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Abstract
Rooftops are essential features, extracted from satellite images for their significance in applications such as update of urban

geodatabase, risk assessment and rescue map. In this work, a methodology (MBION-SVM) which integrates morpho-

logical, spectral, shape and geometrical features with SVM classifier to classify the objects within the satellite image into

building rooftops and non-rooftops has been proposed. The probable buildings are detected using Morphological Building

Index (MBI). The mislabeled rooftops are eliminated by combining Otsu thresholding and Normalized Difference

Vegetation Index (NDVI). Geometrical features computed from identified building rooftops are used to train a support

vector machine (SVM), and self-correction is performed for removing any mislabeled rooftops and to provide the data on

surface area of the perfect rooftops. Here, we have used Very High Resolution (VHR) images of Worldview-2 and

Sentinal-2. We have analyzed the performance of the proposed building extraction approach with classification algorithms

such as linear discriminant analysis, logistic regression and SVM. Since the proposed method gives an accuracy around

99%, precision of 89%, a perfect recall of 1 and a F-score of 88%, it can be effectively utilized to extract the buildings from

VHR images for any appropriate application.

Keywords Building extraction � MBI � Edge detection � Otsu � NDVI � SVM

Introduction

The application domains of remote sensing have been

significantly augmented with accessibility of sub-meter

resolution data from high-resolution earth satellites, such as

IKONOS, WorldView-2 and QuickBird (Liu et al. 2008,

Gavankar et al. 2018). In order to distinguish natural

objects (vegetation, bare land, mountains, water bodies)

and man-made objects (buildings, track, road) with more

accuracy, researchers started working on Very High Res-

olution (VHR) images captured by these satellites. Roof-

tops are essential features to be extracted from satellite

images due to their significance in applications such as

urban cadastral management, 3D map reconstruction,

updation of urban geodatabase, risk assessment and rescue

map (You et al. 2018). Nowadays, the urban sector is

rapidly growing and consequently more energy is being

consumed. Due to depletion of the ozone layer, the weather

becomes unpredictable, days become longer, and summer

becomes hotter requiring more ventilation and air-condi-

tioning units. The enormous energy required to drive these

units in buildings utilizes high amount of electricity, one of

our crucial resources. In order to effectively use electricity,

insulation of buildings becomes a prime factor and instal-

lation of solar panels is required for generation of elec-

tricity. This requires knowledge of the building area.
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Building extraction is carried out based on pixel and

object-based methods that include both spectral and spatial

information obtained from VHR images. Building extrac-

tion from urban areas faces challenges in the realm of

accuracy and efficiency due to the diversity and complexity

of building. Buildings comprising of multiple types may

result in inappropriate extraction results (Hu et al. 2008). In

an urban area, density of buildings is more and hence there

is a possibility of detecting multiple buildings as a single

building. The presence of shadows in an image causes

errors in analysis. When shadow of a building falls on

another building, conventional methods fail to detect the

desired rooftop (Hu et al. 2011). Furthermore, nearby trees,

road segments and bridges may be erroneously spotted as

buildings. All these issues are due to complexity of spatial

information and heterogeneity of spectral information

present within the same class of objects (Shi et al. 2018).

Nowadays, Very High Resolution remote sensing ima-

ges with multispectral bands are easily available due to the

advancement of low-orbit earth imaging technology and

provide exhaustive spatial information (You et al. 2018).

Even though the resolution of VHR images provides

exhaustive spatial information, it does not logically match

up in providing higher image interpretation accuracies,

especially in urban areas (Myint et al. 2004). Therefore, it

is computationally intense for experts to label the buildings

manually and is also not possible to identify complex

information from VHR images (Gavankar et al. 2018). To

ease the method of extracting buildings from VHR images,

many researchers have introduced automated building

extraction methods to reduce the burden of human to a

greater extent (Zha et al. 2003). The advancements in

machine learning (ML) led to the development of auto-

matic methods with trained models to provide the desired

results for various remote sensing applications. These ML

methods build relationships between remotely sensed data

samples and the outcome of interest. These methods predict

output classes by estimating correlations among input

variables and quantify uncertainty related to these predic-

tions and estimates. The most common ML algorithms

used in remote sensing data are classification, clustering,

regression and dimension reduction (Holloway et al. 2018).

In order to formulate an automatic building identification

that includes both spectral and spatial information obtained

from VHR images, huge number of studies are focused

toward classification techniques. Supervised learning-based

methods that combine both spatial and spectral information

are commonly used (Benediktsson et al. 2003; Senaras

et al. 2013). An automated building extraction method

based on region segmentation and feature extraction is used

to extract simple rectangular rooftops as well as compli-

cated buildings (Xiaoying et al. 2005) and (Liu et al. 2008).

SVM is a type of nonparametric supervised algorithm

that maps the support vectors present in N-dimensional

feature space into two output classes. SVM creates the

hyperplane in N-dimension feature space to perfectly

classify objects into two classes by taking into considera-

tion the maximum distance between data points of both

classes. SVM is employed for analysis of remote sensing

data for land use and land cover classification (Szuster

et al. 2011), for crop classification (Mathur et al. 2008), for

automatic recognition of man-made objects (Inglada 2007)

and for automatic building extraction (Dayana et al. 2018).

Like classifier, the regression model is also trained

based on a set of input features extracted from the asso-

ciated classes (output). Logistic regression on satellite

imagery data is employed to estimate the location and

degree of deforestation (Bavaghar et al. 2015). Linear

discriminant analysis (LDA) is one of the dimension

reduction method-based ML algorithm.

A number of works have been conducted in the field of

building extraction from high-resolution satellite imagery

such as QUCIKBIRD images (Wei et al. 2004; Dutta et al.

2005; Lefèvre et al. 2007; Hu et al. 2008; Attarzadeh et al.

2018), IKONOS images (Lee et al. 2003; Xiaoying et al.

2005) and Worldview-2 images (Xu 2008; Huang et al.

2012; Kumar et al. 2012; Huang et al. 2017). Since the

literature is vast in this area of research, some related

papers are discussed in ‘‘Literature Review’’ section.

To defeat the weakness of the existing related research

in order to reduce false positives (mislabeled buildings and

missing buildings) and to improve the accuracy of building

extraction for meeting up the requirements of application,

Morphological Building Index-based MBION-SVM

methodology has been proposed to automatically classify

objects into rooftops and non-rooftops.

The outline of the paper is as follows: ‘‘Literature

Review’’ section discusses the related work in the field of

building extraction. ‘‘Methodology’’ section describes the

proposed MBION-SVM methodology to automatically

classify objects into rooftops and non-rooftops. ‘‘Results

and Discussion’’ section presents performance analysis of

classification using linear discriminant analysis (LDA),

logistic regression and SVM. ‘‘Conclusion’’ section deals

with conclusion and discussion on the performance of the

proposed work and future scopes related to it.

Literature Review

Even though high-resolution satellite imagery offers

detailed information for building identification and

extraction, it does not reasonably leave higher image

interpretation accuracies because of the complexity of

spatial information and heterogeneity of spectral
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information, present within the same class of objects

(Myint et al. 2004). This makes building extraction from

satellite imagery a challenging task. Therefore, many

researchers started formulating building extraction methods

to utilize the complete spectral information or spatial

information or by the combination of these information

obtained from VHR images (You et al. 2018). In this

section, various types of building extraction methods and

their fundamental ideology and evolution have been

discussed.

The traditional methods for building identification from

satellite imagery were based on pixels that were located in

the same region of space exhibiting very close spectral

characteristics. The pixel-based techniques that exploit

spatial information has the ability to differentiate spectrally

similar targets. Spatial information includes texture,

structure and contextual information. The well-known

spatial features used in building extraction are the mor-

phological profiles (Pesaresi et al. 2001; Benediktsson et al.

2003; Fauvel et al. 2008), gray-level co-occurrence matrix

(GLCM) (Myint et al. 2004), wavelet texture (Ouma et al.

2006) and pixel shape index (PSI) (Huang et al. 2007). The

pixel-based techniques were limited in building extraction

because these approaches did not convey the contextual

information, shape and spatial information present in the

images (Blaschke 2003). Therefore, the research is focused

toward object-based building extraction methods in which

group of pixels characterizes the building and also their

mutual relationship in the image is considered.

In object-based method, spatial information of the built-

up areas obtained from segmentation along with spectral

information such as the minimum, average and maximum

values of each band and their variance are used. The

spectral information-based methods are insufficient for

differentiating spectrally alike classes such as buildings,

roads, parking lots and open areas from high-resolution

imagery. This is because these classes are constructed

using the same type of material, and as a result, these have

high variance among intraclass objects and low variance

among interclass objects (Bruzzone et al. 2006). Therefore,

building extraction methods are evolved by developing

several transform-based methodologies (Hu et al. 2008;

Sirmacek et al. 2009; Shi et al. 2018) and indices-based

methodologies. The indices based have different types such

as Normalized Difference Built-up Index (NDBI) (Zha

et al. 2003), Index-based Built-up Index (IBI) (Xu 2008),

PCA-based Build up Index (Kumar et al. 2012), Morpho-

logical Building Index (MBI) (Huang et al. 2011; Huang

2016; You et al. 2018) and Morphological Shadow Index

(MSI) (Huang et al. 2012).

Transform-Based Approaches

It is tough to differentiate buildings of different shapes and

color from other man-made structures of similar color by

simply using the local features. Lee et al. 2003 used Hough

transformation along with Iterative Self-Organizing Data

Analysis technique algorithm (ISODATA) for returning the

locations and shapes of buildings automatically from

IKONOS images. In order to extract small buildings from

IKONOS satellite imagery spectral, structural and contex-

tual information has been used (Xiaoying et al. 2005). It

has the ability to extract 72.7% of buildings from other

segments which have alike spectral characteristics and with

a quality percentage of 58.8%. Conversely, the integration

of features leads to the complexity.

Dutta et al. 2005 proposed an object-oriented classifi-

cation method for developing buildings catalog of an urban

area in aiding disaster risk analysis. In the study, image

segmentation is carried out by setting a threshold value

using a combination of both spectral and shape hetero-

geneity. They validated their study using QuickBird image

and achieved 90% accuracy but failed in extracting the

built-up features precisely covered with trees or vegetal

cover. In another study, Hu et al. 2008 extracted buildings

covered with trees or vegetal cover and roofs painted with

green and with vegetal cover using Vegetation and

Achromatic Objects Indifferent Transformation (VAOIT).

Then, Scale Invariant Feature Transform (SIFT) and

graph theoretical tools-based methods were developed for

detecting buildings captured in different lighting conditions

by utilizing the grayscale information. But this method

fails to detect buildings if the contrast between the rooftop

and the background is low (Sirmacek et al. 2009).

Another building extraction method to detect various

complex-shaped buildings based on SIFT is carried out by

incorporating translation and prior template’s rotation

(Yang et al. 2012). In another SIFT-graph based method,

Shi et al. 2018 collected building templates manually, and

with the use of description vectors of the SIFT points and

Euclidean distances among the SIFT points, the vertex set

and edge set of the graph are built. The authors validated

their study using GF-2 panchromatic HRS imagery and

reported that the method is not suitable for automatic

building extraction in an urban area that has wide range of

buildings of various sizes and shapes as it involves the

manual collection of the building templates.

The buildings appeared differently due to the presence

of shadows, illumination difference and reflectance. The

presence of shadows in an image causes errors in analysis.

When shadow of a building falls on another building,

conventional methods fail to detect the desired rooftop (Hu

et al. 2011). Therefore, Shade Line and Shadow Line Angle
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(SLSLA)-based shadow analysis is employed in identifying

buildings. The limitation of this method is knowledge of

information regarding building height, radiation from the

sun, shadows by trees and buildings (Hu et al. 2011).

Extraction of buildings through shadow-based methodolo-

gies is limited due to the poor detection performance of

shadows (Ok 2013; Ok et al. 2013; Senaras et al. 2016).

Buildings are detected by using the shadow mask obtained

through graph cuts and solar angle information (Kovacs

et al. 2015).

Transform-based methods are not sufficient to detect

buildings in urban areas, if the contrast between the rooftop

and the background is low and matching of regular features

does not work correctly.

Indices-Based Approaches

In the study, (Zha et al. 2003), Normalized Difference

Built-up Index (NDBI), an exclusive spectral index of

built-up areas, is employed for automatic classification of

built-up areas. The use of NDBI helped in achieving an

accuracy of 92.6% compared to the method of maximum

likelihood classification. The authors concluded that NDBI

is not suitable due to the following factors. As the reflec-

tance of urban areas varies due to the influence of seasonal

variation in the reflectance of vegetation area, it can map

only broad urban land covers and cannot separate indus-

trial, commercial and residential areas. As spectral

response of urban areas and barren land is alike in all TM

bands, it cannot separate urban areas from barren. These

are difficult to be satisfactorily mapped even using the

conventional supervised classification method anyway.

Xu 2008 derived a new index called Index-based Built-

up Index (IBI), for preserving features of built-up area. The

computation of IBI involves three thematic index bands of

new image obtained using Soil Adjusted Vegetation Index

(SAVI), the Modified Normalized Difference Water Index

(MNDWI) and the Normalized Difference Built-up Index

(NDBI) computed from original multispectral image. The

authors validated their results in WorldView-2 satellite

data. Nevertheless, the SWIR band required to extract

NDBI is not offered in WorldView-2 PCA 1 and NIR

2-based normalized built-up index (PCABI) utilized for

extracting built-up land exhibited higher accuracy (Kumar

et al. 2012).

Another index, Morphological Building Index (MBI), is

defined for automatic building extraction from high-reso-

lution imagery (Huang et al. 2011). The limitation of MBI

is its commission and omission errors. The commission

errors are associated with bright soil, open areas and roads

since they are also brighter than their adjacent region and

their spectral characteristics are similar to buildings. The

omission errors comprise of heterogeneous and dark roofs.

In another study, commission and omission errors are

eliminated with the use of Morphological Shadow Index

(MSI), Vegetation Index and dual thresholding (Huang

et al. 2011). A post-processing framework is developed by

integrating the morphological, spectral, contextual, geo-

metrical information in a chronological practice to reduce

all errors created in conventional MBI (Huang et al. 2017).

Another framework developed by combining MBI,

object-oriented information and integration of spectral,

geometrical and contextual information of buildings is also

presented (Ding et al. 2018). You et al. 2018 improved the

original MBI algorithm by extracting and optimizing local

feature points using Gabor wavelet transform and saliency

index, respectively. Then they used a spatial voting matrix

for extracting built-up areas and MBI algorithm for

detecting buildings from the extracted built-up areas. As

the local feature points derived from small scattered

buildings are few, these are mistakenly removed by the

saliency index. Moreover, the method is not capable of

extracting dark roof buildings because the MBI algorithm

treats the building as a bright structure, whereas buildings

with dark roofs have low MBI values and hence will be

removed wrongly during binarization of the MBI feature

image.

The integration of spectral, structural and contextual

information features leads to the complexity (Xiaoying

et al. 2005) and performs well (Ding et al. 2018; Attarza-

deh et al. 2018). It is inferred from the review of different

methodologies proposed by different researchers that in

spite of complexity, a combination of spectral features,

shape features and morphological operators works better

for extracting buildings from satellite images.

The contribution of MBION-SVM method is to develop

a simple object-based method to extract building rooftops.

The principle behind this method lies in integration of MBI

with Otsu thresholding and Normalized Difference Vege-

tation Index (NDVI) to minimize the number of missing

and mislabeled rooftops. The standard geometrical features

extracted from the obtained building rooftops are used to

train the classifier and to perform self-correction for further

minimization of mislabeled rooftops. The classification

results using ML algorithms such as linear discriminant

analysis (LDA), logistic regression and support vector

machine (SVM) classifier are analyzed.

Methodology

The objective of MBION-SVM is to develop an automatic

building extraction method using a support vector machine.

Our main contribution is the integration of structural fea-

tures (MBI), spectral feature (NDVI), global thresholding,

geometrical features-based self-correction in object-based
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processing for extraction of building rooftops. The

methodology works in four phases. In the first phase,

structural information of the satellite imagery is extracted

by deriving MBI using a set of differential morphological

profiles. In the second phase, shadows are removed using

Otsu’s method and vegetation area is removed using

spectral feature NDVI to refine MBI. In the third phase,

buildings are extracted from the obtained built-up area

using object-based image processing, as it is more suit-

able to provide vector output for creating and updating of

database with appropriate relationship. In the fourth phase,

shape features and geometrical features are extracted to

form the feature set and to train the SVM. The workflow of

the proposed methodology for building extraction is shown

in Fig. 1.

Study Area

In this work, two images of Madurai city, Tamilnadu,

India, from WorldView-2 satellite and two study images

from Sentinal-2 satellite of which, one is a portion of

Mumbai, the Metropolitan city of Maharashtra state, India,

and another is a portion of Chongqing, megacity in

southwest China, are taken as study area for analysis. The

images include various urban classes such as vegetation,

barren land, bridges, roads, urban houses and commercial

buildings.

Pre-Processing

Pre-processing of satellite image data is done in order to

extract detailed information that helps in extraction of

features and classification of an image. Pre-processing of

VHR images is usually carried out to prepare the images

free from sensor-based distortions and platform-specific

distortions of data. Geometrical distortions are caused by

nonlinearities of a sensor’s field of view and due to vari-

ations in the earth’s curvature while capturing earth’s

surface. These distortions are corrected so as to represent

the image in real-world geographic coordinates. The

radiometric correction is done on the image to locate any

mismatch of data between the sensor and noise in the

Fig. 1 Block diagram of

MBION-SVM method
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atmosphere. The data are corrected for perfectly denoting

the radiations emitted and reflected, for calculation by the

sensor (Tarantino et al. 2012). The above-mentioned dis-

tortions are pre-corrected in the VHR image used in this

work. The only preprocessing done in this work is con-

verting the image under study into grayscale image by

recording the maximum intensity value of R, G and B

bands.

Morphological Operations

In the first phase of building extraction, the structural

information of the image is extracted by means of contour

and shape-based processing on the image. This type of

processing is performed by using morphological opera-

tions: dilation and erosion. These operations find each pixel

value of the processed image by applying a structuring

element (SE) on an input image and by comparing corre-

sponding neighborhood pixels. Dilation makes objects

more visible by inserting pixels to the boundaries of objects

in an image, whereas erosion removes small objects by

eliminating pixels on object boundaries.

Morphological Profiles

The morphological profiles are derived by performing

opening and closing operations sequentially. Morphologi-

cal opening (erosion followed by dilation) is performed on

an image to smooth the border of large objects, to preserve

the shape and size of larger objects (buildings, roads and

tracks) and also to remove small objects from an image.

The opening of the image is carried out by using top-hat

transform. Morphological closing (dilation followed by

erosion) is performed on the image to fill small holes of an

image and to maintain the shape and size of the objects in

the image. The opening and closing of the image are car-

ried out by using top-hat transform and bottom-hat trans-

form, respectively. Differential morphological

profiles (DMPs) are then derived by computing differences

between morphological profiles with consecutive scales of

structuring element (SE) to signify spatial pattern com-

plexity of buildings.

Morphological Building Index (MBI)

MBI is used to identify building candidates from satellite

images and is exclusively intended for detection of prob-

able buildings in urban areas where huge number of

buildings are present. In general, building regions appear

more luminous than neighborhood locations. Since MBI

provides a relationship between hidden characteristics of

buildings such as brightness and contrast, it identifies

probable building rooftops (Huang et al. 2011). The

probable building rooftops might include both mislabeled

rooftop and perfect rooftop. The mislabeled rooftops are

due to open areas, vegetation and roads being wrongly

identified as buildings. Buildings have alike spectral

reflectance as that of roads, but roads are generally

extended in one or two directions, whereas buildings are

more isotropic. High local contrast and isotropic features of

buildings cause larger value of differential morphological

profiles (DMPs) for buildings than roads. Therefore, Mor-

phological Building Index (MBI) is designed on a series of

linear structural elements (SE) to estimate the size and

directionality of structures (Huang et al. 2012).

MBI is calculated by averaging DMPs as given in

Eq. (1)

MBI ¼
XDMP D; Sð Þ

DN � SN
ð1Þ

where

D—direction

S—scale of the WTH transformation,

DN—total number of directions

SN—total number of scales

The computed MBI value will be high, if the density of

buildings is high. In order to extract buildings, the MBI

feature image is then binarized by using a preset threshold.

The identified probable building rooftops might include

both mislabeled rooftop and perfect rooftop. The misla-

beled rooftops are due to open areas, vegetation and roads

being wrongly identified as buildings.

The reason for mislabeling of buildings is the presence

of shadows caused by trees and adjacent buildings. Hence,

in an attempt to reduce the number of mislabeled rooftops,

Otsu thresholding combined with a vegetation mask is

incorporated. To isolate the shadow regions from the

buildings, global thresholding technique using Otsu’s

threshold is employed as it is suitable for images with non-

uniform lighting conditions. To isolate tree regions from

buildings, Normalized Difference Vegetation Index

(NDVI) is employed. In order to remove the vegetation in

the test image (RGB), the green channel matrix value is

compared with both red and blue channel matrices to

highlight the green region. This image is inverted and then

multiplied pixelwise with the input binary image to erad-

icate vegetation from the test image. NDVI is calculated as

given in Eq. (2)

NDVI ¼ NIR� RED

NIRþ RED
ð2Þ

where NIR refers near-infrared spectrum reflection and

RED refers red spectrum reflection.

The refined MBI image after shadow removal and

vegetation removal is given as an input to canny edge

detector in order to extract the building rooftops (segments)
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from the image. Canny edge detection is implemented

since it employs edge thinning process by means of non-

maximum suppression method and double thresholding for

efficient detection of edges. Building rooftops (segments)

are then extracted and labeled using connected components

regardless of the shape of buildings.

Feature Extraction

The standard geometrical features such as area, perimeter,

convex area, solidity, centroid, major axis length and minor

axis length of each labeled segment are extracted. Feature

vector of each identified building rooftop is created based

on these extracted features. A set of these vectors termed as

feature set is then built to train the classifier to classify the

identified building rooftops (segments) into perfect

(a) (b)

(c) (d) 

Fig. 2 Study Sites a Study site 1. b Study site 2. c Study site 3. d Study site 4
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rooftops and mislabeled rooftops. The geometrical features

extracted are described as follows:

• Area—specifies the number of pixels in the segmented

area of the reference image

• Perimeter—specifies the number of boundary pixels in

the segmented area of the reference image

• Centroid—specifies center of mass of the segmented

region. The first and second elements of centroid are

the horizontal and vertical coordinates.

• Solidity—specifies the (area/convex area).

• Major axis length—specifies the length (in pixels) of

the major axis of the ellipse that has the same

normalized second central moments as the region.

• Minor axis length—specifies the length (in pixels) of

the minor axis of the ellipse that has the same

normalized second central moments as the region

Once the features are extracted, it is essential to classify

the identified building rooftops into buildings and non-

buildings. The building rooftops are classified using linear

discriminant analysis, logistic regression and SVM.

(d) (e) (f)

(a) (b) (c)

(j) (k) (l)

(g) (h) (i)

Fig. 3 Illustration keysteps of MBION-SVM on study site 1. (a) Pre-

processed image. b Eroded image. c Open by reconstruction.

Granulometry output with d SE (5,10). e SE (10,15). f SE (15,20).

g SE (20,25). h SE (25,30). i Building map after MBI. Image after

j vegetation removal. k Shadow removal. l Output of image after

refinement of MBI
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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Results and Discussion

The proposed system is simulated in MATLAB1 and tested

on a PC (Intel core 2 2.4 GHz with 2 GB RAM). The

proposed MBION-SVM methodology is applied to the

images taken from two datasets.

Data Set-I

Worldview-2 is the first high-resolution 8-band multi-

spectral commercial satellite launched by Digital Globe on

October 8, 2009, to acquire remote-sensed imagery. Its data

collection capacity is 975 K km2/day with an average

revisiting time of 1.1 days around the earth. The sensors

for this satellite image have eight spectral bands (coastal

blue (400–450 nm), blue (450–510 nm), green

(510–580 nm), yellow (585–625 nm), red (630–690 nm),

red-edge (705–745 nm), NIR1 (770–895 nm), NIR2

(860–1040 nm)). The size of the image is 407 9 659. Two

study sites of Madurai city taken from WorldView-2

satellite as shown in Fig. 2a, b are chosen for analysis of

the methodology. The spatial resolution of the image is

1.84 m. The image of Madurai city was acquired on March

17, 2011.

Data Set-II

The Copernicus Sentinel-2 satellite was launched by Vega

VV05 rocket from Europe’s spaceport near Kourou in

French Guiana on June 23, 2015. These provide 13 band

multispectral images with spatial resolutions ranging from

10 and 60 m in the visible, near-infrared (VNIR) and short-

wave infrared (SWIR) spectral zones. Its revisiting time is

5 days at the equator and 2–3 days at mid-latitudes. The

central wavelengths of 13 spectral bands ultra blue (coastal

and aerosol)-443 nm, blue-490 nm, green-560 nm, red-

665 nm, visible, near-infrared (VNIR)-(705–865 nm) and

short-wave infrared (SWIR) (940–2190 nm) (Daudt et al.

2018). The portion of Mumbai image shown in Fig. 2c and

Chongqing image shown in Fig. 2d taken from the Onera

Satellite Change detection dataset compiled from Sentinel-

2 are taken as the second image set for the analysis of the

methodology. The sentinel sat API was used to ensure

minimum cloud cover. The Mumbai image was captured

on March 19, 2018. The size of Mumbai image is

858 9 557 9 13. The Chongqing image was captured on

April 2, 2018, and its size is 730 9 544 9 13. Medusa

toolbox2 was used to download and crop the images.

The pre-processing done in this work is converting the

image under study into grayscale image by recording the

maximum intensity value of R, G and B bands. The pre-

processed image is then eroded using linear structuring

element, after which it is dilated using the same structuring

element. White top-hat (WTH) transformation is used to

perform opening operation whose output image shows up

high local diversity features of building candidates.

The structural information of the image is extracted by

deriving morphological profiles. Based on the WTH

transformation with various scale and directionalities, the

differential morphological contours are calculated to indi-

cate the complicated structural arrangement of buildings in

different scales and directions. In this work, granulometry

outputs are computed for different structuring element (SE)

values such as (5, 10), (10, 15), (15, 20), (20, 25) and (25,

30). The directional threshold is finally calculated, by

taking the average of thresholds obtained using different

SE values. A large MBI value signifies the presence of a

building structure. This value is considered to be the preset

threshold for probable identification of building candidates.

The result of identified building candidates includes mis-

labeled building candidates, missing building candidates

and correct building candidates. The reason for mislabeling

of buildings is due to the presence of shadows, caused by

trees and adjacent buildings. To isolate the shadow regions

from the buildings, global thresholding technique using

Otsu’s threshold is employed as it is suitable for images

with non-uniform lighting conditions. To isolate tree

regions from buildings, NDVI is employed. In order to

extract the building rooftops (segments) from the image,

Canny edge detection is implemented since it employs

edge thinning process by means of non-maximum sup-

pression method and double thresholding for efficient

detection of edges. The building rooftops (segments)

extracted from the input image are then labeled using

connected component labeling (CCL). Thus, the outlines of

the buildings are extracted regardless of their shape. The

key steps of MBION-SVM performed on study site 1, study

site 2, study site 3 and study site 4 are illustrated in Figs. 3,

4, 5 and 6, respectively.

Classification

Supervised classification algorithm is used to classify every

extracted segment as either a rooftop (building) or non-

rooftop. Classification algorithms such as logistic regres-

sion, linear discriminant analysis and SVM are imple-

mented. The performance of the classifiers is analyzed and

bFig. 4 Illustration of keysteps of MBION-SVM on study site 2 a Pre-

processed image. b Eroded image. c Open by reconstruction.

Granulometry output with d SE (5,10). e SE (10,15). f SE (15,20).

g SE (20,25). h SE (25,30). i Building map after MBI. Image after

j vegetation removal. k Shadow removal. l Output of image after

refinement of MBI
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compared using correlation plot, parallel coordinates plot,

ROC curve and confusion matrix.

Correlation plot provides a two-dimensional data visu-

alization of any two variables and impact of variation of

one variable on another variable. Correlation plot shown in

(a) (b) (c)

(d) (e) (f)

Fig. 5 Illustration of keysteps of MBION-SVM on study site 3 a Pre-

processed image. b Eroded image. c Open by reconstruction.

Granulometry output with d SE (5,10). e SE (10,15). f SE (15,20).

g SE (20,25). h SE (25,30). i Building map after MBI. Image after

j vegetation removal. k Shadow removal. l Output of image after

refinement of MBI
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Fig. 7 depicts the correlation between the variables (area

and major axis length) of a set of buildings. Blue color

indicates non-rooftop, and orange color indicates rooftop.

A parallel plot shown in Fig. 8 is used to identify the

significance of the extracted features of buildings even

though the variables are completely different in terms of

range and units. The variables area, perimeter, centroid,

(g) (h) (i)

(j) (k) (l)

Fig. 5 continued
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solidity, major axis length and minor axis length are shown

as clusters, and each cluster is represented in a different

color. A specified range of each variable is analyzed. Based

on the analysis, area and major axis length are chosen for

performing self-correction. In general, mislabeled rooftops,

such as barren land, bridges and roads, generally have high

major axis length or occupy large area, whereas very small

objects like vehicles occupy very small space on the

ground. Though urban area buildings generally occupy

sizeable area, they do not occupy very large area. Based on

the features of common building candidates in this study

area, a suitable threshold range for area (1–73 pixels) and

major axis length (1.154701–29.84843 pixels) have been

set, to eradicate the mislabeled rooftops. The resolution of

image and type of the area (residential or commercial or

industrial) present in the study area of the image vary the

(a) (b) (c)

(d) (e)
(f)

Fig. 6 Illustration of keysteps of MBION-SVM on study site 4 a Pre-

processed image. b Eroded image. c Open by reconstruction.

Granulometry output with d SE (5,10). e SE (10,15). f SE (15,20).

g SE (20,25). h SE (25,30). i Building map after MBI. Image after

j vegetation removal. k Shadow removal. l Output of image after

refinement of MBI
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range of the threshold value. The process of self-correction

is therefore carried out to remove mislabeled roof tops

further. It is seen from receiver operating characteristic

(ROC) plot of SVM shown in Fig. 9 proving that its per-

formance is good with an area under curve (AUC) of 1.

Table 1 shows the confusion matrix of logistic regres-

sion, linear discriminant analysis and support vector

machines for all the four sites under study. In case of study

site 1, it is observed that in LDA, out of 611 rooftops, 3

rooftops have been missed and 10 non-rooftops have been

detected falsely, whereas in logistic regression, 5 rooftops

have been missed and 1 non-rooftop has been detected

falsely. In SVM classifier, 2 rooftops have been missed and

4 non-rooftops have been detected falsely. In case of study

site 2, it is observed that in LDA, out of 534 rooftops, 5

rooftops have been missed and 3 non-rooftops have been

detected falsely, whereas in logistic regression, 3 rooftops

have been missed and 4 non-rooftops have been detected

falsely. In SVM classifier, only 1 rooftop has been missed

and only 4 non-rooftops have been detected falsely. In case

of study site 3, it is observed that in LDA, out of 1012

rooftops, 4 rooftops have been missed and 12 non-rooftops

(g) (h) (i)

(j) (k) (l)

Fig. 6 continued
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have been detected falsely, whereas in logistic regression,

12 rooftops have been missed and 5 non-rooftops have

been detected falsely. In SVM classifier, 2 rooftops have

been missed and 7 non-rooftops have been detected falsely.

In case of study site 4, it is observed that in LDA, out of

491 rooftops, 20 non-rooftops have been detected falsely,

whereas in logistic regression, 20 non-rooftops have been

detected falsely. In SVM classifier, 16 non-rooftops have

been detected falsely. Thus, the proposed method using

SVM helps in reducing false detection to a great extent.

In order to quantitatively evaluate the proposed work,

the number of extracted buildings is manually labeled and

these labeled buildings are treated as ground truth. The

standard four metrics such as Shape Accuracy, Precision P

(correctness), Recall R (completeness) and F-score F

(Overall quality) are evaluated to find the performance of

the proposed method of building extraction.

ShapeAccuracy ¼ 1� AGT � ASj j
AGT

ð3Þ

where

(a) (b)

(c) (d)

Fig. 7 Correlation plot of SVM classifier for a Study site 1. b Study site 2. c Study site 3. d Study site 4
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AGT—area of buildings from the ground truth, AS—area

of buildings from the extraction results

Precision ðPÞ ¼ TP

TP þ FP
ð4Þ

Recall ¼ TP

TP þ FP
ð5Þ

Fscore ðFÞ ¼ TP

TP + FP + FN
ð6Þ

where

TP—true-positive indicates the number of pixels

assigned as buildings in both segmentation and ground

truth results.

FP—false positive indicates the number of pixels

assigned as buildings in segmentation result but not in

ground truth

FN—false negative indicates the number of pixels

assigned as buildings in ground truth but not in segmen-

tation result.

(a) (b)

(c) (d)

Fig. 8 Parallel plot of SVM classifier for a Study site 1. b Study site 2. c Study site 3. d Study site 4
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The performance of the classifiers is presented in

Table 2.

It is well known that the optimal values for the four

metrics are 1. F-score values cannot be higher than neither

P nor R. The proposed MBION-SVM method gives an

accuracy, precision, recall and F-score for study site 1 as

99%, 88%, 99% and 88%, respectively. These values for

study site 2 are 99.1%, 89%, 100% and 88%, respectively.

These values for study site 3 are 99.1%, 99%, 99% and

99%, respectively. These values for study site 4 are 99.6%,

99%, 100% and 99%, respectively. With the good results

achieved in classifying, the work can be adopted to suit any

applications.

Conclusion

In this paper, we propose MBION-SVM method that

employs morphological, spectral, shape and geometrical

features to identify building rooftops in Very High Reso-

lution (VHR) images efficiently. The morphological fea-

tures are used to extract structural information of the

satellite imagery through the computation of

(a) (b)

(c) (d)

Fig. 9 Receiver operating characteristic (ROC) plot of SVM for a Study site 1. b Study site 2. c Study site 3. d Study site 4

Journal of the Indian Society of Remote Sensing (September 2020) 48(9):1325–1344 1341

123



Morphological Building Index (MBI). Following which,

Otsu’s thresholding and Normalized Differential Vegeta-

tion Index (NDVI) are used to refine the output of Mor-

phological Building Index (MBI) by removing shadows

and vegetations, respectively, and also to extract possible

rooftops. Based on the analysis of geometrical features of

the possible rooftops, threshold values are fixed for per-

forming self-correction to minimize false detection of

rooftops. In this work, we have proved the performance of

our proposed methodology on two images of Madurai city,

Tamilnadu, South India, acquired by WorldView-2 satellite

and on two study images acquired by Sentinal-2 satellite of

which, one is a portion of Mumbai, the Metropolitan city of

Maharashtra state, India, and another is a portion of

Chongqing, megacity in southwest China. In this work, we

have analyzed the performance of building extraction

approach with classification algorithms such as linear dis-

criminant analysis, logistic regression and SVM. The pro-

posed method gives an accuracy of 99%, precision of 89%,

a perfect Recall of 1 and a F-score of 88%. The good

performance analysis achieved in classification shows that

the work can be adopted to suit any application.

However, we have used four images here for evaluating

our methodology of building extraction approach. The

classifiers can be trained with more number of images to

improve and generalize the performance of the proposed

methodology. Future work can be focused on integrating

some more spectral indices to further improve the perfor-

mance of the building extraction approach. The work can

be extended on multiclass classification to further classify

the non-rooftops into vegetation, water bodies, barren land

samples and the rooftops into single-storey and multi-s-

torey buildings.
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