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Abstract
In recent years, rapid land use land cover (LULC) changes have continuously taken place in many regions all over the

world as a result of human activities. In the present study, the changes in LULC were analyzed by means of multi-temporal

remote sensing of Qena-Luxor Governorates in Egypt between 1984 and 2018. In order to map and monitor the land use

land cover changes, several remotely sensed data were applied to create multi-maps using (1) the normalized difference

vegetation index and (2) supervised classification of Landsat images using field chick and accuracy assessment, including

field verification and Google Earth Professional. Therefore, the lands in the study area can be classified as follows: (1)

agricultural lands, (2) built-up areas, (3) water bodies, (4) reclaimed lands, and (5) desert lands. The results indicate that

agricultural lands grew from an average of 1238.7 km2 (9.8%) in 1984 to 1707.04 km2 (13.40%) in 2018 and urban lands

increased from 345.2 km2 (2.7%) in 1984 to 445.28 km2 (3.5%) in 2019. Furthermore, the reclaimed lands increased

approximately from 4379.7 km2 in 1984 (i.e., 34.4% of the total study area) to 4521.05 km2 in 2000 (35.507%). However,

this class was followed by a marked decline to 4373.51 km2 (34.35%) between 2000 and 2010 and then increased to

approximately 4442 km2 (34.89%) between 2010 and 2018. Desert lands (limestone plateau and some lowland desert

fringes) decreased from 6635.4 km2 (52.2%) to 6003.5 km2 (47.15%). The results showed that the overall accuracy of the

supervised classification of Landsat satellite images ranges from 87 to 92.5% while kappa statistics were from 0.83 to 90.
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Introduction

Land use land cover (LULC) changes in the world are

directly proportional to environmental changes, as well as

human interaction with lands. Therefore, studying and

analyzing environmental changes are a vital requirement

for understanding LULC changes. The remotely sensed

data is an important effective tool for LULC mapping in

different periods of time. Several recent works were pub-

lished to show the ability of satellite technology utilization,

image classification, and processing techniques to detect

LULC changes in regional, national, continental, and even

global levels of large-area data analyses (Chen et al. 2014;

Leinenkugel et al. 2019; Pflugmacher et al. 2019). Mondal

et al. (2016) described the LULC pattern as a dynamic

process.

Change detection is significant for the study of land

degradation resulting from environmental processes and

management with implications for biodiversity. Remotely

sensed data covering the earth’s surface has detected a

number of regional and global changes in LULC. Several

authors have argued that this is primarily due to operations

such as (1) agricultural intensification, (2) globalization

tropical deforestation, (3) socioeconomic aspects, (4) bio-

physical attributes, and (5) urbanization (Lambin, 1997;

Lambin et al. 2001; Veldkamp and Lambin, 2001; Zeng

et al. 2008; Duraisamy et al. 2018; Dash et al. 2018).
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Generally, what the rate and extent of land cover

changes are and how we determine these changes that have

occurred in the area during the time period between 1984

and 2018 are the main scientific research questions herein.

In fact, sensors of Landsat platforms with high spatial–

temporal-spectral resolutions are one of the most important

factors for LULC change detection using several methods

(supervised classification, NDVI, and NDBI). GIS is an

important geoenvironmental system used as powerful tools

to capture, store, check, pan-sharp, process, interpret, and

display data. Remotely sensed data and GIS integrated

were applied for detecting, mapping, and monitoring

LULC changes, as well as for water quality mapping and

monitoring (Joshi et al. 2002; Rebelo et al. 2009; Durga

Rao et al. 2009).

Egypt is one of the most important countries in Africa; it

covers about 1,002,450 km2 representing about 3.32% of

Africa’s total area. Egypt is one of the most populous

countries in Africa and the Middle East, with an estimated

population of 102,150,654 million in 2020, where it rep-

resents 1.31% of the world population percentage, it ranks

the 14th, its population growth rate is 1.94% (54th), and its

population density is 102/km2 (111th) (world population

review 2020).

Socially, the Egyptian citizens live in the Delta of Nile

Valley and along the two Nile River banks, which represent

10% of the land of Egypt. On the other hand, a small

number of populations live in the desert lands of Egypt.

The existence of reclamation projects in the desert regions

permits us to execute urban, agricultural, and economic

projects. Therefore, the changes of the earth surface in the

arid regions should be studied to detect the importance of

land use task.

The study area includes Qena and Luxor Governorates;

both of them were one governorate before but they were

separated in 2009. Qena Governorate includes 9 provinces.

It covers an area of about 10,798 km2. Luxor is a modern

name for the ancient city of Thebes, and it was important

because it was considered as the great capital of Upper

Egypt in the past. It is called the ‘‘world’s greatest open-air

museum.’’ It is unique because it contains one-third of the

world’s monuments as Karnack and Luxor temples;

therefore, thousands of tourists from all around the world

arrive annually to visit these monuments. Seven provinces

belong to Luxor Governorate. It covers an area of about

2959.6 km2.

QLGs are suited under arid and semiarid climatic con-

ditions. The environmental changes almost happened due

to human activities or natural forces as LULC changes

(Zhou et al. 2008). Alphan et al. (2009) stated that the

assessment of ecosystem and environmental conditions

basically depends on the valuable information related to

land cover changes at different dates. Rawat and Kumar

(2015) reported that the land cover concept means the

physical materials that occur on the earth’s surface.

Information about LULC changes is very important to

detect and understand the management of natural resources

(Iqbal and Khan 2014; Kanta Kumar and Neelamsetti

2015; Lin et al. 2015).

In the present work, many techniques are applied to

detect LULC changes, such as post-supervised classifica-

tion of remotely sensed images, NDVI, and GIS technique.

Space science techniques as remote sensing can provide

useful land cover/land use data with lower effort and cost

than traditional field observations (Szuster et al. 2011).

Many Landsat satellite versions have provided high spa-

tial–temporal resolution imagery data for specific land

science authors to monitor and map earth surface changes

since the 1970s (Hansen and Loveland 2012).

Many scientific studies were published to report the

importance of LULC change detection to use in sustainable

resource management; they utilized high spatial–temporal

resolution of Landsat imagery for large-scale approaches

(Nitin et al. 2014; Zhiliang et al. 2015; Rawat and Kumar,

2015; Halmy et al. 2015, Amna et al. 2015; Liu et al. 2015;

Yuanbin et al. 2016; Wang et al. 2017; Mack et al. 2017;

Close et al. 2018; Leinenkugel et al. 2019; Massetti and Gil

2020, Nguyen et al. 2020).

In Egypt, many researchers worked on LULC change

detection (Yin et al. 2005; Youssef and Ghallab 2007;

Abdalla and Moubark 2018; Mohamed and El-Raey 2019;

Allama et al. 2019). Shalaby and Tateishi (2007) classified

land use in the Northern Egyptian coastal zone into eight

classes using the supervised classification method of

Landsat 4 and 5 images. In the Western Nile Delta, the

hybrid post-classification of multi-temporal-spectral satel-

lite images and NDVI methods were applied to detect

LULC changes (Bakr et al. 2010; Abd El-kawy et al. 2011).

Kamel and Abu El Ella (2016) studied the desert fringes

along the two banks of the Nile River in the area between

Assiut and Sohag Governorates for LULC change detection

during three periods (1984, 2000, and 2013).

Egyptian desert fringes covered by the new and old

alluvial floodplain of the Nile Valley represent the

promising desert areas for land reclamation. Recently, the

Egyptian government proposed a big project to construct

new urban and agricultural communities along the two side

desert fringes of the River Nile, the project called ‘‘1.5

Million Acres.’’

There should be suitable areas for the horizontal

expansion in agricultural and urban communities to pro-

vide the necessities of life. Therefore, the Egyptian gov-

ernment is strongly interested in land reclamation in desert

lowlands (reclaimed lands). Most of the lowlands in the

current area such as the southern part of Wadi Qena,

southwest of Qena, and east and west of Luxor
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Governorate are within the Egyptian national project to

reclaim 1.5 million acres.

Gaber et al. (2020) studied the west Qena area; they

reported that remote sensing, geoelectric resistivity data,

and the aeromagnetic techniques together were effective in

exploring the groundwater potentiality. The area of

southwest Qena Governorate is characterized by very high

recharge potentiality and it has a thick reservoir; this

reservoir is suitable for different uses (Gaber et al. 2020).

Likewise, there are many desert fringe areas suitable for

agricultural and urban expansion if hydrogeological studies

are available.

Purpose of the Study

The aim of this paper is to capture and detect the LULC

changes in Qena-Luxor Governorates (QLGs) in Upper

Egypt using the supervised classification of remotely

sensed data and NDVI approaches within the GIS envi-

ronment during the period from 1984 to 2018. Moreover,

the present study aims to answer the question of how land

use has been changed in the period between 1984 and 2018.

The Study area Description

The study area includes two governorates: Qena in the

north and Luxor in the south. In Qena Governorate, the

population is increasing significantly, where the total

population increased from 1,286.860 in 1984 to 3.224,981

in 2018. On the other hand, the population numbers of

Luxor Governorate increased from 484,132 in 2010 to

1.270.021 in 2018 (Central Agency for Public Mobilization

and Statistics). The current area consists of 16 municipal

provinces. It is located between 25�150–26�150N and

32�000–33�000E, covering a total area of 12,732.600 km2

(Fig. 1).

Geologically, the surface of the QLG area is covered by

Phanerozoic rocks ranging in age from Late Cretaceous to

Quaternary (Fig. 2). Upper Cretaceous rocks represent the

oldest rock units by Qusseir, Duwi, and Dakhla Forma-

tions, while Kurkur, Tarawan, and Esna Formations belong

to the Paleocene age. In the study area, Eocene is repre-

sented by Thebes Formation. Most of the current study

covered the Quaternary deposits, which are represented by

Muneiha Formation (Pliocene), Issawia Formation, Qena

Formation, Fanglomerates (Pleistocene), Wadi deposits,

and Nile silt (Holocene) (Said 1981; Faris et al. 1985;

Conoco 1987; Issawi et al. 2009).

Geomorphologically, the study area is categorized into

three main geomorphic units, based on the available

Landsat 8 images, Shuttle Radar Topography Mission

(SRTM) DEM (30 m), and topographic maps (scale

1:50,000). The three main geomorphic units are as follows:

(1) flood plain deposits (cultivated land), (2) the old allu-

vial plain, and (3) the calcareous limestone plateau.

The most important factors associated with choosing

suitable regions for reclamation to establish new urban

communities are the following: good soils, appropriate

climate conditions, topographic attitude, availability of

freshwater, whether surface or groundwater, and estab-

lishment of roads to reach these areas. Accordingly, from

previous and current studies, the study area is considered

one of the most promising areas in this field. The surface

soil map is redigitized and identified based on the soil map

generated by the FAO (https://esdac.jrc.ec.europa.eu)

(Fig. 3). The soil map helps us to detect and know various

soil types covered in the present study. It also helps us to

select the most suitable place for reclamation. Arc map GIS

integrated with Google Earth pro 8.0v has been used to

create a base map of the current area.

The area under consideration is characterized by extre-

mely hot summer and cold winter with very low and erratic

rainfall and high evaporation rates. The available meteo-

rological data presented in this study cover the years from

1913 to 1996 (Meteorological Authority of Egypt 1996).

The mean annual rainfall (mm/year) in the study area

ranges from 0.7 to 4.38, which was obtained by the PER-

SIANN-Cloud Classification System (PERSIANN-CCS)

and the Tropical Rainfall Measuring Mission (TRMM)

rainfall data covering the period from 1998 to 2018 (https://

gpm.nasa.gov/trmm and https://chrsdata.eng.uci.edu/).

Generally, the climatic data revealed that the average

temperature ranges from 5 �C in winter to 45 �C in sum-

mer whereas the average minimum temperature ranges

from 5 to 14 �C.

Materials and Methods

Data Collection

The details of the multispectral data images and the

methodology to achieve LULC change detection covering

the study area are shown in Fig. 4 and Table 1.

Several remotely sensed data were used in QLGs such as

Landsat MSS data, Landsat 5 TM, Landsat 7 ETM ? , and

Landsat 8 OLI/TIRS satellite images. They were acquired

on different dates in 1984, 1990, 2000, 2010, and 2018 and

obtained freely from The United States Geological Survey

(USGS) website (https://glovis.usgs.gov/). All Landsat

images used in this study are prereferenced with WGS 84

datum. Field verification and Google Earth images have

been done in geometric corrections.

There is a reverse relationship between the amount of

cloud covering satellite images and the quality of the

classification of images. So, we should choose a cloudless
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Fig. 1 Location map of Africa,

Egypt and Qena-Luxor area

Fig. 2 Geological map of the

study area (modified after

CONOCO and EGPC 1987) and

a composite stratigraphic

column of the Nile Valley (Said

1981; Omer 1996; Issawi et al.

2009)
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period. For this reason, the best period is the summer

season. In Egypt, the summer season starts in May and

extends to August while the transitional period from

summer to spring is September and October. SRTM

(DEM) with 30 m also was used. These data were pre-

pared, subset, and processed. To process the remotely

sensed data, Envi 5.1, Erdas Imagine 2014, and Arc GIS

10.2 were used.

Methodology

Several methods have been used in this study; post-digital

image classification and NDVI were applied. Broadly, the

proposed methodology consists of several major phases.

The first and important phase is the preprocessing of

satellite images. The preprocessing techniques of images

are a basic step and are required for fixing raw data for

advanced procedures. Several steps under preprocessing

techniques are utilized for the detection of LULC changes

in the QLG area. These steps include layer stacking, res-

olution merge (pan-sharpening), radiometric and atmo-

spheric corrections, and subsetting images. Finally,

supervised classification was performed for the analysis of

LULC changes, and the classifier performance is evaluated

based on recognized measures from the remotely sensed

data. All these stages are arranged step by step to

configure and enhance the raw remotely sensed satellite

data before the data improvement process is completed.

Land Use Land Cover Classifications

The spectral signature of various land cover classes in the

QLG area was differentiated and recognized (Fig. 5). The

results show that the proposed reclaimed desert lands have

strong reflectance in all bands. The urban class has slightly

moderate reflectance, but it has high reflectance in bands 5

and 6. On the other hand, water bodies have strong

absorption in all bands. The agricultural land has high

absorption in bands 1–4 and 6 and 7, but it has a high

reflectance behavior in band 5. The agricultural land

includes areas of sugar cane, wheat, corn, and some fruit

crops; the sugar cane crop covers the largest agricultural

area in the QLGs. Reclaimed lands are represented by the

lowland fringe desert on the two Nile River banks. The

LULC classes in the present study are summarized in

Table 2.

Image classification is a very effective tool in explaining

the process of pixel allocation in a remotely sensed image

to a special land use type. Two types of image classifica-

tion were applied: supervised and unsupervised classifica-

tions. In general, most authors have applied supervised

classification because it is more accurate than the unsu-

pervised one. To show LULC changes with different time

Fig. 3 Surface soils distribution map in the study area

Journal of the Indian Society of Remote Sensing (December 2020) 48(12):1767–1785 1771

123



scales, the maximum likelihood method has been used as it

is the most perfect and best type of supervised classifica-

tion techniques.

Five different land use classes were got based on the

number of collected signatures. About 500 area of interest

(AOI) signatures were carefully captured from each image

used in the present study to detect each land use class

properly. Then, the ground truth points have been taken in

order to confirm the results of the classification and inter-

pretation of land cover changes.

Method to Calculate Spatial Index (NDVI)

One of the most important tools is the normalized differ-

ence vegetation index (NDVI) besides supervised classifi-

cation which was applied and calculated in this study for

land use change detection especially for cultivated land

(Bakr et al. 2010; Khaliq et al. 2018; Tassopoulou et al.

2019). This index was calculated to show the relationship

between vegetation cover and surface temperature.

Townshend and Justice (1986) used the following for-

mula to calculate NDVI (1):

NDVI ¼ NIR � Redð Þ = NIR þ Redð Þ: ð1Þ

Two bands of Landsat satellite data were used to per-

form NDVI processing: (1) visible red band with reflec-

tance (600–700 nm) and (2) Near-Infrared Reflectance

(NIR) (750–1300 nm). The wavelength value of each band

changed from one Landsat to another, based on the spectral

resolution of data.

Four Landsat generations were used in this study with

five time series: the Landsat TM 5 (1984) bands 3 and 4,

Landsat 5 MSS (1990) bands 3 and 2, Landsat 7 ETM ?

(2000), Landsat 5 TM (2010) bands 3 and 4, and Landsat 8

OLI (2018) bands 4 and 5. NDVI values ranged from - 1

for nonvegetation cover to ? 1 for vegetation cover.

The results obtained from NDVI ranged from - 1

to ? 1, where the positive sign fits in with the higher pixel

values, indicating the presence of dense vegetation cover.

Pixels from other classes have a digital number equal to or

less than zero, while the soil values were less than 0.5.

Over the past decade, NDVI indices have been generated

for dense forest areas, as well as new functionalities

allowed by recent multispectral sensors (Addabbo et al.

2016).

Accuracy Assessment

Several researchers have applied the accuracy assessment

method on supervised techniques to confirm the accurate

relationship between actual and predicted classes employ-

ing a classification system using an error matrix (Lucas and

van der Wel 1994; Stehman and Czaplewski, 1998; Van

Deusen 1996; Yohanis et al. 2014). One of the most

important results of accuracy assessment is related to the

overall accuracy of the map, as well as each class in the

classified map. Overall accuracy, in terms of percentages,

can be calculated by the following equation:

Overall accuracy ¼ Total number of true samplesð
=Total number of samplesÞ � 100:

Error matrices were applied for supervised classification

concerning the true ground and classified pixel information

for each LULC class. Four outputs can be derived from

error matrices, where the statistics are related to the

supervised classification image used in the present study:

(1) the producer’s accuracy, (2) the user’s accuracy, (3)

overall accuracy, and (4) kappa statistics.

Five categories of kappa coefficient are observed,

namely, slight (0–0.20), fair (0.21–0.40), moderate

Fig. 4 Flowchart of the applied methodology framework for LULC

changes detection
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(0.41–0.60), substantial (0.61–0.80), and almost perfect

agreement (0.81–1).

The accuracy assessment results for this study were

calculated for land use maps of series Landsat data during

1984, 1990, 2000, 2010, and 2018. The overall accuracy in

1984 and 1990 was found to be 91.2% and 92.5%,

respectively, while the kappa coefficient was 0.88 and 0.90,

respectively (see Tables 3 and 4). In 2000 and 2010, the

Table 1 Spectral and Spatial resolution data source of remotely sensed data

Sensor

date

path/raw

sun

azimuth

Land

cloud

cover

Sun

elevation

Earth sun

deviation

Bands Wavelength

(ml)
Spatial

resolution

(m)

1 LT05_L1TP Thematic Mapper (TM)

05/24/1984

175/042

123.68 0 61.9390 – Band 1- B 0.45–0.52 30

Band 2- G 0.52–0.60 30

Band 3- R 0.63–0.69 30

Band 4- (NIR) 0.76–0.90 30

Band 5- (SWIR) 1 1.55–1.75 30

Band 6-Thermal 10.40–12.50 120*(30)

Band 7 (SWIR) 2 2.08–2.35 30

2 LM5 Multispectral Scanner (MSS)

08/29/1990

175/042

111.66 0 54.4213 1.0098 Band 1- G 0.5–0.6 60

Band 2-R 0.6–0.7 60

Band 3-(NIR) 0.7–0.8 60

Band 4-(NIR) 0.8–1.1 60

3 L7 Enhanced Thematic Mapper Plus

(ETM ?)

10/19/2000

175/042

147.062 0 48.2143 0.99577 Band 1-B 0.45–0.52 30

Band 2-G 0.52–0.60 30

Band 3-R 0.63–0.69 30

Band 4-(NIR) 0.77–0.90 30

Band 5 -(SWIR) 1 1.55–1.75 30

Band 6-Thermal 10.40–12.50 60 * (30)

Band 7 -(SWIR) 2 2.09–2.35 30

Band

8-Panchromatic

0.52–0.90 15

4 LT05_L1TP_ Thematic Mapper (TM)

06/17/2010

175/042

90.96 0 66.75009 1.0159 Band 1- B 0.45–0.52 30

Band 2- G 0.52–0.60 30

Band 3- R 0.63–0.69 30

Band 4- (NIR) 0.76–0.90 30

Band 5- (SWIR) 1 1.55–1.75 30

Band 6-Thermal 10.40–12.50 120*(30)

Band 7 (SWIR) 2 2.08–2.35 30

5 LC08_ LC08_L1TP Landsat 8

Operational Land Imager (OLI) and

(TIRS)

06/07/2018

175/042

122.94 0 68.9402 1.0148 Band 1-Ultra Blue

(coastal/aerosol)

0.435-0.451 30

Band 2-B 0.452–0.512 30

Band 3-G 0.533–0.590 30

Band 4-R 0.636–0.673 30

Band 5-(NIR) 0.851–0.879 30

Band 6 -(SWIR) 1 1.566–1.651 30

Band 7 -(SWIR) 2 2.107–2.294 30

Band

8-Panchromatic

0.503–0.676 15

Band 9-Cirrus 1.363–1.384 30

Band 10-Thermal

Infrared (TIRS) 1

10.60–11.19 100 * (30)

Band 11-Thermal

Infrared (TIRS) 2

11.50–12.51 100 * (30)
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land use classified maps of Landsat 7 ETM ? and Landsat

5 TM show that the overall accuracy is 91% and 87.1%,

with the kappa coefficient being 0.88 and 0.83, respectively

(see Tables 5 and 6). In 2018, the land use maps of LC08

Landsat 8 (OLI) show that the overall accuracy is 92.5%,

with the kappa coefficient being 0.90 (see Table 7). The

Fig. 5 Spectral signatures available land cover in the study area

Table 2 Land use/cover classification scheme

Land cover

classes

Description

1 Agriculture

lands

Cultivated lands, trees areas sparsely vegetated areas, periodic and temporary irrigation agriculture, crops such as sugar

cane, wheat, corns, and other winter crops

2 Urban Areas with built-up (residential, commercial, industrial, transportation, airports, roads railways, and facilities)

3 Water body Water areas (River Nile, canals and drains)

4 Low lands areas Reclaimed areas, uncultivated agricultural lands, desert fringes

5 Desert lands Surface areas that are removed to expose deposits such as limestone plateau in east and west limits of the studied area

Table 3 Accuracy assessments of land use land cover classes of Landsat-5 TM data classified in1984 in the study area

1984 Agriculture

lands

Urban Water

body

Reclamation

lands

Desert

lands

Total true

samples

Total

samples

User’s

accuracy

Agriculture lands 151 0 12 3 0 – 166 90.96

Urban 5 98 4 0 0 107 91.58

Water body 1 0 75 4 0 80 93.75

Reclamation lands 0 5 0 139 33 177 78.53

Desert lands 1 1 0 1 267 270 98.89

Total true samples 730

Total samples 158 104 91 147 300 800

Producer’s

accuracy

95.56 94.23 82.41 94.55 89 Overall accuracy 91.2%

Kappa coefficient 0.88
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present author observed that the producer’s and user’s

accuracies were found to be above 75% for all land use

classes, except water body and urban areas. The producer’s

accuracy of water bodies was 71.63% and 53.19% in 2000

and 2010, respectively, while the user’s accuracy of the

urban class was 68.92% in 2010. This low percentage of

water bodies and urban areas is due to the confusion of

having mixed pixels between these two classes and agri-

cultural lands and desert land classes, respectively. In other

words, this is due to the diverse materials found on dif-

ferent surfaces, although the enhancement of the remotely

sensed data was undertaken before applying the supervised

classification technique.

Results and Discussions

In this paper, the final classified thematic maps were cre-

ated by maximum likelihood supervised classification and

NDVI methods in order to detect quantitative LULC

change detection in the present area during the period from

1984 to 2018.

Post-supervised classification is used to monitor the

change of land cover (Lu et al. 2004). It produces a com-

plete matrix of change direction by Landsat data that are

classified independently (Alphan et al. 2009; Solaimani

et al. 2010; Yang and Wen 2011).

Post-Supervised Classification of LULC

The change detection of LULC classes obtained by the

classification of mutilated optical satellite imageries of the

QLG study was calculated. The imageries of the satellite

over 34 years (1984–2018) of Qena-Luxor Governorates

were analyzed and displayed in five final classified the-

matic maps.

The outcomes of the supervised classification reported

that general agricultural and urban classes increased during

the time series 1984–2018. In addition, the reclaimed lands

increased from 1984 to 2000, then decreased from 2000 to

2010, and noticeably increased in the period from 2010 to

Table 4 Accuracy assessments of land use land cover classes of Landsat-5 MSS data classified in1990 in the study area

1990 Agriculture

lands

Urban Water

body

Reclamation

lands

Desert

lands

Total true

samples

Total

samples

User’s

accuracy

Agriculture lands 188 0 22 0 0 210 89.52

Urban 5 95 4 0 0 104 91.34

Water body 1 0 80 0 0 81 98.76

Reclamation lands 0 4 0 90 22 116 77.58

Desert lands 1 0 0 1 287 289 99.30

Total true samples 740

Total sample 195 99 106 91 309 800

Producer’s

accuracy

96.41 95.95 75.47 98.90 92.88 Overall accuracy 92.5%

Kappa coefficient 0.90

Table 5 Accuracy assessments of land use land cover classes of Landsat-5 TM data classified in 2000 in the study area

2000 Agriculture

lands

Urban Water

body

Reclamation

lands

Desert

lands

Total true

samples

Total

samples

User‘s

accuracy

Agriculture lands 128 17 13 0 1 159 80.5

Urban 2 140 27 0 0 169 82.84

Water body 0 0 101 0 0 101 100

Reclamation lands 0 1 0 96 4 101 95.05

Desert lands 1 2 0 4 263 270 97.40

Total true samples 728

Total sample 131 160 141 100 268 800

Producer’s

accuracy

97.71 87.5 71.63 96 98.13 Overall accuracy 91%

Kappa coefficient 0.88
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2018. The desert lands were decreased with the increase of

other classes recorded in the study area during the selected

time series (1984–2018). Each land cover class has been

calculated in a square kilometer, and the percentage during

the selected time is listed in Table 8.

The LULC Maps

The five classes (i.e., agricultural lands, water bodies,

reclaimed lands, desert lands, and built-up areas) were

detected and stored in a GIS environment. The supervised

classification of land use maps in 1984 and 2000 was

created using Landsat 5 TM satellite imagery, as shown in

Fig. 6a, b), that in 1990 was produced by Landsat 5 MSS

(Fig. 6c), and that in 2010 was generated from Landsat 7

ETM ? satellite imagery (Fig. 6d). In addition, the land

use map was created based on Landsat 8 (OLI) images

from 2018 (Fig. 6e). The LULC maps of the QLG area

between 1985 and 2018 were measured in km2, presented

and tabulated in Fig. 6f and Table 8.

The agricultural land in the QLG area has been devel-

oped over the previous thirty-four years. They have dra-

matically changed from 1984 to 2018; it increased from

1238.7 to 1346.6 km2 from 1984 to 1990, respectively. It

increased to 1530.3 km2, 1658.19 km2, and 1707.04 km2 in

2000, 2010, and 2018, respectively.

Another best method used to detect vegetation lands

(agricultural class in the present study) is the NDVI. This

method is unique because it easily identifies and detects the

agricultural land class from other classes. The results of

this method nearly fit in with the supervised classification

results of the agricultural land class during all selected

years.

The desert lands, representing the highlands surrounding

the lowlands of the Wadi El Nile area, covered 6635.4 km2

(52.1%) in 1984. This class slightly decreased to 6477.4

km2 (50.87%) in 1990 and 6171.74 km2 (48.47%), 6150.63

km2 (48.3%), and 6003.5 km2 (47.15%) in 2000, 2010, and

2018, respectively (Table 8).

New proposed reclaimed lands cover about 4379.7 km2

(34.39%) in 1984, increased in 1990 and 2000 to 4419.6

Table 6 Accuracy assessments of land use land cover classes of Landsat-7 ETM ? data classified in 2010 in the study area

2010 Agriculture

lands

Urban Water

body

Reclamation

lands

Desert

lands

Total true

samples

Total

samples

User‘s

accuracy

Agriculture lands 127 5 1 1 0 134 94.77

Urban 4 153 64 1 0 222 68.92

Water body 0 0 75 0 0 75 100

Reclamation lands 0 0 1 91 17 109 83.48

Desert lands 1 2 0 6 251 260 96.53

Total true samples 697

Total sample 132 160 141 99 268 800

Producer‘s

accuracy

96.21 95.62 53.19 92 93.65 Overall accuracy 87.1%

Kappa coefficient 0.83

Table 7 Accuracy assessments of land use land cover classes of Landsat-8 OLI data classified in2018 in the study area

2018 Agriculture

lands

Urban Water

body

Reclamation

lands

Desert

lands

Total true

samples

Total

samples

User’s

accuracy

Agriculture lands 146 6 1 0 0 153 95.42

Urban 2 134 25 3 0 164 81.70

Water body 3 0 114 0 0 117 97.43

Reclamation lands 1 1 2 108 10 122 88.52

Desert lands 0 0 0 6 238 244 97.54

Total true samples 740

Total sample 152 141 142 117 248 800

Producer’s

accuracy

96.05 95.035 80.28 92.30 95.96 Overall accuracy 92.5%

Kappa coefficient 0.90
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km2 (34.71%) and 4521.05 km2 (35.50%), respectively, but

then in 2010 decreased to 4373.51 km2 (34.34%). On the

other hand, the reclaimed land increased to about 4442 km2

(34.88%) in 2018 (see Table 8).

Urban areas increased rapidly between 1984 and 2018,

including housing, roads, industrial areas, and other human

activities. Population growth and the wider development of

roadways related to industry and new urban communities

have led to a considerable increase in urban areas, from

about 345.2 km2 (2.71%) in 1984 to approximately 354.1

km2 (2.78%) in 1990, 375.048 km2 (2.94%) in 2000, and

415.42 km2 (3.26) in 2010. In addition, the urban areas

increased clearly during the period from 2010 to 2018, as

citizens fled from the narrow Nile Valley to the low-lying

desert fringe (proposed reclaimed lands) areas overgrown

for the limestone plateau, up to 445.28 km2 (3.5%) (see

Table 8).

Water bodies in 1984 covered an area of about 133.9

km2 with 1.051%, slowly increasing to approximately

134.4 km2 (i.e., 1.055% of the total study area) in 1990,

increasing in 2000, 2010, and 2018 to about 134.5 km2

(1.056%), 134.53 km2 (1.057%), and 135 km2 (1.06%),

respectively (see Tables 3 and 4). This class has remained

relatively unchanged in the present study due to the lack of

new channels and banks, in addition to the low water level

of the Nile River due to the construction of some dams in

some upstream countries.

NDVI Processing

The NDVI outcome distribution between 1984 and 2018

(Figs. 7a–e) revealed that the highest values were recorded

in 2000 (? 0.992), 1984 (? 0.71), 2010 (0.691), and 1990

(? 0.666), and the lowest values (? 0.6) were recorded in

2018. On the other hand, the area was characterized by

high NDVI values ranging from ? 0.6 to ? 0.99. These

NDVI values and maps were used to detect the changes in

vegetation over the study period.

The area was found to have moderate NDVI values,

corresponding to a mixture of bare soils and areas covered

by photosynthetic active vegetation (Mondal et al. 2017;

Castaldi et al. 2019). Vegetation index differencing is also

widely used to identify changes in LULC, in particular,

those related to shifting cultivated areas (Rao et al. 2018).

Remotely sensed data are vital to the activity of high-

lighting vegetation cover characteristics using the NDVI

method for assessing and managing natural resources. The

major activities influencing these changes in vegetation

were found to be related to agriculture. The results indi-

cated that vegetation cover in the QLG area from 1984 to

2018 nearly fits in with that extracted by the maximum

likelihood classification over the same time series of the

remotely sensed data (see Fig. 7f and Table 8).

Change Detection

Changes in the five selected LULC classes were deter-

mined and detected for the MLC classified maps to cal-

culate the changes in the QLG study area in the time series

1984–2000, 2000–2010, and 2010–2018.

The QLG area covers about 12,732 km2 and is classified

into five classes as shown in Table 9. The desert lands

represent almost half of the study area. The class of agri-

cultural lands covers about 10% of the study area. It is

concentrated along the two banks of the Nile River.

This study established that the current area experienced

a number of dramatic changes between 1984 and 2018,

particularly in relation to agricultural lands, urban areas,

water bodies, reclaimed lands, and desert areas.

Table 8 Comparison of areas of change of the five LULC classes based on supervised classification between 1984 and 2018

1984 1990 2000 2010 2018

Area

(Km2)

% Area

(Km2)

% Area

(Km2)

% Area

(Km2)

% Area

(Km2)

%

Agriculture lands 1238.7 9.8 1346.6 10.6 1530.3 12.018 1658.19 13.023 1707.04 13.40

Proposed reclamation

lands

4379.7 34.4 4419.6 34.7 4521.05 35.507 4373.51 34.35 4442 34.89

Desert lands 6635.4 52.2 6477.4 50.9 6171.74 48.48 6150.63 48.31 6003.5 47.15

Urban 345.2 2.7 354.1 2.8 375.048 2.95 415.42 3.26 445.28 3.5

Water body 133.9 1.055 134.4 1.056 134.5 1.0565 134.55 1.057 135 1.06

Total 12,732 – 12,732 – 12,732 – 12,732 – 12,732 –

NDVI

1984 1990 2000 2010 2018

Vegetation cover 1204 9.45 1323 10.39 1518 11.92 1631 12.81 1688 13.25
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Finally, during 34 years, in the QLG study area, the

outcomes of the land use land cover change detection

indicate that all classes herein were subjected to change.

The increased and decreased changes over the five selected

time series (1984, 1990, 2000, 2010, and 2018) in each

class in the study area are illustrated in Fig. 8 and sum-

marized in Table 9.

Based on the results of change detection, the present

author reported that all classes were increased within all

periods except desert lands that were decreased during the

same period and the reclaimed lands that were decreased in

the period from 2000 to 2010.

In 1984, the urban area covered 345.2 km2 (2.71%)

(representing cities, villages, factories, and asphaltic roads

along the Nile River and Wadi El Nile lowlands), but it

increased to approximately 354.1 km2 in 1990 with an

increase of about 8.9 km2 and to 375.048 km2 in 2000 with

an average increase of about 20.948 km2. Moreover, there

is also an increase of about 40.37 km2 in the period

between 2000 and 2010. During 2010–2018, the urban area

increased by about 29.86 km2 (see Fig. 9a–d).

The agricultural area initially increased from

1238.7 km2 (9.72%) in 1984–1530.3 km2 (12.018%) in

2000 and then increased to 1707.04 km2 (13.40%) in 2018

(see Fig. 9a–d).

The results indicate that the proposed reclaimed areas

expanded in the study area in the assigned time series

within desert fringes and related to lowland areas. The

study showed that the area of reclaimed lands increased

significantly, i.e., from 4379.7 km2 (34.64% of the total

area of the study area) in 1984 to 4521.05 km2 (35.5%) in

2000. During the period from 2000 to 2010 and during the

revolution of January 25, 2011, the reclaimed lands

decreased from 4521.05 km2 in 2000 to 4373.51 km2 in

2010, with surface change detection of about -147.54 km2.

After that stage, this class again increased to 4442 km2 in

2018 with an increase of about 68.49 km2 (see Fig. 9a–d

and Table 9).

The reclaimed lands have changed from 4379.7 km2 to

4419.6 km2 during the period from 1984 to 1990 with an

approximate increase of 39 km2 (0.315%). The area that

has a change of LULC increased by about 101.45 km2

(0.8%) from 1990 to 2000. During 2000–2010, the

reclaimed land class decreased around - 147.54 (1.4%).

Then, it started to increase again in the period from 2010 to

2018 (around 68.49 km2, 0.53%).

The desert lands decreased from 6635.4 km2 (52.11%)

in 1984 to 6150.63 km2 (48.30%) in 2010 and then to

6003.5 km2 (47.14%) in 2018 (see Fig. 9a–d). The lime-

stone plateau and wadis desert are the reasons behind the

decrease in this class leading to the prevention of the use of

agricultural, economic, and urban projects. This class is

considered the largest class in the study area.

Consequentially, we can report that the water body class

during the studied period was slightly constant with light

increase. It increased about 0.52 km2 (0.004%) from 1984

to 1990. Moreover, 0.17 km2 (0.000741%), 0.12 km2

(0.00011%), and about 0.50 km2 (0.00388%) were recor-

ded on classified Landsat images in the periods 1990–2000,

2000–2010, and 2010–2018, respectively. Generally, it

increased from 1.05 to 1.06% (Table 9).

The built-up class has been changed with an increase of

8.9 km2 from 1984 to 1990 and about 20.948 km2, 40.372

km2, and 29.86 km2 from 1990 to 2000, 2000 to 2010, and

2010 to 2018, respectively (Figs. 9a–d). According to these

results, we note that urbanization increased significantly in

the period from 2000 to 2010 compared to the other periods

selected in this study.

Conclusions

The Qena-Luxor Governorates have been selected as a case

study to report that remotely sensed data in the GIS envi-

ronment are essential for the detection of land use land

cover changes. The detection of the land use land cover

changes by the maximum likelihood supervised classifi-

cation and NDVI is a valuable resource for decision-

makers to plan future sustainable development projects.

Five land cover classes were detected in the current study

based on the image classification, namely, agricultural

lands, urban areas, water bodies, reclaimed lands, and

desert lands.

The outcomes display that water bodies representing the

Nile River and irrigation drains and channels slightly

increased from 133.9 to 135 km2 in the period from 1984 to

2018. The urban class increased from 345.2 to 445.28 km2

(2.7–3.5%). Furthermore, the desert lands lost about 631.9

km2 (4.94%) from the total area of the QLGs. Meanwhile,

the reclaimed class has shown a considerable increase of

141.35 km2 (1.11%) between 1984 and 2000. But, this

class decreased after 2000, as a result of the agricultural

and urban expansion in addition to the shortage of land

reclamation. Then, it increased after 2010. The study

indicated that the spread of agricultural lands increased

between 1984 and 2018. Change detection is made possible

by these technologies in less time, at low cost, and with

better accuracy. The accuracy assessment technique was

applied to all selected remotely sensed images. It

bFig. 6 LULC maps resulting by supervised classification methods (a-
1984, b-2000 c-1990, d-2010 and e-2018); f- Area of LULC classes

as square kilometer of all classes of the landscape over 1984, 1990,

2000, 2010, and 2018
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confirmed that the supervised classification method is a

very effective tool in detecting LULC changes in a time

series. The present author recommends that the lowland

areas on the two banks of the Nile River in the QLGs need

more attention for the reclamation and other activities from

the Egyptian government.

bFig. 7 Normalized difference vegetation index (NDVI) thematic

maps of Landsat images (a-1984, b-1990 c-2000, d-2010 and e-2018)
of the (QLG) area

Table 9 Area under change of Land Use/Land Cover Categories during 1984–2018 based on supervised classification in Qena-Luxor Gover-

norate (QLG) area

1984–1990 1990–2000 2000–2010 2010–2018

Different

(Km2)

% Different

(Km2)

% Different

(Km2)

% Different

(Km2)

%

Agriculture

lands

107.9 0.848076 183.7 1.442302 127.89 1.004813 48.85 0.3830

Reclamation

lands

39.9 0.315542 101.45 0.795305 - 147.54 - 1.15773 68.49 0.5363

Desert lands - 158 - 1.23768 - 305.66 - 2.40275 - 21.11 - 0.16436 - 147.13 - 1.1576

Urban 8.9 0.070072 20.948 0.164405 40.372 0.317172 29.86 0.2343

Water body 0.52 0.004 0.17 0.000741 0.12 0.00011 0.5 0.00388

Fig. 8 The spatial distribution of LULC changes between 1984 and 2018 in the study area
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Fig. 9 The spatial distribution of land use/land cover (LULC) changes from one class to another between a-1984–1990, b-1990–2000, c-
2000–2010 and d-2010, 2018 in the study area
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