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Abstract
Unmanned aerial vehicles (UAV) have emerged as new platforms for acquiring ultra-high resolution images, which are

challenging for extraction of features using conventional image processing approaches. Tree canopies are required to be

constantly monitored for better planning and management. UAV is currently one way to survey canopies over a large area

for precisely estimating their geometry. Conventional segmentation techniques are extensively used for image feature

extraction. However, they lack in accuracy and require high computational processing when used for ultra-high resolution

UAV datasets. These issues can be handled by superpixel segmentation algorithms which have good boundary adherence

and are computationally efficient. Simple linear iterative clustering (SLIC) is a subset of superpixel segmentation technique

which uses minimum tuning parameters making it most efficient. As the random forest is known for handling multiple

attributes and robustness, it can be used for classifying and extracting features from segmented image generated using

SLIC. The present study mainly focuses on the automation for extraction of tree canopies along with their object-based

attributes from the UAV dataset. The data acquisition was carried out using Trimble UX5 fixed-wing UAV which was

further orthorectified at a spatial resolution of 13 cm. The ortho-image was further segmented using SLIC algorithm.

Canopy segments are then identified and classified using random forest, which is then merged into trees objects on the basis

of their proximity. Accuracy assessment was then carried out for extracted tree canopies and was found that the aforesaid

approach could achieve 93% similarity index. The current study highlights the potential of using SLIC segmentation and

random forest classification method for tree canopy extraction from the ultra-high resolution ortho-image derived from

UAV platforms.
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Introduction

Trees play a vital role in sustaining the environment and

one’s state economy. They are major contributors in the

climate amelioration, soil preservation, managing water

cycle, nursing flora and fauna and survival of humans.

These life-forms have always been center for studies with

respect to their role in the ecology, culture and economy.

To properly manage these resources, a proper evaluation of

their qualitative and quantitative properties is required.

There are two broadways to collect the data from the site:

field survey and remote survey (Lawley, Lewis, Clarke, &

Ostendorf 2016). Most of the studies on the tree are on-site

field surveys (Seidel, Fleck, Leuschner, & Hammett 2011)

which are time-consuming and labor-intensive. The alter-

native is remote sensing (RS) surveys where data are

gathered using sensors fitted on terrestrial or aerial plat-

forms (Kim, Madden, & Warner 2009). The advantage

over on-site method of remotely gathering information is

that they cover larger areas for which they are more eco-

nomical and efficient in order to retrieve the physical

aspect of the vegetation. There are three major ways of RS

aerial surveys: UAV, aerial or satellite platform-based.

In recent years, unmanned aerial vehicles (UAV)-based

remote sensing (UAV-RS) are being widely using for
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collecting information for various applications (Crom-

melinck et al. 2016). UAV-RS being able to provide geo-

referenced ultra-high resolution imagery in a flexible and

cost-effective way. This opens a revolutionary window to

observe the surroundings with the whole new perspective

(Colomina et al. 2014; Getzin, Wiegand, & Schöning

2012). UAV-RS for tree parameters estimation, at ultra-

high resolution, provides users more precision and reduces

the chances of errors due to poor resolution (Kaneko &

Nohara 2014). At ultra-high resolution, the tree features

can be distinguished from the background by their physical

characteristics and patterns which can be interpreted using

descriptor algorithms. The automation of the process can

save time and reduce human biased errors. The image

processing and classification for the UAV-RS imagery will

provide the necessary algorithms to achieve full automa-

tion. There are numerous ways to delineate the objects

using various techniques (Crommelinck et al. 2016; Feng,

Liu, & Gong 2015) but are broadly classified into pixel-

based and object-based approach. Pixel-based image pro-

cessing works for low-resolution imagery, but for high

resolution, the object-based approaches are preferred

(Blaschke 2010). Object-based image analysis (OBIA)

provides shape and size along with statistical radiometric

values and hence fits the purpose of this study.

The OBIA approach is to form a more meaningful col-

lection of pixels called objects from the whole image. This

provides more information with respect to shape, size,

compactness, association and statistical radiometric values

of the objects. The pixels of an image, when divided into

smaller dissimilar regions on the basis of spectral or spatial

attributes is termed as image segmentation. Modern seg-

mentation techniques can be classified into edge-based and

region-based methods with their own set of advantages and

disadvantages. In the current study, the segmentation

technique that will provide fast computation cost over large

datasets and requires minimum parameters tuning is

required. Superpixel segmentation (Ren & Malik 2003) is a

technique where the pixels are clustered into non-over-

lapping segments which provides a way to efficiently

process over large datasets as the computation utilizes

iterative local boundaries adjustments to get desired seg-

ments. In superpixels segmentation techniques, simple

linear iterative clustering (SLIC) algorithm (Achanta et al.

2012) is one of the gradient ascent methods that provides a

way to create superpixels with only two parameters pro-

vides a promising approach. State-of-the-art superpixels

are compared in (Achanta et al. 2012; Stutz, Hermans, &

Leibe 2018) in terms of boundary recall (evaluation with

respect to adherence to boundaries), under-segmentation

error and stability. SLIC overall was observed as the best

performer overall in terms of speed, boundary adherence

and under-segmentation error. A variation of SLIC SLIC-

zero (SLICO) (Achanta et al. 2012) which needs to be

optimized for only one parameter (scale) is used in current

work. In order to isolate canopy superpixels from the

backgrounds, a classification rule that can handle multiple

attributes and is robust with outcomes is needed. Random

forest (RF) (Breiman, 2001) is one such assuring machine

learning algorithm. The random forest algorithm is an

ensemble-based machine learning algorithm. It consists of

many independent decision tree classifiers which are

trained on subsets of training samples; overall results of

each tree are aggregated up to summarize the result. RF can

handle large data with multiple input features with low

latency and provide a good-fit optimal model. The RF

model is fast and simple to develop and train for classifi-

cation for various applications.

Literature Review

The use of UAV-RS for forest application is gaining

popularity in recent years. This includes the estimation of

tree physical parameters (Panagiotidis, Abdollahnejad,

Surový, & Chiteculo 2017) and individual tree crown

delineation (Recio, Hermosilla, A. Ruiz, & Palomar 2013).

Earlier studies used the digital elevation model (DEM)

derived canopy height model (CHM) (Panagiotidis et al.

2017). They were limited only to the availability of DEM,

and user pre-knowledge of that region is a canopy. One of

the studies used marker-controlled watershed segmentation

algorithm to delineate tree canopy (Huang, Li, & Chen

2018), but this methodology required two parameters,

internal and external markers, to be defined and hence

lacks generalization. Furthermore, watershed segmentation

subjectivity to noise sensitivity is another problem.

In a previous study (Feng et al. 2015), the authors

analyzed the UAV imagery for urban vegetation mapping

using pixel-based random forest and using textural-based

parameters. It was observed that ultra-high spatial resolu-

tion provided enough details to classify urban vegetation

from the backgrounds with high accuracy. This paper also

investigated the use of OBIA but criticized the conven-

tional OBIA approach for their complexity despite being

able to give good classification results. In another study,

where UAV-RS was used to study mangrove forest canopy

using SLIC (Zimudzi, Sanders, Rollings, & Omlin 2018), it

was observed that SLIC method provided good boundary

adherence and minimum parameters optimization but alone

does not produce actual objects. The over-segmented

image requires a secondary clustering method to create

meaningful objects. Thus, using SLIC-based algorithm

simplifies OBIA and RF with textural descriptors and

provides a good machine learning-based clustering

approach to classify the segments and create meaningful
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objects. Finally, in order to merge sub-objects (segments)

using the closeness of boundaries between the superpixels,

the segments can be merged into meaningful objects in this

case, the tree canopies.

Materials Used

Study Area

One plot (see Fig. 1) from Uttarakhand, India was included

in this work; it is located in Nahar, Koti, Dehradun. It lies

in UTM zone 43 N central longitude and latitude are

782,051.684 E and 3,371,015.043 N meters, respectively.

This plot consists of 109 mango, Mangifera indica, trees.

UAV model used for surveying was UX5 and the camera

used was COTS (commercially off the shelf) DSLR from

SONY, Model: NEX-5 T. The tools used in the study were

python, R and Arcmap.

Reference Data

The reference data are manually outlined tree canopies

from UAV datasets and data collected from the field. The

instrument used was ‘‘Leica Disto D8.’’ It is a laser dis-

tometer, which uses the trigonometric-based calculation to

find the height and width of the tree. The ten sample

canopies were randomly chosen from the dataset and their

canopy width along NS and EW direction was recorded

from the site.

Workflow

The figure shows the complete conceptual diagram in brief

to explain the whole methodology. It compromises of three

subsections (see Fig. 2):

Part 1: Generation of ortho-images from UAV images.

Part 2: Segmentation of image and parameters

generation.

Part 3: Classification of the segments and merging to

form objects.

In the first section, the images collected via UAV survey

were processed in Agisoft Photoscan to generate geo-ref-

erenced ortho-images as the final product. The ortho-im-

ages generated were at a spatial resolution of 13 cm. In the

next section, the image is segmented using a fast superpixel

pixel generation algorithm (SLIC). This is followed by

parameter extraction from superpixels and its textural

descriptors. In the final section, the machine learning

algorithm (i.e., here random forest) is used to classify

superpixels into the respective classes. The random forest

is here tested for three different situations, variation with

respect to input parameters:

1. Pixel-based using three bands (typ-1)

2. Using only three bands (RGB ? SI) (typ-2)

Fig. 1 Study area
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3. Using three bands (RGB) ? seven bands (GLCM

texture) ? SI (typ-3. x), where x represents bin size

(3, 5, 7, 9, 13, 17, 29)

After training and testing, random forest model is

checked for robustness, by running model multiple times

with varying training samples. The known samples were

evenly distributed and divided as 30% for testing and 70%

for training purpose. For typ-1, 10,000 training samples

(known pixels) and three predictors for two classes (ground

and canopy) were generated. For typ-2 and typ-3, 1000

samples from superpixels were used. For typ-2, four

parameters (RGB ? SI) were used while for typ-3, 11

parameters (RGB ? SI ? 7 textural parameters (mean,

variance, homogeneity, contrast, dissimilarity, entropy and

second moment)) were used. The two factors which check

the classification quality are out-of-bag (OOB) accuracy

which is calculated by correctly classifying samples out of

the whole population. This factor generally overestimates

model quality. The other is Cohen’s kappa (kappa coeffi-

cient), which is calculated from observed and expected

classes (confusion matrix) and provides more reliable

validation. Finally, the tree canopy is merged on the basis

of the parameters and proximity.

Results and Discussion

SLICO scale is optimized using ratio (ropt) of interclass

ðCinterÞ contrast and intra-class uniformity ðCintraÞ (Rosen-
berger, Marche, Emile, Chabrier, & Laurent 2004).

Cinter ¼
P

i SiCij j
P

i Sij j whereCi ¼
X

i

Lijjmi � mjj
mi þ mj

ð1Þ

Here, Cinter is the sum of the contrast of all superpixels

Si. mi and mj are given as mean gray level of the superpixel

i and j, respectively. Lij is the common boundary between

segments i and j. Intra-class is given as (6):

Cintra ¼
Xk

i¼1

1

jSij
ð
X

p2Si
jmi � pjÞ ð2Þ

Fig. 2 Methodology in brief

474 Journal of the Indian Society of Remote Sensing (March 2021) 49(3):471–478

123



The SLIC scale was optimized for five image subsets of

different regions and different sizes. The optimized value

when ropt is equal to 1 for each was observed at

385,493,501, 458 and 421, respectively. The statistical

mean of the five scales, 451 (approx.), was taken as final

scale size for the whole image. Figure 3 represents the

image subset that was segmented at the calculated scale.

This value is closest for the highest common segment size

(HCSS) for that particular object of interest (OI) (Fig. 4).

For the pixel-based approach (typ-1), Table 1 represents

pixels-based RF classifier accuracy assessment. Here, class

1 is ground and class 2 is canopy. In this case, the best

accuracy was achieved that was 95.4% (OOB-accuracy)

and using confusion matrix 95.3%. Very high accuracy was

achieved in typ-1 but there were gaps within canopy

classified as ground. OBIA method was tested in two ways

without (typ-2) and with texture (typ-3).

OBIA-RF typ-2 classifier gave the best classification

result of 98.8% (OOB accuracy) and 98.6% kappa accu-

racy. At 50 trees, RF results in minimum error rate hence

50 was taken as n trees optimized value for RF classifier.

Fig. 3 SLIC segmentation of an image subset

Fig. 4 Final classified image

(for typ3.9), highest accuracy

amongst typ-3 was obtained at

bin size 9

Table 1 Confusion matrix for pixel-based RF classifier (typ-1) using

testing dataset

Predicted

Actual Class 1 Class 2

Class 1 1361 62

Class 2 80 1497

Table 2 Confusion matrix for object-based RF (typ-2) classifier

Predicted

Actual Class 1 Class 2

Class 1 149 3

Class 2 1 147

Fig. 5 Optimization of random forest n tree (number of trees) for the

canopy extraction when only RGB and 7 GLCM band ? SI used as

an input parameter for bin size 9
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The typ-2 result was taken for other parameters extraction

(Fig. 7). Table 2 represents the accuracy using the confu-

sion matrix.

When typ-3 (11 parameters OBIA-RF) is applied, sim-

ilar results to typ-2 were observed. Among different bin

sizes, typ-3.9 gave best classification result of 98.14%

(OOB accuracy) and kappa coefficient of 98.3% in all bin

sizes. Figure 5 represents the optimization for the number

of trees required for this process. At 50 trees, RF results in

Table 3 Confusion matrix for object-based RF classifier at bin size 9

(typ-3.9)

Predicted

Actual Class 1 Class 2

Class 1 149 4

Class 2 1 146

Fig. 6 Mean decrease in accuracy (a) and mean decrease in Gini index (b) bin size = 9

Fig. 7 Further classification into

the single double and triple

canopy of the tree canopy
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minimum accuracy. Table 3 represents the accuracy using

the confusion matrix.

Figure 6 represents the minimum decrease in accuracy

(MDA) and a mean decrease in Gini index (MDGI). More

the accuracy of the random forest decreases due to the

removal of a single variable, the more important the vari-

able, and therefore variables with a large mean decrease in

accuracy (MDA) played a significant role in classification.

Figure 6. (A) Depicts band 3 (blue) as the most significant

variable. This is followed by B9 (entropy) and then shape

index (SI).

Mean Gini importance measures the average gain of

purity by splits in trees for a given variable. More the

variable splits classes purely higher the value. Fig. 7.

(B) Shows B3 (blue) as the most significant variable fol-

lowed by B1 (red band) and then B9 (ENTROPY). The

equation was also validated for different bin sizes versus

their accuracy assessment. Overall, typ-2 and typ-3 per-

formed better than typ-1 as in object-based noise is con-

cealed within the object leading to more refined structures.

This classified results of typ-2 and typ-3.9 were tested

against the manually using equation of similarity index:

Eq. (3). Where XOR is the ‘‘exclusive or’’ operator. The

similarity between typ-3.9 and manually drawn canopy

observed is 92.9%. The similarity between typ-2 and

manual is 93%. Both typ-2 and typ-3 methods gave quite

close results to manual classification.

Similarity Index SIð Þ ¼
Px

0XORðMaskorg;MaskmodÞ
total elements

ð3Þ

where Maskorg (manual handmade mask) and Maskmod

(mask generated using RF-SLIC) for all x [ pixels in

region compared.

The elements are finally merged on the basis of prox-

imity and border they share. In the result of using typ-2

classifier was used (see Fig. 7). Figure 7 represents the

final classified result. In this, the image is classified into

single, double and triple canopy manually and is correlated

to the shape attributes like shape index. In order to compare

the shapes generated, the calculated area’s of selected

canopies from the field, manually drawn shapes and shapes

generated using SLIC-RF (typ-2) method are shown in

Table 4. It was observed that the area calculated from the

automatically generated canopies had an average differ-

ence of 0.354 sq. meters. And the standard deviation of

0.311 while manually generated canopies had had an

average difference of 1.9 sq. meters and the standard

deviation of 1.49.

Conclusion

This study investigates consumer grade optical sensor

UAV for delineation of tree canopies using SLIC-RF

automation process. This supports the use of OBIA and

machine learning (ML) in various UAV-RS application for

parameters extraction. It was also observed that superpix-

els’ size for an OI is independent of image size at fixed

spatial resolution. As ropt tends to one, the best size of

superpixel is achieved at which algorithm is computation-

ally efficient and also OI is not under-segmented. This

methodology also simplifies the OBIA approach by inte-

grating SLICO-RF to create meaningful objects with

minimum parameters optimization. As both typ-2 and typ-3

perform nearly the same, the RGB ? SI provides a faster

alternative at current spatial resolution rather than using

additive textural parameters. This is also supported by the

MDA and MDGI charts where the blue band is depicted as

a major contributor to classification. The current method-

ology fails to separate overlapping canopy structures. Also,

the inclusion of infrared band and DEM can provide a

better insight into the delineation of canopies. The current

methodology overall provides a new perspective to mea-

sure the physical aspects of tree canopy using UAV-RS.
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(2012). SLIC superpixels compared to state-of-the-art superpixel

methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(11), 2274–2281. https://doi.org/10.1109/

TPAMI.2012.120

Blaschke, T. (2010). Object based image analysis for remote sensing.

ISPRS Journal of Photogrammetry and Remote Sensing Elsevier.
https://doi.org/10.1016/j.isprsjprs.2009.06.004

Breiman, L. (2001). Random Forests.Machine Learning, 45(1), 5–32.
https://doi.org/10.1023/A:1010933404324

Colomina, I., Molina, P., Harwin, S., Lucieer, A., Skarlatos, D.,

Procopiou, E., & Eisenbeiss, H. (2014). Unmanned aerial

systems for photogrammetry and remote sensing: A review.

ISPRS Journal of Photogrammetry and Remote Sensing,

Table 4 Area of 10 trees canopies from three sources (in sq. meters)

S No Area (auto) Area (manual) Area (field)

1 29.297 28.191 28.938

2 35.336 33.802 34.628

3 29.938 29.102 29.875

4 38.799 36.929 39.147

5 43.920 41.734 44.120

6 31.737 30.229 32.120

7 28.544 28.919 28.843

8 30.871 27.362 30.876

9 7.180 5.872 7.092

10 29.527 33.794 28.440

Journal of the Indian Society of Remote Sensing (March 2021) 49(3):471–478 477

123

https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1016/j.isprsjprs.2009.06.004
https://doi.org/10.1023/A:1010933404324


92(November), 79–97. https://doi.org/10.1016/j.isprsjprs.2014.

02.013

Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M. Y., &

Vosselman, G. (2016). Review of automatic feature extraction

from high-resolution optical sensor data for UAV-based cadas-

tral mapping. Remote Sensing, 8(8), 689. https://doi.org/10.3390/
rs8080689

Feng, Q., Liu, J., & Gong, J. (2015). UAV remote sensing for urban

vegetation mapping using random forest and texture analysis.

Remote Sensing, 7(1), 1074–1094. https://doi.org/10.3390/

rs70101074
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