluation

form
Inversion model MRE RMSE MAE R2 F P value

ELM 22.05% 0.7734 0.7043 0.9258 0.1979 0.657

GA-ELM 11.51% 0.6288 0.5111 0.9509 0.0099 0.9208

Second-order polynomial regression – 1.1616 – 0.8813 0.1174 0.8462

BP – 1.8321 1.1493 0.9556 0.0008 0.9771

RBF – 0.8922 0.4067 0.9959 0.0155 0.9011

Fig. 7 Water depth inversion scatter plot of ELM

Fig. 8 Water depth inversion scatter plot of GA-ELM

954 Journal of the Indian Society of Remote Sensing (April 2021) 49(4):947–957

123



(4) The accuracy of the S-57 electronic chart depends on

the water depth accuracy and the detection points

distribution. The point distribution on the chart is too

sparse and the water depth measurement values of

individual areas on the map may be inaccurate,

which inevitably affect the water depth inversion

accuracy. In order to improve the accuracy, it is

necessary that the water depth point be supple-

mented in the test area.

(5) The seawater is taken as the satellite observation

object, which is greatly affected by weather. For

example, under the condition of cloud and fog, the

surface seawater is blocked by the clouds, and the

reflection and radiation of the surface objects are

blocked by the clouds. Therefore, satellite sensors

cannot obtain effective spectrum information from

the ground, which will greatly affect the results of

water depth inversion. For the purpose of minimiz-

ing the influence of weather on inversion results, we

use remote sensing image data at noon in dry season,

during which time the sun shines directly into the

Fig. 9 Water depth inversion

map of ELM

Fig. 10 Water depth inversion

map of GA-ELM
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sky, the cloud layer and rain fall is less, and the

image quality is higher.

Conclusions

In this study, we considered the Taiping Island and its

adjacent waters in the South China Sea to be the research

area. The traditional nonlinear water depth inversion model

may face several issues such as complex network param-

eters, improper learning rate, and weak generalization

ability. In this study, ELM and GA-ELM were used to

invert the water depth based on the high-resolution

WorldView-2 images and the S-57 sea chart data. From the

performance comparison between ELM and GA-ELM, we

concluded the following:

(1) The shallow seawater depth of Nansha Islands in the

South China Sea can be inverted by using the

WorldView-2 satellite imagery, which is a more

effective data support for studying the South Island

reef, monitoring the sea environment, and ensuring

the navigation security.

(2) The GA-ELM can achieve better accuracy than ELM

that can obtain good inversion results in the exper-

imental area. The GA-ELM achieved a lower MRE

value than ELM, down from 22.05% to 11.51%, a

lower MAE value from 0.7043 to 0.5111, and a

lower RMSE value from 0.7734 to 0.6288. We can

conclude that the GA-ELM model had practical

application value.

(3) Although GA-ELM has a better network structure

than the ordinary ELM, it takes a lot of time in the

training process to get optimal parameters.

It is concluded in the study that the methodology pro-

posed herein can be effectively provides an independent

measure of the water depth at sample locations. Unlike the

traditional linear water depth inversion model based on a

single band or multiple bands, its nonlinear model free

structure allows considering nonlinear relationships

between reflectance from spectra different spectral bands

of remote sensing image and water depths. The more

accurate water depth could be estimated since ELM and

GA-ELM models do not have to consider the factors

affecting the reflective properties of water column sourced

from environmental factors like bottom material and have

few empirical coefficients required for the solution. The

methodology can be practically applied without handling

any complex reflectance separation process and subtracting

dark water, and it can be reliably used for depth mea-

surement provided that there is available representative

input dataset. These results suggest that the model and

approach developed here can be used for making rapid

surveys of water depth to reduce hazards to ship naviga-

tion, to construct marine engineering projects, to manage

coastal zone, and to aid in investigation of ocean envi-

ronment problems. Therefore, ELM and GA-ELM models

have more advantages in data acquisition convenience,

geographic and temporal extensiveness. Thus, the cost,

labor, and time spend for detailed and repeated depth

measurements could be significantly reduced.

Although the effectiveness of remote sensing technol-

ogy in water depth inversion has been proved, it’s worth

noting that satellite imagery is more susceptible to envi-

ronmental factors such as the atmosphere, tides, white

water bubble, sun glint, wave, clouds, and fog than tradi-

tional methods (Strome and David 1990; Phinn et al. 2012).

These factors increase the difficulty and error of deter-

mining water depth. We will focus on how to solve the

impact of these factors on water depth inversion to improve

its accuracy and reliability in the future.
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