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Abstract
Rapid urbanization has led to an increase in urban land surface temperature (LST). In contrast to individual cities or

megacity scale, urban agglomeration can increase LST in a continuous area due to decreasing or disappearing distance

between cities. Thus, the impact of ISA on LST needs further understanding in the large scale of urban agglomerations.

This study investigated the impacts of impervious surface area (ISA) on LST in urban agglomeration region. The dis-

tribution of ISA and LST of the Greater Pearl River Delta in 2015 was extracted using the Landsat 8 OLI and Aqua MODIS

images. Next, the standard deviational ellipse methods were used to systematically analyze the spatial correlation of ISA

and LST. Subsequently, the influences of ISA density and landscape pattern of ISA on LST were analyzed by various

methods. The results showed that when the ISA density increased 10%, the daytime LST increased 0.46 �C at the density

level lower than 70% and 0.55 �C at the density level higher than 70%, respectively. Likewise, when the ISA density

increased 10%, the nighttime LST increased 0.285 �C at the density level lower than 70% and 0.39 �C at the density level

higher than 70%, respectively. In addition, the results of correlation analysis indicated that landscape metrics of ISA and

the density of ISA had significant correlation with the LST. However, the correlation was higher at daytime than at

nighttime, due to the large terrain, complex environment and diverse surface cover types in the study area.
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Introduction

According to the World Urbanization Prospects released by

the United Nations in 2014, 54% of the world’s population

lives in urban areas, and this number will reach 66% by

2050 (Science 2016). The accelerating urbanization pro-

cess leads to rapid growth in the population and in the

number of new buildings. Natural land surfaces are

gradually replaced by impervious surface areas (ISAs),

such as cement, asphalt, and concrete (Lo et al. 1997). The

rapid growth in ISA changes the way of surface radiation

and energy distribution. One of the biggest negative effects

is the rise in urban land surface temperature (LST), which

results in urban heat island effect (Huang et al. 2012; Chen

and Sun 2013). Therefore, understanding the relationship

between urban ISA and LST has profound implications for

urban planning and construction and reducing LST to

mitigate urban heat island effects (Kaloustian and Diab

2015; Noro and Lazzarin 2015; Zheng et al. 2016; Zhao

et al. 2017).

Researchers have studied the impact of ISA expansion

on the LST at individual city or megacity scale. Xu

(2009, 2010) pointed out that there is a significant positive

correlation between the ISA and the LST. Xian and Crane

(2006 investigated the thermal characteristics of the Tampa

Bay Basin and the Las Vegas urban area. The results

showed that there is a positive correlation between the LST

and the percentage of ISA. Weng et al. concluded that the
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LST increased with the growth of the ISA (Weng et al.

2004, 2007; Weng and Lu 2008). While the extension of

urban ISA will change the landscape component of the

city, the landscape component determines the heat transfer

relationship of the land surface and can directly affect the

urban LST change. Gong et al. (2007) took Beijing as an

example and indicated that the difference in LST is closely

related to urban land use/land cover type and its spatial

distribution. Yue and Li-Hua (2007) found that the more

complex the urban land type is in spatial layout, the more

obvious the difference in LST. Li et al. (2011) found that

the configuration and composition of urban landscapes also

have a significant impact on the urban heat island effect.

Peng et al. (2016a, b) studied the effects of landscape

component and construction on urban thermal environ-

ment. After finding that the spatial construction of urban

landscape has an influence on LST, some studies analyzed

the relationship between landscape pattern and LST using

landscape metrics (Liu et al. 2017). The major cities in

Beijing and Shanghai were studied, and the largest patch

index (LPI), landscape shape index (LSI) and landscape

agglomeration (CONTAG) were found to be significantly

correlated with LST (Peng et al. 2016b; Zhou et al. 2011;

Li et al. 2013; Sun 2012). Estoque et al. (2017) showed the

size, shape complexity, and aggregation of the patches of

ISA had significant relationships with mean LST, though

aggregation had the most consistent strong correlation.

Furthermore, in the relationship between the landscape

pattern and the cooling effect of green space, some studies

have found that the green space patch with simple shape

and concentrated distribution has better cooling effect (Li

et al. 2012; Xu et al. 2015).

Urban agglomeration (also known as city clusters) rep-

resents a group of cities having a compact spatial organi-

zation and close economic connections (Fang 2015). In

contrast to individual cities, urban agglomeration can

increase LST in a continuous area due to decreasing or

disappearing distance between cities (Du et al. 2016; Zhou

et al. 2016, 2018). The Pearl River Delta (PRD) is one of

the fastest-changing urban agglomerations in China with

the urbanization rate higher than 80% (Runpeng 2013). The

problems and negative effects of the rise in regional LST

are caused by the centralized distribution of ISA. In order

to improve the urban ecological environment, it is neces-

sary to reduce the urban LST in the future process of

urbanization through adjusting urban agglomeration plan-

ning and optimizing urban functional layout. Zhang et al.

(2017a) used the monthly time scale dataset to investigate

the effect of land cover types on LST in the PRD urban

agglomeration. Zhang et al. (2017b) studied the spa-

tiotemporal distribution of the urban heat islands in the

PRD urban agglomeration, which revealed the rapid

expansion of the urban agglomeration led to an increase in

the intensity and extent of the urban heat island. Rao et al.

(2010) denoted that the increase in regional LST was

caused by the rapid urbanization in the PRD region. Jiang

(2007) analyzed the thermal landscape of the PRD urban

agglomeration and its daily variation.

However, the impact of ISA on LST remained poorly

understood in the large scale of urban agglomerations,

since most previous efforts focused on a single city or a

few big cities. Therefore, this study obtained the Landsat 8

OLI remote sensing image data of the Great Pearl River

Delta (GPRD) in 2015 to extract the ISA information using

combinational biophysical composition index (CBCI);

subsequently, the MOD11A2 data were employed to reveal

the LST data. Moreover, the landscape metrics and mean

LST of each ISA density area were calculated. Finally, the

quantitative relationship between the ISA and the LST was

measured by the correlation analysis method. The results

can be used to mitigate urban heat island and future urban

agglomerations planning.

Study Area and Datasets

Study Area

The Great Pearl River Delta (GPRD) is located in the

south-central part of Guangdong Province (21�300–
23�400N, 112�120–113�480E (Fig. 1), which includes Hong

Kong, Macau, Guangzhou, Shenzhen, Foshan, Dongguan,

Zhongshan, Zhuhai, Jiangmen, Zhaoqing and Huizhou. The

region has a subtropical monsoon climate with hot and

rainy summers and mild and humid winters. Moreover, The

GPRD has an annual average temperature of about

21–23 �C and an annual precipitation of 1500 mm. Fur-

thermore, the landforms of the GPRD are dominated by

plains and hills with an altitude less than 200 m. In 2015,

the GPRD area was 56,000 km2, occupying 0.6% of the

national land area. In addition, the population was 58.74

million with an urbanization rate of 84.12%. Economically,

the gross domestic product (GDP) of the GPRD was

6710.86 billion yuan, accounting for 9.73% of the national

GDP (Urban Agglomeration in the Pearl River Delta

Yearbook 2016).

Data and Preprocessing

In this study, we used 7 cloud-free Landsat 8 Operational

Land Imager (OLI) images downloaded from United States

Geological Survey (USGS). The employed images were

acquired in 2015 (see Table 1). A Landsat 8 OLI image

contains 11 bands, including eight multispectral (Bands

1–7 and 9), one panchromatic (Band 8) and two thermal

(Bands 10 and 11) bands (Roy et al. 2014). We employed
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red, green and near-infrared bands with a spatial resolution

of 30 m 9 30 m. Data preprocessing includes geometric

correction, radiometric calibration, flash atmospheric cor-

rection, band synthesis and study area cropping. In addi-

tion, the overall images processing and data analysis steps

are shown in Fig. 2.

The Landsat 8 OLI images of the same day cannot be

obtained due to the large study area. Therefore, the LST

data of the study area were obtained by Terra MODIS

8-day composite products (MOD11A2) (http://ladsweb.

nascom.nasa.gov/data/search.html) with a spatial

resolution of 1 km 9 1 km in 2015 (see Table 1). The LST

data were retrieved from clear-sky (99% confidence)

observations monitored at 10:30 h (daytime) and 22:30 h

(nighttime) local solar time using a generalized split-win-

dow algorithm (Wan and Dozier 1996). The validation of

the in situ LST data measurements indicates that the

accuracy of MODIS LST data was better than 1 �C in most

cases (Wan 2008). To eliminate the effects of extreme

weather during the year, the study used the annual mean

LST of the GPRD (day and night). We assigned the null

value of the MODIS image to 0 and then calculate the

annual mean LST. Furthermore, the LST unit was con-

verted from kelvin to degree Celsius.

Methods

Impervious Surface Mapping

This study used the combined biophysical composition index

(CBCI) to extract impervious surface information. The

CBCI is an effective index for highlighting four major urban

biophysical compositions (including impervious surface,

vegetation, bare soil and water) and performs well in sepa-

rating impervious surface and bare soil (Zhang et al. 2018).

CBCI ¼ MBSI � 1þ Að Þ � OSAVIþ A ð1Þ

where A is a correction factor, calculated by liner regres-

sion, which is employed to increase the value of the MBSI

and decrease the value of the OSAVI. In this study, 0.51

was selected as the optimal value to enhance the discrim-

ination of the impervious surfaces, bare soil, vegetation and

water (Zhang et al. 2018).

We used modified bare soil index (MBSI) to discrimi-

nate bare soil from other land cover types.

Fig. 1 Geographical location of the GPRD

Table 1 Description of the study data used

Landsat 8 scene ID Acquisition date and time

(a) Landsat data for the study areas

LC81210442015220LGN00 August 8, 2015; 02:45:34

LC81220432015291LGN00 October 18, 2015; 02:51:44

LC81220442015291LGN00 October 18, 2015; 02:52:08

LC81220452015291LGN00 October 18, 2015; 02:52:32

LC81230432015106LGN00 April 16, 2015; 02:57:17

LC81230442015106LGN00 April 16, 2015; 02:57:41

LC81230452015106LGN00 April 16, 2015; 02:58:04

MODIS scene ID (day and night) MODIS scene ID (day and night)

(b) MODIS data for the study areas

MOD11A2.A2015001 MOD11A2.A201500177

MOD11A2.A2015009 MOD11A2.A201500233

MOD11A2.A20150017 MOD11A2.A201500265

MOD11A2.A20150025 MOD11A2.A201500281

MOD11A2.A20150089 MOD11A2.A201500289

MOD11A2.A20150097 MOD11A2.A201500321

MOD11A2.A201500105 MOD11A2.A201500337

MOD11A2.A201500161 MOD11A2.A201500345
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MBSI ¼ Red� Greenð Þ � 2
ðRedþ Green� 2Þ ð2Þ

where Red and Green are the reflectance of the red and

green bands, respectively, and 2 is a correction factor

which can be used to enhance the distinction of bare soil

and the other three biophysical compositions.

In addition, the optimized soil-adjusted vegetation index

(OSAVI) was carried out to enhance the vegetation infor-

mation in remote sensing imagery (Rondeaux et al. 1996).

OSAVI ¼ NIR� Red

NIRþ Redþ 0:16
ð3Þ

where NIR and Red are the reflectance of the near-infrared

and red band, respectively.

The Kittler–Illingworth (KI) method was used in this

study to select the optimal threshold (Kittler and Illing-

worth 1986). It assumes that the observations come from a

mixture of two normal distributions having respective

mean, variances and proportions. Given a brightness level

as trial threshold, it models two resulting pixel populations:

one from which the brightness level is smaller than the

threshold and the other from the pixels whose brightness

level is larger than the threshold (Kittler and Illingworth

1986; Sungzoon et al. 1989). The selected threshold values

are shown in Table 2.

Landscape Metrics

The landscape pattern is the type, size, shape and spatial

configuration of landscape patches (McGarigal et al. 2002).

The landscape metric was used to characterize landscape

patterns (Gustafson 1998; Jun Xiang et al. 2004; McGari-

gal and Marks 1995; Wu 2004) and to relate landscape

patterns to ecological processes (Turner 2005). These

metrics fall into two general categories to measure the

component and spatial construction (Gustafson 1998;

McGarigal and Marks 1995). The landscape component

metrics measure the presence and amount of different patch

types within the landscape, and the landscape construction

metrics measure the spatial distribution of patches within

the landscape (Alberti 2005). In this study, we selected

Table 2 CBCI threshold values selection

Landsat 8 scene ID Threshold values

LC81210442015220LGN00 0.24–0.42

LC81220432015291LGN00 0.23–0.41

LC81220442015291LGN00 0.23–0.47

LC81220452015291LGN00 0.27–0.45

LC81230432015106LGN00 0.23–0.44

LC81230442015106LGN00 0.28–0.44

LC81230452015106LGN00 0.36–0.42

Fig. 2 Flowchart
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eight commonly used landscape metrics to relate LST to

landscape patterns (Table 3). These landscape metrics were

calculated using Fragstats 4.2 software, employing the

eight-neighbor rule (McGarigal et al. 2002).

LST Classification

The LST classification describes the LST distribution

characteristics directly. The two commonly used methods

were employed to divide LST, which were equal interval

method and mean-standard deviation method (Zhang et al.

2006; Xu and Chen 2003; Zhang 2006). Previous studies

have shown that mean-standard deviation method was

better than equal interval method in describing LST spatial

distribution and details (Chen and Wang 2009). Therefore,

this study employed the mean-standard deviation method

to divide the LST of daytime and nighttime into five groups

(low-temperature zone, sub-middle-temperature zone,

intermediate-temperature zone, sub-high-temperature zone

and high-temperature zone). The details of the mean-s-

tandard deviation method are shown in Table 4.

Spatial Correlation Analysis

Spatial Analysis

The standard deviational ellipse (SDE) is thus a useful and

versatile tool for spatial description, reflecting to some

extent the overall contour and dominant distribution of

point space organization (Gong 2002; Lefever 1926). The

SDE consists of three elements: the rotation angle h, the
standard deviation along the major axis (long axis X) and

Table 3 Landscape pattern metrics used in this study

Landscape

metrics

Description Calculation

Number of

patches (NP)

Describe the heterogeneity of the

landscape, the more the number of

patches, the more fragmented the

landscape

NP ¼ N

Patch density

(PD)

The number of patches per unit area,

describing patch fragmentation

PD ¼ ni
A

Landscape

shape index

(LSI)

Reflects the complex shape of the

landscape. The larger the value, the

more irregular the shape, the higher

the landscape complexity and the

lower the stability

LSI ¼ 0:25E
ffiffiffi

A
p

Fractal

dimension

(PAFRAC)

The degree of complexity of the

landscape type is shown. The smaller

the value, the more the landscape

shape tends to be square. The larger

the value, the more complex the shape

of the landscape is

PAFRAC ¼
2
.

ni
Pn

i¼1

Pm
j¼1 lnPij � lnAij

� �

�
Pn

i¼1

Pm
i¼1 lnPij

Pn
i¼1

Pm
i¼1 lnAij

h i

ni
Pn

i¼1

Pm

j¼1
lnP2

ij
�
Pn

i¼1

Pm

i¼1
lnPij

Largest patch

index (LPI)

The proportion of the largest patch in a

patch type to the entire landscape

area. Reflect the degree of

fragmentation. The larger the value,

the larger the area of patch contiguity

LPI ¼ maxm
j¼1

aijð Þ
A

Mean patch

size

(AREA_MN)

Characterize the degree of

fragmentation of the landscape
AREAMN ¼ A

ni
� 106

Landscape

aggregation

index (AI)

Reflect the non-randomness or degree

of aggregation of different types of

patches in the landscape. The smaller

the value, the more discrete the

landscape

AI ¼
P

n

i¼1

gii
giimax

� �

� Pi

� �

� 100

Path cohesion

index

(COHESION)

Reflecting the natural connectivity of

landscape types, the higher the spatial

connectivity of a certain type of

landscape, the greater the metric

COHESION ¼ 1�
Pn

j¼1 Pij

.

Pn
j¼1 Pij � a

1=2
ij

� �h i

.

1� 1=A1=2
� �

	 


� 100

In the formula, i = 1, 2, …, n is the landscape type serial number; j = 1, 2, …, m is the patch serial number; ni is the total number of patches

whose landscape type is i; A is the landscape total area; aij is the largest patch area in a landscape type; gii is the number of neighboring pixels of

the patch type i; giimax is the largest contiguous neighbor of the patch type i; Pi is the ratio of the area of a type i to the total area
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the standard deviation along the minor axis (short axis Y)

(Fischer 2010). We calculated the SDE of the high-density

area of the ISA density and the high-temperature zone of

the LST in 2015, respectively. The formula for calculating

the SDE is as follows:

x0i ¼ xi � xwmc ð4Þ

y0i ¼ yi � ywmc ð5Þ

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 wix

0
i cos h� wiy

0
i sin hð Þ2

Pn
i¼1 w

2
i

s

ð7Þ

dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 wix

0
i sin h� wiy

0
i cos hð Þ2

Pn
i¼1 w

2
i

s

ð8Þ

where x0i and y0i are the relative coordinates of the center of
gravity of each point distance region, and the corner of the

point distribution pattern can be obtained according to tan

h. dx and dy are the standard deviation along the x-axis and

the y-axis, respectively (Wong 1999). The above calcula-

tions can be implemented with ArcGIS 10.2.

Correlation Analysis

The Pearson’s correlation coefficients between the land-

scape pattern metrics and LST were calculated using SPSS

PASW Statistics 19 (SPSS Inc.).

r ¼ 1

n� 1

X

n

i¼1

Xi � �X

sX

� �

Yi � �Y

sY

� �

ð9Þ

where Xi� �X
sX

h i

, �X and sX are standardized variables, sample

mean and sample standard deviation, respectively.

Results

Spatial Distribution of ISA

The accuracies of the ISA maps were assessed by using

the high-resolution images and pictures incorporated in

Google Earth Pro. The ‘‘view historical imagery’’ tool

in Google Earth Pro was used to find the best possible

referenced image for 2015. This study randomly

selected 100 verification sample points in the four

regions of GPRD (Guangzhou, Foshan, Dongguan and

Table 4 Mean-standard deviation method

Thermal level Brightness temperature range formula Brightness temperature range

Daytime (�C) Nighttime (�C)

Low-temperature zone Tb\l� std Tb\26:95 Tb\21

Sub-medium-temperature zone l� std�Tb\l� 0:5 std 26:95�Tb\28:06 21�Tb\21:8

Intermediate-temperature zone l� 0:5 std�Tb� lþ 0:5 std 28:06�Tb� 30:29 21:8�Tb� 23:39

Sub-high-temperature zone lþ 0:5 std\Tb� lþ std 30:29\Tb� 31:41 23:39\Tb� 24:18

High-temperature zone Tb[lþ std Tb[ 31:41 Tb[ 24:18

In the table, l is the average of the LST after normalization and std is the standard deviation of the standard LST

Fig. 3 Accuracy verification: a Guangzhou sample points, b Foshan sample points, c Dongguan sample points, d Shenzhen sample points

tan h ¼
Pn

i¼1 w
2
i x

02
i �

Pn
i¼1 w

2
i y

02
i

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 w

2
i x

02
i �

Pn
i¼1 w

2
i y

02
i

� �2þ4
Pn

i¼1 w
2
i x

02
i y

02
i

� �2
q

2
Pn

i¼1 w
2
i x

02
i y

02
i

ð6Þ
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Shenzhen) (Fig. 3) and used the confusion matrix

method to verify the accuracy of the ISA extraction

results. The results of the accuracy verification are

shown in Table 5.

The impervious surface area (ISA) maps were obtained

from the Landsat OLI data of 2015, with a spatial resolu-

tion of 30 m 9 30 m. To be converted to density of the

ISA, the ISA map resolution was resampled to

100 m 9 100 m. Subsequently, the density of ISA was

obtained by counting the sum number of ISAs within

10 9 10 pixels. We further stratified the ISA into five

groups based on the ISA density. Emanating inward from

the lowest to the highest ISA density in the GPRD

(Fig. 4b), these five areas were low-density area, sub-

medium-density area, medium-density area, sub-high-den-

sity area, and high-density area. The classification thresh-

old values are shown in Table 6.

The ISA distribution of the GPRD in 2015 is shown in

Fig. 4a. In 2015, the total amount of ISA was

9754.936 km2, accounting for 17.4% of the GPRD.

Moreover, a cluster pattern of the ISA distribution can be

observed on the distribution map of ISA. The ISAs were

mainly distributed in five cities of Foshan, Guangzhou,

Dongguan, Shenzhen and Zhongshan, which have narrow

traffic arteries along the coast. However, the northwest

part of Zhaoqing and the northeast of Huizhou have a

small proportion of ISA due to the restrictions of moun-

tainous and hilly terrain. The graded ISA distribution map

(Fig. 4b) shows that the high-density area of ISA was

clustered in the border area between Foshan and

Guangzhou and also in Shenzhen, Zhongshan and Dong-

guan, with a coverage rate of over 90%. The density of

ISA decreases gradually from the central region to the

marginal region.

Changes in Landscape Metrics of Different
Percent ISAs

The characteristics of landscape metrics of five ISA density

areas are shown in Table 7 and Fig. 5, which shows that

according to trends in ISA density changes, the NP and PD

demonstrate a progressive decline, having significant and

negative correlation with ISA density. The values of LSI

and PAFRAC increased first and then decreased with

trends in ISA density changes. The LSI has the largest

value in the sub-medium-density area, indicating that the

patches are discrete and irregular in these areas. In addi-

tion, when the value of PAFRAC approaches 1, the patches

shape is regular and the patches dissociate as the value

approaches 2. In the medium-density area, the PAFRAC

value was closest to 2, denoting that the patches were

dispersed and the patches shape was irregular. Moreover,

Fig. 4 a ISA map: b classification map for ISA

Table 6 Classification threshold values

ISA classification ISA density (%)

Low-density area \ 20

Sub-medium-density area 20–45

Medium-density area 45–70

Sub-high-density area 70–90

High-density area [ 90

Table 5 Results of the accuracy verification

Guangzhou Foshan Dongguan Shenzhen

Total accuracy (%) 96.35 92.37 94.73 95.48

Kappa coefficient 0.9248 0.8920 0.9151 0.9336
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the LPI, AREA_MN, AI, COHESION were positively

correlated with ISA density.

In general, as the density of the ISA increases, the voids

of the patches decrease such that the single patch area

increases and the connectivity between the patches is

strong. In addition, the patch shape tends to be regular.

Spatial Distribution of LST

In the GPRD, the annual average daytime LST was

22.68–37.56 �C and the nighttime LST was

15.84–26.74 �C in 2015 (see Fig. 6). The temperature

difference of daytime and nighttime is 14.88 �C and

10.9 �C, respectively. The high-temperature zone of day-

time (defined here as LST C 31.41 �C is high-temperature

zone) was clustered distribution at the core area of GPRD,

mainly distributed in Foshan, Guangzhou, Dongguan,

Zhongshan and Shenzhen. The high-temperature zone and

the low-temperature zone have significant value of the

temperature difference. On the contrary, the spatial extent

of high-temperature zone of nighttime was larger than that

of daytime. The high-temperature zones almost cover the

central region of the GPRD, except for parts of Zhaoqing,

Huizhou and Jiangmen (Figure 7). This phenomenon is

mainly because the study area is adjacent to the ocean,

which is affected by water thermal insulation at night, and

the high-temperature zone is larger than at the daytime.

However, regardless of daytime or nighttime, the high-

density area of ISA is usually the core area of high-tem-

perature zone, such as Guangzhou, Foshan, Zhongshan and

Jiangmen, which are all the central areas of high-temper-

ature zone. In addition, the larger the proportion of high-

density area of ISA is, the more obvious the phenomenon

of high LST value is. Likewise, the phenomenon of high

LST value is not obvious in the northwest and northeast

due to the small proportion of the ISA.

SDE of ISA and LST Classification

In the SDE map (Fig. 8), the direction of the long axis

and the short axis represent the direction of the data

distribution and the range of the data distribution,

Fig. 5 Landscape metrics trend map: a NP, b PD, c LSI, d PAFRAC, e LPI, f AREA_MN, g AI, h COHESION

Table 7 Landscape metrics statistics

Low-density area Sub-medium-density area Medium-density area Sub-high-density area High-density area

NP 1656 1471 1121 722 338

PD 0.013 0.012 0.009 0.006 0.003

LSI 46.43 50 44.98 38.82 24.18

PAFRAC 1.66 1.67 1.69 1.68 1.51

LPI 0.013 0.03 0.03 0.07 0.52

AREA_MN (ha) 290.09 296.13 314.81 426.04 917.46

AI 91.55 92.56 92.58 93.16 95.83

COHESION 93.41 95.69 96.01 97.00 98.71
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respectively. When the ratio of short to long axis is

greater than 1, the ellipse shows directivity, and the larger

the ratio of long to short axis is, the more the directivity

is. From the values in Table 8, the ratio of long to short

axis of the three SDEs is all greater than 1, with obvious

directivity. Among them, the ratio of daytime SDE

(DTSDE) is 1.63, with the most obvious directivity, while

the ratio of nighttime SDE (NTSDE) is small and the

directivity is not obvious.

Correlation Analysis

LST Relationship with Different ISA Densities

We investigated the relationship between LST and LST,

and the mean LST in the five ISA density areas was

calculated. Table 9 shows that the ISA density has a sig-

nificant and positive influence on the LST. And the highest

value in LST can be found in the ISA areas with high

density (33.66 �C in daytime and 25.17 �C in nighttime),

the sub-medium-density area has the second highes LST

value, and the lowest LST value is found in the low-density

area of ISA. The temperature differences of LST between

the high-density area and the low-density area during

daytime and nighttime are 4.57 �C and 2.44 �C,
respectively.

The Relationship Between LST and Landscape Metrics

The correlation coefficients between landscape metrics and

LST are shown in Table 10, in which the LST is regional

mean values in different ISA density areas. Overall, the

Fig. 6 LST distribution map: a day, b night

Fig. 7 LST classification map: a day, b night
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landscape metrics had the stronger correlation with day-

time LST than nighttime LST, excluding the COHESION.

The patch structure metrics (AI and COHESION) and LST

have strong and positive correlation, especially the

COHESION metric. Moreover, the patch area metrics (LPI

and AREA_MN) had positive correlation with the LST

(R2[ 0.7). In contrast, the patch density metrics (NP and

PD) had a significant and negative correlation with the LST

with R2 of - 0.98 (p = 0.002) and - 0.96 (p = 0.009) in

daytime and nighttime, respectively. Similarly, the patch

shape metrics (LSI and PAFRAC) was negatively corre-

lated with the LST.

Fig. 8 SDE distribution map

(DTSDE—daytime SDE;

NTSDE—nighttime SDE;

ISASDE—impervious surface

SDE)

Table 9 LST statistics
Percent ISA Daytime Nighttime

LST (�C) Temperature range (�C) LST (�C) Temperature range (�C)

Low-density area 29.09 0 22.73 0

Sub-medium-density area 30.40 1.31 23.67 0.94

Medium-density area 31.40 1.0 24.19 0.52

Secondary high-density area 32.60 1.2 24.68 0.59

High-density area 33.66 1.06 25.17 0.59

Table 10 Pearson correlation coefficients between LST and land-

scape metrics

Daytime mean LST Nighttime mean LST

R2 P R2 P

NP - 0.98 0.002 - 0.962 0.009

PD - 0.98 0.002 - 0.962 0.009

LSI - 0.85 0.067 - 0.788 0.113

PAFRAC - 0.56 0.326 - 0.497 0.394

LPI 0.75 0.142 0.702 0.186

AREA_MN 0.88 0.05 0.841 0.074

AI 0.89 0.04 0.867 0.057

COHESION 0.97 0.004 0.982 0.003

Table 8 SDE statistics table
Long axis (km) Short axis (km) Direction angle Long/short axis

ISASDE 65,076.26 45,372.57 101.24� 1.43

DTSDE 75,595.46 46,519.85 89.45� 1.63

NTSDE 66,072.22 55,182.18 92.77� 1.20
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Discussion

Influence of ISA Density on LST

We found the areas with the highest ISA density and LST

are distributed in the middle cities of the GPRD during the

daytime (Figs. 4a and 6). On the basis of trends in ISA, the

LST demonstrated a progressive decline from the middle

cities extends out into surrounding regions. It was prelim-

inarily concluded that the density of ISA has an influence

on the LST.

Table 9 indicates that the LST gradually increases with

the increase in the ISA density in the day and night, which

is consistent with the findings in the individual city or

megacity scale (Weng and Lu 2008; Xian and Crane 2006;

Weng et al. 2004, 2007). Furthermore, the calculation

results show that when the ISA density increased 10%, the

daytime LST increased 0.46 �C at the density level lower

than 70% (low-density, sub-medium-density and medium-

density areas) and 0.55 �C at the density level higher than

70% (sub-high- and high-density areas). Likewise, when

the ISA density increased 10%, the nighttime LST

increased 0.285 �C at the density level lower than 70% and

0.39 �C at the density level higher than 70%.

To further reveal the effect of ISA density on LST, we

drew buffer zones every 15 km from the center to the edge

of the GPRD and divided 96 zones in eight directions for

spatial statistics (Fig. 1). The center selected in this study

was the geographical center and the area with the highest

density of ISA. Subsequently, the mean ISA density and

LST of each zone are calculated. Using the buffer statistics

method, the distribution characteristics of the ISA and the

LST can be clearly expressed spatially. Moreover, the

spatial correlation between the ISA and the LST was

analyzed. The mean values of ISA density and LST in the

zones are made into radar maps (Figs. 9 and 10). The

comparison of ISA radar map and daytime radar map

shows that the high values of ISA density and LST within

15–45 km occur in the north, west and southwest direc-

tions. In the 60 km and 75 km, the high ISA densities

appear in the direction of the south and east. Meanwhile,

the high LST values begin to appear in the south, southeast

and east directions. The high values in the area of

90–120 km emerge in the east and southeast directions.

Outside of 60 km, the low values of ISA density remain in

the west, northwest, northeast and southwest directions.

Meanwhile, the high values of LST never appear in the

west, northwest, northeast and southwest directions outside

the 45-km range. Compared with the ISA radar map and

the nighttime radar map, the distribution of LST within

45 km has no obvious direction, while in the region beyond

60 km, the high values of LST remain in the south,

southeast and east directions all the time. In addition, the

spatial distribution of LST was consistent with the ISA

density. The radar maps show that in local space, the

direction of ISA with the highest density has the highest

LST. When the ISA density approaches 0, the corre-

sponding LST has the lowest value in this region. It is also

concluded that the ISA density has an effect on the LST,

and the greater the ISA density per unit area, the higher the

LST.

The radar maps show that the LST in the daytime

changed significantly with the ISA density; furthermore,

the temperature difference between high- and low-density

areas of ISA was large. In contrast, in the nighttime, the

LST did not change significantly with the density of the

ISA, and the temperature difference is small. This phe-

nomenon is caused by the ISA favors a strong absorption of

solar radiation and considerably rapid warming of the high

density of ISA during the day (Morabito et al. 2016). In

addition, the study area was adjacent to the ocean, the LST

in the low-density area decreases more slowly because of

the influence of seawater insulation, so the high-tempera-

ture zone expands at night. From the point of view of the

heat island effect, the high-density areas of ISA have a

certain influence on the surrounding areas; in the mean-

time, the high LST radiates to the periphery. During the

daytime, the high-density areas of the ISA heat up quickly,

but at night, the LST around the high-density area of ISA is

also relatively high due to the influence of radiation, so the

temperature difference at night is relatively small.

The standard deviational ellipse explained some differ-

ence in the correlation between LST and ISA density

during day and night (Fig. 8). The DTSDE is east–west,

and the ISASDE is tilted with the northeast–southwest

direction as the main axis, with certain differences. The

Fig. 9 ISA radar map
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Landsat 8 images showed that the difference was due to the

distribution of bare land in Huizhou region in the east. The

daytime LST strongly increased in the bare land due to

solar radiation, which has a certain influence on the overall

distribution of the LST, causing the DTSDE to shift. In

contrast, the NTSDE has no obvious directivity. In addi-

tion, the range of the NTSDE is larger than that of ISASDE

and DTSDE. The Landsat 8 image also shows a large

number of paddy fields in Guangzhou, Zhongshan and

Zhuhai. The LST was affected because the specific heat

capacity of the water is large and the heat dissipation is

slow; furthermore, the high-temperature zones were

expanded. Therefore, the NTSDE has no obvious

directionality.

To sum up, the high-temperature zones in the GPRD are

mainly concentrated in cities like Foshan, Guangzhou,

Dongguan, Shenzhen and Zhongshan. These cities are

among the developed cities with the highest density of ISA

in the GPRD, indicating that ISA density has an impact on

LST. With the increase in ISA density, LST in daytime

shows a gradually upward trend, and the LST in the area

with the highest ISA density is the highest. Although the

LST changes were not obvious in the nighttime, LST also

remained high in the area covered by ISA.

Effect of Landscape Pattern on LST

The landscape metrics under five ISA density zones were

calculated, and then the correlation analysis of landscape

metrics and LST was conducted. The LST for daytime and

nighttime was highly correlated with landscape metrics.

The effect of landscape pattern of ISA on LST is explained

in four aspects.

The patch density has a strong influence on LST. The

patch density metrics (NP and PD) have a strong and

negative correlation with the LST. The R2 was - 0.98

(p = 0.002) and - 0.96 (p = 0.009) in daytime and night-

time, respectively. As the patch gradually aggregates, the

total number of patches and the number of patches per unit

area decrease. When the patch voids decrease, the land

surface heat cannot diverge, causing the LST to rise.

The LST always rises with the change in the patch

shape. The patch shape metrics (LSI and PAFRAC) are

larger in the low-density area and minimum in the high-

density area, while the LST is minimum in the low-density

area and maximum in the high-density area. And the two

metrics are negatively correlated with the LST, but the

correlation between PAFRAC and LST is weak. The pat-

ches are fragmentation, complex shape and discrete dis-

tribution in the low-density area. However, in the high-

density area, the patches have the strongest cohesion, better

connectivity between patches. In addition, the patches

shape is regular. The patch connectivity is enhanced, and

the shape tends to be regular, which makes the surface heat

dissipation slow.

In terms of patch area, the patch area metrics (LPI and

AREA_MN) increased from low-density area to high-

density area and reached the maximum in high-density

area, showing a significant positive correlation with LST.

With the increase in ISA density, not only the largest single

patch area is increasing, but also the patch area within the

unit area is also aggrandizing. As the patch area augments,

the patches connect to each other, which slows down the

heat dissipation. The higher the LST is, the more the pat-

ches with larger areas.

Fig. 10 LST radar map: a day, b night
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The patch structure has an effect on LST. The patch

structure metrics (AI and COHESION) have a small value

in the low-density area and the largest value in the high-

density area. The patch structure metrics have a significant

and positive correlation with LST. The COHESION has a

great correlation with the LST; the R2 reaches 0.97

(p = 0.004) and 0.98 (p = 0.003) during the daytime and

nighttime, respectively. The patch distribution changes

from dispersion to aggregation; the patch spatial continuity

is enhanced; the dispersity is weakened; and the degree of

polymerization increases. Therefore, the patch voids are

reduced, so that the surface heat is unable to be released,

causing the LST to rise.

However, besides COHESION, other landscape metrics

and the correlation of the LST in the daytime than at night,

landscape pattern has different effects on the LST of day-

time and nighttime, due to the large terrain, complex

environment and diverse surface cover types in the study

area.

Overall, as the density of the ISA increases, the inter-

stice between the patches continues to decrease and the

number of patches continues to decrease. The patches

appear to be continuous and cumulative, and the patch

shape tends to be regular. This results in slow heat release

from the ground and heat stored on the land surface,

causing the LST to rise as the ISA changes. In general,

larger, contiguous and regular patches produce higher LST

than several smaller and dispersed patches.

Conclusions

In this study, the ISA of GPRD was extracted using

Landsat 8 OLI. The MOD11A2 product was employed to

investigate LST spatial distribution. Next, the SDE meth-

ods were used to systematically analyze the spatial corre-

lation of ISA and LST at the whole region scales. Finally,

the impact of ISA on LST at large scales of urban

agglomerations was analyzed by a series of methods. The

results show that the ISA of the GPRD was

9754.9362 km2, accounting for 17.7% of the study area in

2015. Because of the rapid population and economic

development level, the ISAs were aggregated in several

cities: Foshan, Guangzhou, Dongguan, Zhongshan and

Shenzhen. The annual average daytime LST was

22.68–37.56 �C, and the nighttime LST was

15.84–26.74 �C. Furthermore, the high-temperature zone

of daytime LST was consistent with the ISA distribution.

On the contrary, due to the influence of coastal water

bodies and paddy fields at nighttime, the spatial extent of

high-temperature zone of nighttime LST was larger than

that of ISA and high-temperature zone of daytime LST. We

found that this study highlights that the mean LST and the

density of ISA had a significant and positive correlation in

large-scale regions of urban agglomerations. When the ISA

density increased 10%, the daytime LST increased 0.46 �C
at the density level lower than 70% and 0.55 �C at the

density level higher than 70%. Likewise, when the ISA

density increased 10%, the nighttime LST increased

0.285 �C at the density level lower than 70% and 0.39 �C
at the density level higher than 70%. Moreover, the land-

scape metrics of ISA showed a significant correlation with

the LST, in which the patch density (NP and PD) had the

strongest and negative correlation with the LST with an R2

of - 0.98. In addition, the correlation between ISA and

daytime LST or landscape metrics of ISA and daytime LST

is stronger than that of nighttime LST due to the com-

plexity of the urban agglomerations’ topographical

environment.

Overall, this study provides evidence of the effects of

ISA density and landscape pattern on the LST in large-

scale regions of urban agglomerations. On average, the

mean LST of high-density area of ISA is higher than that of

low-density area of ISA, and the LST of the patch of ISA

with large area and better connectivity is higher than dis-

crete patch of ISA, a compelling evidence for the tem-

perature increase effect of high-density patch of ISA and

spatial pattern of ISA. We suggest that compared to indi-

vidual city, urban agglomerations need to pay more

attention to the planning of ISA landscape pattern. We

cannot reduce the number of ISA patches, but can add

green spaces and water bodies to increase the interstice

between the ISA, thus dispersing ISA structures. This can

mitigate the LST and contribute to the sustainable devel-

opment of the urban agglomerations.
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