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Abstract
A large proportion of the world’s population lives in coastal areas. These zones play a vital role in the socioeconomic

aspects of coastal communities. The evolution of shoreline along the zones is of great importance to scientists, and

engineers as well as coastal management. This research aims to assess and understand the dynamics of shoreline along the

Red Sea coast between Al Lith and Ras Mahāsin, using medium-resolution satellite imagery over 34 years (1984–2018) as

well as to predict futuristic changes in the shoreline position until 2038. The tasseled cap transformation tools in ArcGIS

10.2 are used to extract shoreline position for seventh intervals time. These shorelines are analyzed by the digital shoreline

analysis system in four statistical functions, namely (EPR, LRR, NSM, and LMS). The endpoint rate is used to predict

futuristic shoreline positions. The results reveal that the evolutions of shoreline in the form of erosion and accretion

patterns, as surface area exceed 12.3 and 0.89 km2, respectively. The evolution rates were classified based on LRR into five

classes: [i.e., - 11.84 to - 7.85 (very high erosion), - 7.85 to - 4.17 (moderate erosion), - 4.17 to 0.00 (low erosion),

0.00 to 1.28 (low accretion), and 1.280 to 14.44 (high accretion)]. These changes are attributed to the impact of the extreme

wave action and the littoral drifts of sediments by longshore currents. The prediction model reveals that a large portion of

the coastal zone is vulnerable to a high rate of shoreline disintegration.
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Introduction

Coastal zones are socially and economically growing areas

that are inhabited by millions of people. These zones are

affected by the coastal accretion, erosion, sediment trans-

portation, sediment redistribution, environmental inter-

vention, human intervention, and coastal evolution

modifying in long- and short-term scales (Boak and Turner

2005; Holland and Elmore 2008; Aedla et al. 2015; Cas-

telle et al. 2018; Rabehi et al. 2019; Shetty et al. 2019;

Vousdoukas et al. 2020). The coastal degradation impacts

ways of living, possessions, protection of harbors, envi-

ronmental, and socioeconomic aspects as well as coastal

and land resources. Therefore, monitoring and evolution of

shorelines along the zones are of great importance to

coastal communities, scientists, and engineers as well as

coastal management. The shoreline is defined as the land–

water interface which is an exceptionally unique compo-

nent, raising indicators for coastal disintegration and

accretion (Genz et al. 2007). Traditionally, the position of

the shoreline is extracted from aerial photography by sev-

eral authors (Boak and Turner 2005; Pianca et al. 2015) as

a line visible to the analyzer’s eye. Recently, quite a few

automatic shoreline extraction techniques have been sug-

gested a comparison of two independent land cover clas-

sifications, and density slice using single or multiple bands.

The most recent technique is tasselled cap transformation

(TCT), proposed by (Pardo-Pascual et al. 2012), and used

by coupling geographic information system (GIS) with

digital shoreline analysis system (DSAS) (Thieler et al.
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2009; Baral et al. 2018; Hagenaars et al. 2018; Nassar et al.

2018; Ciritci and Türk 2019). The authors suggested that

the technique is more accurate due to its least standardized

root-mean-square mistakes with related field information.

Globally, qualitative and quantitative analysis of

shoreline evolution predicts future positions of shoreline to

relieve the impact of forthcoming disintegration processes

that have gained prominence by several authors (Addo

et al. 2008, 2012; Tran Thi et al. 2014; Kabuth et al. 2014;

Murali et al. 2015; Pianca et al. 2015; El-Sharnouby et al.

2015; Nandi et al. 2016; Almonacid-Caballer et al. 2016;

Bheeroo et al. 2016; Jonah et al. 2016; Nassar et al. 2018;

Qiao et al. 2018; San and Ulusar 2018; Zhang et al. 2018;

Castelle et al. 2018; Fan et al. 2018; Ciritci and Turk 2020).

These studies elucidated that integrating GIS and DSAS

can be effectively used to assess temporal shoreline

evolution.

Territorially, few motivational studies carried out along

the Red Sea coast. Bantan (1999) processed Landsat TM

image variably to examine the surface geology of the

Farasan Islands as palaeo-bathymetry and recent sedi-

mentology. Alharbi et al. (2011) used Landsat imagery to

identify coastal landforms. Nofal and Abboud (2016)

maintained that the circumstances forming geomorpho-

logical features on the eastern coast of the Red Sea in Saudi

Arabia are not permanent since it changes rapidly and

continuously due to erosion and uplifting processes.

Alharbi et al. (2017) reported that there are massive

changes in the temporal shoreline along the southern Red

Sea coast of Saudi Arabia recorded at the maximum

accretion of 36.4 m and maximum erosion at 12.9 m.

These changes are linked to infrastructure developments.

Al-zubieri et al. (2018) indicated that there is a shrink in

the tidal flat in front of the Jazan coast due to the effect of

socioeconomic activities during the last decade. Aboulela

et al. (2020) studied the evaluation of the coastlines of

Jeddah City using satellite images for the period from 1972

to 2016. The authors found witnessed reduction in the

surface area along the coast, which probably due to various

anthropogenic activities. Since 1973, there is a shortage of

detailed studies on the dataset of satellite imagery by using

GIS and DSAS techniques, particularly between Al Lith

and Ras Mahāsin along the Red Sea coast in Saudi Arabia

to monitor shoreline evolution and prediction models for

future changes.

On the other hand, the coastal zone of the Red Sea is

characterized by numerous geomorphological features like

shallow tidal flats, distributary channels of Wadies, Sab-

khas, Sharm, Khors, and lagoons. It is also joined to the

Indian Ocean through the Straits of Bab al-Mandab, which

replenish waters with a unique water exchange processes.

Therefore, it needs more attention to monitor and execute

coastal zone management policies more effectively. The

present study aims to assess and understand the dynamics

of shoreline evolution between Al Lith and Ras Mahāsin

along the Red Sea coast of Saudi Arabia using GIS and

DSAS techniques as well as predicting futuristic changes in

the shoreline positions using EPR model. Additionally, we

intend to provide a system of proposals for the current

situation to enable decision-makers to illuminate the inci-

dental issues along the Red Sea Coast.

Study Area

The study area is situated between latitude 19� 32.5760 N

and 20� 9.4960 N and longitude 40� 54.4530 E and 40�
14.1570 E with the length of 150 km, extending between Al

Lith to Ras Mahāsin near Al Qunfudhah beaches in the

middle part of the Red Sea coast (Fig. 1). Various features

currently exist in this area (e.g., Marine heads (Ras

Mahāsin and Ra’s Kinnateis), Ghubbat al Mahasin, Sab-

kha, Mangroves, Wadies mouth, and Strand plain. Cli-

matically, the investigated area falls under tropical

monsoon climate type with warm and dry conditions

staying through the year. Generally, the temperature gra-

dient varies from (29�–38.5 �C) and (21�–30 �C) during

spring and winter, respectively. In the last decade, humidity

record was fluctuating between 6 and 68%, sometimes

reached to a maximum of 100%. The mean monthly rain-

fall is scarce (63 mm per year) with intermittent wadi

channels inflow. The highest noteworthy precipitation

occurs during rainstorms (October to May), and the mean

breeze speed recorded around 12 km/h by (AL-Sheikh

2012). On the other ways, it sites at the boundary of

northward and southward shifting of the intertropical

convergence zone (ITCZ) (Edwards 1987; Abu-Zied and

Bantan 2015). This setting makes it an ideal location for

shoreline evolution. From June to September, the Red Sea

subjects to the winds flowing from the northwest, while

from October to May, the winds become two-directional.

The first direction is coming from southeast passing

through the Strait of Bab el Mandeb to reach about 19�N
while the second is flowing from the northwest to cover the

northern part of the Red Sea (Murray and Johns 1997;

Siddall et al. 2003).

The patterns of the winds oriented along the axis of the

Red Sea make variability of waves in this area through

summer and winter. During the summer, the winds blow

from the northwest over the Red Sea, generating small

waves that reach the area. These waves sometimes are

enhanced by a mountain wind jet from the Tokar Gap to

exceed monthly mean 2 m with the power reaching up to

(1.7 kW/m) along the coast. However, monsoon winds

from the southeast over the Red Sea, generating relatively

high waves exceed 2 m at the mean periods of 8 s in the

area of study with the highest average wave power
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reaching up to 6.5 kW/m along the coast (Ralston et al.

2013; Aboobacker et al. 2017). The geostrophic currents

along the coast of the investigation area flow northward

and southward, which are modified in the presence of

cyclonic and anticyclonic eddies. During summer, the

anticyclonic eddies occur on the west coast of the Red Sea

while the cyclonic eddies occur on the east coast of the Red

Sea. However, the cyclonic eddies are in the reversed

pattern during winter (Taqi et al. 2019). The annual vari-

ance of mean tide ranges from 0.4 to 0.8 m. The ampli-

tudes of both diurnal and semidiurnal constituents’ tidal

currents ranged from 0.1 to 1 m (2013). They confirmed

the occurrences of the anticlockwise amphidromic system

in this part of the Red Sea (Gharbi et al. 2018). The low

tidal range causes sabkha immersion by a thin dainty sheet

of water as opposed to through a system of channels (Be-

hairy et al. 1991). During the winter, the average sea level

was usually higher than the average in summer, and tidal

speeds affected by choking influences brought about by

reefs, sand bars, and low islands, regularly surpass

1–2 m s-1.

Eight satellite images spreading over a 34-year time

span (1984–2018) were taken into consideration. Medium-

resolution satellite data such as Landsat TM and ETM?

were used for shoreline evolution in the study area. The

satellite datasets were gathered at irregular intervals due to

the inaccessibility of cloud-free imagery during the chosen

period. The details of the satellite dataset, acquisition

details, and resolutions are presented in Table 1.

Methodology

The methodological framework applied in the study can be

divided into three sections. The first section deals with data

processing such as Image co-registration, radiometric cor-

rection, and enhancement using ENVI software. The sec-

ond section extracts shoreline position for seven intervals

Fig. 1 Simplified map showing the area of study
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1984, 1986, 1990, 1994, 1998, 2014, and 2018 using TCT

(Pardo-Pascual et al. 2012) and different processes of

spatial analysis using ArcGIS 10.2 package. The third

section dealing with the evolution of shoreline in the form

of accretion/erosion fashions was estimated using three

statistical approaches in DSAS, namely endpoint rate

(EPR), movement of shoreline (NSM), and linear regres-

sion rate (LRR). The EPR is used to predict futuristic

changes in the shoreline positions following the techniques

used by (Nassar et al. 2018). The methodological structure

is summarized in the flowchart (Fig. 2), and a detailed

explanation is presented in the following sections.

Data Processing and Shoreline Extraction

A Landsat (TM and ETM?) for the period between 1984

and 2018 with irregular intervals were downloaded from

eos.com/land viewer. The datasets are radiometric cor-

rected by ENVI software and rectified using geo-referenced

tools in the ArcMap package. The rectifying was per-

formed based on eleven ground control points, selected

carefully at the landmarks on the high-resolution image of

Google Earth and WGS-84 datum. The rectifying accuracy

of the selected points was 0.276 pixels of root-mean-square

error (RMSE). The RMSE is the squared difference

between dataset coordinate values and coordinates from an

independent source of higher accuracy for identical points

(Maanan et al. 2014). The images of the selected area were

extracted using the mask of raster processing in ArcMap.

Table 1 Details of satellite

dataset (acquired via https://eos.

com/landviewer/ and https://

earthexplorer.usgs.gov/)

Satellite data Path/row Acquisition year Pixel resolution (m)

Landsat 5—TM 169/46 17/07/1984 30

Landsat 5—TM 169/46 21/06/1986 30

Landsat 5—TM 169/46 16/06/1990 30

Landsat 5—TM 169/46 27/06/1994 30

Landsat 5—TM 169/46 22/06/1998 30

Landsat 7—ETM? 169/46 10/06/2014 30

Landsat 7—ETM? 169/46 02/06/2017 30

Landsat 7—ETM? 169/46 05/06/2018 30

Fig. 2 Methodology flowchart
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The subset images were exported to ENVI software to

perform the radiometric correction again to avoid the effect

of extraction processing. This correction is based on the

information such as offset/gain, sun elevation, and satellite

viewing angles, which were available in the Landsat

metadata documentation. The next step is to extract

shoreline, using TCT. The TCT is a technique which

reclassifies spectral information of the six ETM? bands

into three principal view components (i.e., brightness,

greenness, and wetness) through the coefficients derived by

sampling known as the land cover spectral characteristics

(Huang et al. 2002; Pardo-Pascual et al. 2012). These

components with NDVI were used to create categories,

which were reclassified into two classes, namely land and

sea. The shoreline was extracted for every interval (Fig. 3).

The Estimate of Shoreline Evolution

Shorelines were analyzed using the DSAS technique,

which is developed by the United States Geological Survey

(USGS). These analyses were based on baseline features at

systemic transects that cut the shorelines every 20 m and

numbered from south to north (Fig. 4). The evolution of

shoreline in the form shape of accretion/erosion patterns

was estimated using four statistical approaches in DSAS,

namely endpoint rate (EPR), net shoreline movement, lin-

ear regression rate (LRR), and least median of squares. The

EPR is used to predict futuristic changes in the shoreline

positions following the equation proposed by (Fenster et al.

1993) and recently assured as a trustworthy tool by several

authors (Mukhopadhyay et al. 2012; Nandi et al. 2016;

Mondal et al. 2017; Nassar et al. 2018). In the present

study, this equation was performed based on the historical

shoreline of 1984 and 2018 in the following expression.

Pt0 ¼ PL þ mEPR � t0 � TLð Þ ð1Þ

where PL is the position of shoreline at the last time 2018

(TL), Pt0 is the future shoreline position at a specific time

(t
0
), and mEPR is the rate of shoreline change (EPR)

between 1984 and 2018.

On the other hand, the effectiveness of predicted

shorelines was validated in terms of the normalization of

root-mean-square error (NRMSE) as per the following

expressions.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i

Lexs Y ;i � LPrds Y ;i

� �2
=n

s

ð2Þ

NRMSE ¼ RMSE=L�alexs Y ð3Þ

where n is transecting numbers; Lexs Y ;i is the remoteness

between baseline and the extracted shoreline for 1998 and

2017 at transect number i; LPrds Y ;i is the remoteness

between baseline and the predicted shoreline for 1998 and

2017 at transect number i; and L�alexs Y is the mean of the

remoteness of the extracted shoreline for 1998 and 2017.

Results and Discussion

Shoreline Evolution

Two-dimensional shoreline evolution identification was

widely researched along the coastal zone between Al Lith

and Ras Mahāsin on the Red Sea coast over 34 years with

irregular period intervals (1984, 1986, 1990, 1994, 1998,

2014, and 2018). This procedure was actualized through a

lot of substantial steps, as shown in Fig. 2. The total ero-

sion/accretion was calculated during the time of

1984–2018 (Fig. 5). As shown in Figs. 5 and 6, the

shoreline evolution during the studying period revealed

that the study area exhibited a huge shoreline erosion and

accretion. The amplitude of both of them exceeded 12.3

and 0.89 km2, respectively. These evolutions were occur-

ring along the coastal zone from south to north, and the

most significant changes were recorded at marine heads

like Ras Mahāsin and Ra’s Kinnateis (Fig. 5). These

marine heads appeared in the shape of a semi-crescent

shape, emerges from the land toward the sea, making them

more vulnerable to the effect of wave action. Coastal

processing such as the power of wave energy, longshore

current with the contribution of tidal currents, probably

reformed geomorphology of these heads. Similarly, Nofal

and Abboud (2016) found high erosion on the marine head

of the Ras Al-Shabaan on the Northern Red Sea coast.

They interpreted increasing erosion at this marine head to

the effect of wave movements and current endings.

While the erosion on other portions of shoreline in the

south is attributed to the consolidated activity of combined

impacts of the stormy climate of the coast and restricting

sediment movements, coming from wadi channels in

landward. This transportation of sediment along the coast

was carried out by waves action and longshore currents that

induced within the breaker zone (May and Hansom 2003).

In the light of hydrodynamic conditions in this portion of

the coast, alongshore flows have derived dismantled sedi-

ments from south to north, leaving a much disintegrated

zone. This may occur due to the high power of waves

energy along the coast of this portion due to the parts

falling within the intertropical convergence zone (ITCZ)

and faces open sea waves directly (Ralston et al. 2013;

Aboobacker et al. 2017). Aboobacker et al. (2017) men-

tioned that the power of wave energy along the coast of this

part of the Red Sea reached up to 6.5 kW/m. However,
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severe accretion has occurred on the northern portion of

shoreline near Al Lith City, where human intervention

became extensively active, leading to more significant

accretion. Furthermore, dynamic and broad growth occur-

red in and around this area, as Al Lith City expanded on

seaward.

Application of DSAS

The DSAS technique is applied to calculate the rate of

evolution statistically from seven historical shoreline

positions, starting from June 1984 to June 2018 between Al

Lith and Ras Mahāsin on the Red Sea coast. The processes

of this technique are summarized in Fig. 2. A qualitative

analysis was performed to determine erosion/accretion

transects utilizing EPR and LRR models in the study area

(Fig. 6a, b). The output of shoreline evolution rates was

spatially evaluated for the study area through all the period

using statistical functions of linear regression and endpoint

rates with significant correlation r2 = 0.85 (Fig. 6b). The

positive values above the zero line in Fig. 6a indicate

accretion, while the negative values beneath the zero line

reveal erosion.

The LRR outputs are classified into five class: (- 11.84

to - 7.85: very high erosion), (- 7.85 to - 4.17: moderate

erosion), (- 4.17 to 0.00: low erosion), (0.00 to 1.28: low

accretion), and (1.280 to 14.44: high accretion) to represent

the risk levels along the study area. This classification was

bFig. 3 Shorelines extraction with false-color composite images for all

studied intervals

Fig. 4 Systemic transects from baseline in the landward side, which cut the shorelines every 20 m using DSAS
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carried out based on the potential socio-environmental

losses and the criteria of coastal vulnerability, as defined by

Mahapatra et al. (2014, 2015). The risk levels could help

decision-makers in the management of coastal areas of

Fig. 5 Erosion and accretion along the studying area between 1984 and 2018

Fig. 6 a Shoreline evolution rate by LRR and EPR during the interval between 1984 and 2018, and b Correlation between LRR and EPR

statistical functions overall the stud area
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Saudi Arabia to reduce impacts of erosion and construction

and to take proper system toward existing seaside issues

along with the investigation area. Depending on this clas-

sification, the shoreline evolution was plotted against LRR

values as three portions. The first portion explains shoreline

evolution along with the southern sector around Ras

Mahāsin (Fig. 7). It illustrates that most of this sector is

subjected to erosion processes, exhibiting very high erosion

in its southern part. A maximum erosion rate of - 20 m/

year takes place between latitudes (19� 320 and 19� 360).
Subsequently, the littoral eroding was dragged out toward

the marine head of Ras Mahāsin, paying by northward

longshore currents, interfused with a maximum rate of

12 m/year and situated along with the marine head. This

means that the shoreline in this part was more dynamically

and vulnerably against the high rate of shoreline disinte-

gration. Accordingly, this part of the coast needs more

attention to protect regulations, such as the construction of

a wave breaker zone in a remote area in the open sea.

The second portion explains shorelines evolution along

Ghubbat al Mahasin and Ra’s Kinnateis (Fig. 8). It has

shown that the shoreline at this zone has, in general,

moderate erosion along with the most places of shore on

Ghubbat al Mahasin and low accretion along with the

marine head of Ra’s Kinnateis on the side of Ghubbat al

Mahasin. The low erosion took place along the marine

head on the open seaside. Furthermore, unsymmetrical

mean shore evolution rates based on LRR were recorded

between 5 and - 10 m/year along the coast of Ghubbat al

Mahasin. This unsymmetrical evolution inside the Ghubbat

al Mahasin was due to the geomorphological shape of

Ghubbat al Mahasin and based the energy of the waves that

come from the open sea by the narrow inlets between small

islands which available at the Ghubbat al Mahasin

entrance. Whereas, maximum erosion along Ra’s Kinnateis

coast on open seaward was - 12 m/year may be due to the

effect of wave action.

Figure 9 describes the accretion/erosion between Al

Lith and Ra’s Kinnateis. The amplitude of accretion in this

portion was higher than in other sectors. This accretion is

attributed to socio-environmental activities as human

intervention became extensively active, leading to more

significant accretion. Furthermore, dynamic and broad

growth in and around this area occurred as the expansion of

Al Lith City on seaward. Additionally, the erosion rate in

this sector ranged from less than - 5 m/year (low erosion)

to 25 m/year (high erosion). This erosion has been con-

tinuing northwards from Ra’s Kinnateis shore at a distance

of 40 km to reach near Al Lith shore, indicating more

dynamics of shoreline, needing more attention, and putting

Fig. 7 Assessments of shorelines evolution along with the southern sector around Ras Mahāsin
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appropriate solutions to protect socio-environmental

activities. One appropriate solution recommended by the

authors was to take advantage of the acute erosion energy

along the coast through constructing a nontraditional wave

energy converter seawall, feeding nearby Al Lith City, and

close by urbanizations with pure electricity.

Prediction Model

Shoreline evolution rates were utilized to brief historical

shoreline developments and their futuristic forecast. Pre-

viously, few strategies have been utilized to forecast

shoreline location as a temporal function, the rate of dis-

integration and accretion or rising sea level, for example,

nonlinear mathematical models (e.g., cyclic arrangement

models, an exponential model, and higher-order polyno-

mial) (Li et al. 2001). Among them, endpoint rate and

linear regression were considered as the most straightfor-

ward and helpful models (Nandi et al. 2016; Mondal et al.

2017; Nassar et al. 2018; San and Ulusar 2018). The EPR

model has depended on presumption, which noticed the

historical evolution rate, was best to evaluate accessible for

prognosticating future without needing any other data such

as waves, currents, tides, sea breeze, or a sediment supply

(Fenster et al. 1993). Future shorelines prognostication

from satellite datasets for several intervals, utilizing this

model is subject to a few affecting components like the

exactness of shoreline discovery (precision of satellite

information and technique utilized), the period of shoreline

information obtaining, many data points taken into account

over the designate of shoreline location and temporal

changeability of shoreline and so forth (Galgano and

Douglas 2000; Maiti and Bhattacharya 2009).

In the current study, the prediction models for short

scale 2022 and long scale 2038 have been carried out using

the EPR model based on extracted shorelines of 1984 and

2018 due to a significant positive relationship between EPR

and LRR (r2 = 0.85) (Fig. 6b). The extracted shoreline of

1984 is selected as the historical position, and the extracted

shoreline of 2018 is utilized as the recent position for the

predicted model. The results show that the shoreline

position continues shifting land word, and broadly erosion

took place in most of the portions of the investigation area.

The scenario of these shifting is presented in Fig. 10, and

the effectiveness of the prediction is described below.

Fig. 8 Assessments of shorelines evolution along Ghubbat al Mahasin and Ra’s Kinnateis
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Effectiveness of Prediction Model

The effectiveness of the prediction model was performed

using the shifting of predicted shorelines of 1998 and 2017

by Eq. (1) to the extracted shorelines of 1998 and 2017 by

TCT. Where, the predicted shorelines of 1998 and 2017

were based on the EPR for the years 1984–1996 and

1998–2014 across multiple transects with a distance of

20 m from the baseline. The abnormality position between

predicted and extracted shorelines was analyzed by DSAS

on 7706 transects with 20 m distance to the baseline and

presented in Fig. 11. After that, the NRMSE was computed

by Eq. (2). The NRMSE values were 0.26 and 0.24 for the

years 1998 and 2017, respectively (Fig. 11a). These values

indicate that EPR was an acceptable tool to predict futur-

istic shoreline for the study area. The futuristic positions of

shoreline for short scale (4 years interval in 2022) and long

scale (20 years interval in 2038) were forecasted based on

Eq. (1). Around twenty transects are presented in Fig. 4

and Table 2 to show examples of the results.

Predictable Evolution Rate and Alteration Error

An error alteration operation has been applied in the

futuristic shoreline prognostication fashion, depending

upon shifting of predicted shorelines 1998 and 2017. The

highest was in the southern part of the study area. The

values of these errors were altered in the predicted shore-

line positions of the short scale 2022 and long scale 2038.

The results revealed that there was a slight decrease in the

accretion and erosion as compared to normal prediction.

The predictable evolution rates (EPR) for the predicted

shoreline (2018–2038) were graphically presented together

with the evolution rate between the historical shorelines of

1984 and 2018 located from the south of Ras Mahasin

Beach to the north of Al Lith Beach (Fig. 11b). This graph

indicates that large portions of the coastal zones will con-

tinue to be vulnerable to high rates of shoreline disinte-

gration. The continuance of this degradation will probably

impact the environmental ecosystem, such as mangrove

biozones and socio-environmental activities along the

study area in the future if appropriate protection measures

are not established.

Fig. 9 Assessments of shorelines evolution between Al Lith and Ra’s Kinnateis

Journal of the Indian Society of Remote Sensing (October 2020) 48(10):1455–1470 1465

123



Conclusions

Shoreline evolution between Al Lith and Ras Mahasin on

the Red Sea coast, Saudi Arabia was effectively demar-

cated and analyzed between 1984 and 2018 frames, uti-

lizing GIS techniques and automatic computations using

DSAS. Shoreline evolution detection was widely explored

along the coastal stretch utilizing multi-temporal satellite

images over 34 years (between 1984 and 2018). Seven

shoreline positions were extracted in 1984, 1986, 1990,

1994, 1998, 2014, and 2018 using the TCT technique. The

investigation demonstrated a massive erosion process tak-

ing place in the investigated area. Chiefly, southern parts

around marine heads have experienced high rates of dis-

integration. Growth was noticed in just a little bit of the

northern part. Different reasons were attributed to the

disintegration of the study area, such as the impact of the

extreme wave action, the littoral drifts of sediments by

longshore current and windy storms. The massive erosion

along the coastline of the investigation area indicated that

the position of shoreline was more dynamics, which needed

more attention and put appropriate solutions to protect

socio-environmental activities.

On the other hand, the futuristic shoreline of the

investigation area was prognosticated utilizing EPR for

short scale 2022 and long scale 2038. However, some

difficulties were found to achieve any perfection model.

Ultimately, the prediction model revealed that the shoreline

position will continue to shift landward in the feature.

Furthermore, the current study recommends decision-

makers in the management of the coastal zone to exploit

the massive erosion energy along the coastline for human

activities as well as in the nearby cities, such as exploita-

tion of the wave energy in this region to produce pure

electrical energy.

Fig. 10 Shoreline prediction for short scale 2022 and long scale 2038
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Fig. 11 a The abnormality between the predicted and extracted shorelines 2017 at each transect utilizing EPR with RMSE error. b The

predictable evolution rates as EPR along the area of study

Journal of the Indian Society of Remote Sensing (October 2020) 48(10):1455–1470 1467

123



Acknowledgments This work was supported by the deanship of

Scientific Research (DSR), King Abdulaziz University, Jeddah, under

Grant No. (DG-1440-22-1440-150). The authors, therefore, gratefully

acknowledge the DSR technical and financial support. The authors are

very grateful for the editor and reviewers for their constructive

comments and editorial handling.

References

Aboobacker, V. M., Shanas, P. R., Alsaafani, M. A., & Albarakati, A.

M. A. (2017). Wave energy resource assessment for Red Sea.

Renewable Energy, 114, 46–58. https://doi.org/10.1016/j.renene.

2016.09.073.

Aboulela, H. A., Bantan, R. A., & Zeineldin, R. A. (2020). Evaluating

and predicting changes occurring on the coastlines of Jeddah city

using satellite images. Arabian Journal for Science and Engi-
neering, 45, 327–339.

Abu-Zied, R. H., & Bantan, R. A. (2015). Palaeoenvironment,

palaeoclimate and sea-level changes in the Shuaiba Lagoon

during the late Holocene (last 3.6 ka), eastern Red Sea coast,

Saudi Arabia. The Holocene, 25, 1301–1312.

Addo, K. A., Jayson-Quashigah, P. N., & Kufogbe, K. S. (2012).

Quantitative analysis of shoreline change using medium resolu-

tion satellite imagery in Keta, Ghana. Marine Science, 1, 1–9.

https://doi.org/10.5923/j.ms.20110101.01.

Addo, K. A., Walkden, M., & Mills, J. P. (2008). Detection,

measurement and prediction of shoreline recession in Accra,

Ghana. ISPRS Journal of Photogrammetry and Remote Sensing,
63, 543–558. https://doi.org/10.1016/j.isprsjprs.2008.04.001.

Aedla, R., Dwarakish, G. S., & Reddy, D. V. (2015). Automatic

shoreline detection and change detection analysis of Netravati-

GurpurRivermouth using histogram equalization and adaptive

thresholding techniques. Aquatic Procedia, 4, 563–570. https://

doi.org/10.1016/j.aqpro.2015.02.073.

Alharbi, O. A., Phillips, M. R., Williams, A. T., & Bantan, R. A.

(2011). Landsat ETM applications: Identifying geological and

coastal landforms, SE Red Sea coast, Saudi Arabia. Medcoast,
11, 985.

Alharbi, O. A., Phillips, M. R., Williams, A. T., Thomas, T., Hakami,

M., Kerbe, J., et al. (2017). Temporal shoreline change and

infrastructure influences along the southern Red Sea coast of

Saudi Arabia. Arabian Journal of Geosciences. https://doi.org/

10.1007/s12517-017-3109-7.

Almonacid-Caballer, J., Sánchez-Garcı́a, E., Pardo-Pascual, J. E.,

Balaguer-Beser, A. A., & Palomar-Vázquez, J. (2016). Evalu-

ation of annual mean shoreline position deduced from Landsat

imagery as a mid-term coastal evolution indicator. Marine
Geology, 372, 79–88. https://doi.org/10.1016/j.margeo.2015.12.

015.

AL-Sheikh, A. B. Y. (2012). Environmental degradation and its

impact on tourism in Jazan, KSA using remote sensing and GIS.

International Journal of Environmental Sciences, 3, 421–432.

Al-zubieri, A. G., Bantan, R. A., Abdalla, R., Antoni, S., Al-Dubai, T.

A., & Majeed, J. (2018). Application of GIS and remote sensing

to monitor the impact of development activities on the coastal

zone of Jazan City on the Red Sea, Saudi Arabia. International
Archives of the Photogrammetry, Remote Sensing and Spatial

Table 2 Some examples for the estimation of predicted shoreline in 2022 and 2038 utilizing EPR prediction depend on Eq. (1)

Transect (ID) Historical shoreline locations (remoteness from baseline,

m)

mEPR (m/year) Predicted shoreline locations (remoteness from

baseline, m)

L1984 L1986 L1990 L1994 L1998 L2014 L2018 L2022 L2038

1 243.8 236.5 213.2 229.6 165.0 172.0 181.1 - 1.9 173.7 144.1

2 252.4 245.2 220.8 237.2 172.5 181.8 189.8 - 1.9 182.4 152.8

3 261.0 253.1 228.5 244.2 180.0 191.7 198.3 - 1.9 190.9 161.3

4 269.6 259.6 236.1 251.0 187.1 201.6 206.8 - 1.9 199.4 169.8

5 279.0 265.2 244.3 257.7 194.3 210.7 214.9 - 1.9 207.4 177.1

6 289.7 271.1 253.1 264.6 201.7 218.2 221.9 - 2.0 213.9 181.9

7 304.4 279.9 262.5 272.8 209.0 225.4 228.6 - 2.2 219.6 183.8

8 325.1 292.6 272.1 281.6 215.5 232.6 235.8 - 2.6 225.2 183.0

9 346.6 315.6 283.5 290.5 222.1 240.6 243.8 - 3.0 231.6 183.2

10 366.4 333.8 296.7 301.8 229.1 249.1 253.4 - 3.3 240.0 186.6

11 384.3 352.1 309.8 314.4 237.5 257.4 263.4 - 3.6 249.1 192.0

12 400.2 370.6 322.7 327.5 246.9 264.0 272.3 - 3.8 257.2 196.7

13 414.3 384.9 334.9 340.5 256.2 269.2 278.9 - 4.0 263.0 199.1

14 427.8 399.1 347.4 352.7 263.8 273.3 283.0 - 4.3 265.9 197.4

15 441.4 405.5 360.7 365.7 268.8 274.8 285.5 - 4.6 267.1 193.5

16 455.0 407.8 374.3 380.0 270.8 273.2 285.7 - 5.0 265.7 185.7

17 467.2 421.7 387.6 394.4 270.4 268.7 284.6 - 5.4 263.1 176.8

18 477.1 442.4 398.7 408.7 267.2 260.2 280.6 - 5.8 257.4 164.6

19 484.0 452.6 406.9 421.7 260.8 248.5 274.9 - 6.2 250.2 151.5

20 487.4 462.6 411.7 432.4 250.6 234.3 265.1 - 6.6 238.8 133.9

1468 Journal of the Indian Society of Remote Sensing (October 2020) 48(10):1455–1470

123

https://doi.org/10.1016/j.renene.2016.09.073
https://doi.org/10.1016/j.renene.2016.09.073
https://doi.org/10.5923/j.ms.20110101.01
https://doi.org/10.1016/j.isprsjprs.2008.04.001
https://doi.org/10.1016/j.aqpro.2015.02.073
https://doi.org/10.1016/j.aqpro.2015.02.073
https://doi.org/10.1007/s12517-017-3109-7
https://doi.org/10.1007/s12517-017-3109-7
https://doi.org/10.1016/j.margeo.2015.12.015
https://doi.org/10.1016/j.margeo.2015.12.015


Information Sciences. https://doi.org/10.5194/isprs-archives-

XLII-3-W4-45-2018.

Bantan, R. (1999). Geology and sedimentary environments of
Farasan Bank (Saudi Arabia), southern Red Sea: A combined
remote sensing and field study.

Baral, R., Pradhan, S., Samal, R. N., & Mishra, S. K. (2018).

Shoreline change analysis at Chilika Lagoon Coast, India using

digital shoreline analysis system. Journal of the Indian Society of
Remote Sensing, 46, 1637–1644. https://doi.org/10.1007/s12524-

018-0818-7.

Behairy, A. K. A., Rao, N. V. N. D., & El-Shater, A. (1991). A

siliciclastic coastal sabkha, Red Sea coast, Saudi Arabia. Marine
Scienes, 2, 65–77.

Bheeroo, R. A., Chandrasekar, N., Kaliraj, S., & Magesh, N. S.

(2016). Shoreline change rate and erosion risk assessment along

the Trou Aux Biches-Mont Choisy beach on the northwest coast

of Mauritius using GIS-DSAS technique. Environmental Earth
Sciences, 75, 1–12. https://doi.org/10.1007/s12665-016-5311-4.

Boak, E. H., & Turner, I. L. (2005). Shoreline definition and

detection: A review. Journal of coastal research, 21, 688–703.

Castelle, B., Guillot, B., Marieu, V., Chaumillon, E., Hanquiez, V.,

Bujan, S., et al. (2018). Spatial and temporal patterns of

shoreline change of a 280-km high-energy disrupted sandy coast

from 1950 to 2014: SW France. Estuarine, Coastal and Shelf
Science, 200, 212–223. https://doi.org/10.1016/j.ecss.2017.11.

005.

Ciritci, D., & Türk, T. (2019). Automatic detection of shoreline

change by geographical information system (GIS) and remote
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