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Abstract
In this paper, we propose a new sparsity-based approach for the spectral–spatial classification of hyperspectral imagery.

The proposed approach exploits the sparse representations of the spectral and spatial information contained in the data to

generate an accurate classification map; specifically, we use all the spectral information (reflectance registered in the

bands) and extended multiattribute profiles to extract spatial features. Hyperspectral image classification with sparse

representations is based on the study that a pixel can be sparsely represented by a linear combination of a few learning

examples from a structured dictionary. Then, by giving the set of training samples, any given sample may be sparsely

represented by solving a sparsity-constrained optimization problem and thus classified in the class that minimizes a residual

function. In this paper, we propose a new residual function which combines the sparse representations of the spectral

features and the sparse representations of the spatial features to determine the class label of the test sample. Experiments

are conducted on the familiar AVIRIS ‘‘Indian Pines’’ data set. It was found that the proposed method provided more

accurate classification results than SVM with composite kernel.
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Introduction

Advances on remote sensors allow having images with

high spectral resolution: the hyperspectral images. Each

pixel in a hyperspectral image is represented by hundreds

of different narrow wavelengths resulting, that, a high-di-

mensional vector with more dedicated spectral information.

This property makes hyperspectral images usually used in

various applications, such as military (Manolakis and Shaw

2002; Stein et al. 2002), agriculture (Patel et al. 2001; Datt

et al. 2003) and environmental protection (Benediktsson

et al. 2005). An important application of hyperspectral

images is the supervised classification. The main goal of

this application is to categorize the pixels in the image into

one of several classes with representative training samples.

In the literature, different hyperspectral image classifica-

tion techniques have been proposed, including independent

component analysis (ICA) (Palmason et al. 2005), artificial

neural networks (ANN) (Goel et al. 2003) and multinomial

logistic regression (MLR) (Krishnapuram et al. 2005).

Among these techniques, support vector machine (SVM)

has shown a good performance refer to their powerful to

solve classification problems for high-dimensional data

(Ben Salem et al. 2016). However, SVM needs an impor-

tant number of training samples to ensure an accurate

classification which is not available in most hyperspectral

image classification problems due to the complexity of the

collection of labeled samples.

Recently, sparse representation has been widely used in

various fields, such as face recognition (Wright et al. 2009),

image denoising (Elad and Aharon 2006) and hyperspectral

image classification (Chen et al. 2011a). Sparse represen-

tation classification is a nonparametric learning method

which does not need a training process but does need a few

set of training data, and can directly assign a class label to a

test sample. This property boosts researchers to adopt the
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sparse representations for hyperspectral image classifica-

tion. Accordingly, various sparsity-based classification

approaches have been proposed such as the nonlocal

weighted joint sparse representation classification method

(Zhang et al. 2014) based on the use of the simultaneous

orthogonal matching pursuit technique, the classification

approach proposed in Song et al. (2014) that exploits sparse

representations of morphological attribute profiles, the two

manifold-based sparse representation algorithms proposed

for hyperspectral image classification (Tang et al. 2014),

the class-dependent sparse representation classifier pre-

sented in Cui et al. (2015) that exploits the residual and

Euclidean distance information to determinate the class of

a test pixel, and the classification approach proposed in Pan

et al. (2017) that uses low-rank, sparse representation and

spectral consistency constraint.

Recently, the high spatial resolution of hyperspectral

images encourages researchers to not only focus on ana-

lyzing the spectral features to generate the classification

map with sparse representation, but also to take into

account information in the spatially domain. Previous

methods have registered a good performance by incorpo-

rating the contextual information. In Chen et al. (2011b),

the local smoothing constraint and the joint sparsity model

are used to integrate the spatial information in the classi-

fication with sparse representation, in Chen et al. (2011a),

the joint sparsity model is introduced to the kernel sparse

representation classifier, and in Liu et al. (2013), a spec-

tral–spatial kernel sparse representation has been proposed

to incorporate the spatial features.

In this paper, we propose a sparsity-based approach for

the spectral–spatial classification of hyperspectral imagery

based on the uses of spectral and spatial features to exploit

the high resolution of these images. Toward this goal, a

unified class membership function is developed, which

utilizes, simultaneously, the spectral and the spatial resid-

ual. In doing so, each pixel in the image must be defined by

two vectors: a spectral vector including the reflectance

registered in bands and a spatial vector composed by fea-

tures extracted by EMAPs. Two sparse representations

must be used to define the unified class membership

function: a spectral sparse representation training the

spectral features aims at finding the spectral residual and a

spatial sparse representation processes the spatial features

to determine the spatial residual. Experimental results

based on several real-world hyperspectral data sets

demonstrate that the proposed approach increases the

classification performance of traditional sparse represen-

tation classifier and outperforms kernel-based SVM.

The remainder of this paper is organized as follows. In

‘‘Proposed Approach’’ section, we present the different

steps of the proposed approach. In ‘‘Experimental Results’’

section, we experimentally demonstrate the efficacy of the

proposed methods and compare them with several state-of-

the-art algorithms by using two hyperspectral data sets. In

‘‘Conclusion’’ section, we summarize the results and pro-

vide concluding remarks.

Proposed Approach

In this paper, we propose new sparsity-based approach for

the spectral–spatial classification of hyperspectral imagery

based on combining a spectral sparse representation and a

spatial sparse representation to find the label of a test

sample (Fig. 1).

The proposed approach implements the following three

main steps: (1) spectral and spatial characterization which

introduces all the spectral information to present each pixel

in the spectral domain and EMAPs to extract spatial fea-

tures, (2) spectral and spatial sparse representations that

aim at finding the spectral and the spatial residuals and (3)

classification by using the proposed unified class mem-

bership function which combines the two residuals.

Spectral and Spatial Characterization

The high resolution of hyperspectral image in the spectral

and spatial domains increases the possibility to distinguish

between spectrally similar materials. Different techniques

of spectral and spatial characterizing hyperspectral pixels

have been widely applied in the literature. Among these,

for the spectral features extraction, authors usually used all

the spectral information or techniques of dimensionality

reduction to extract the most informative data such as

independent component analysis (ICA) and principal

Hyperspectral image

Spectral characterization Spatial characterization 
with EMAPs

Spectral sparse representation Spatial sparse representation

Classification with the proposed 
unified class membership function

Classification Map

Fig. 1 Steps of the proposed approach
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component analysis (PCA). For the spatial characteriza-

tion, various means have been adopted like morphological

filters, features provided from the neighborhood of the

pixel and attribute filters.

In this paper, we used all the spectral information for the

spectral characterization and we implemented EMAP using

attribute filters for the spatial features extraction.

EMAP (Mura et al. 2010): Extended multiattribute

profiles aim at modeling the structural information con-

tained in the considered image. They provide a multilevel

characterization of the image by using a sequence of

morphological attribute filters. EMAP is a vector which

stacked the different extended attribute profiles (EAPs) of

the image resulted from the using of many types of attri-

bute. The EAP is resulted by generating an attribute profile

(AP) on each of the first p principal components resulted by

PCA (AP is obtained by applying a sequence of attribute

filters using various thresholds).

Spectral and Spatial Sparse Representation

Sparse representation classification is a nonparametric

learning method that presents an unknown test pixel as a

linear combination of training pixels from all classes.

Let t 2 RB�1 the feature vector of a test pixel and D ¼
½D1. . .Di. . .DC� 2 RM�N a structural dictionary composed

by the feature vectors of the N training pixels (atoms of D)

where Di 2 RM�Ni the ith class sub-dictionary presenting

the training samples in the ith class, C is the number of

classes, Ni is the number of atoms in sub-dictionary Di

(number of the training samples in class (i)) and N ¼
PC

i¼1 Ni is the total number of atoms in D. The test pixel t

can be sparsely presented as:

t ¼ Da ð1Þ

where a 2 RN�1 is a sparse coefficient vector.Given the

dictionary of training samples D, a can be recovered by

solving:

â ¼ arg min t � Dak k2 subject to ak k0 �K ð2Þ

where K is a given upper bound on the sparsity level that

represents the maximum number of selected atoms in the

dictionary. K corresponds to the nonzero coefficients in â.

The problem (2) is a nondeterministic polynomial-time

hard (NP-hard) (Davis et al. 1997), but it can be approxi-

mately solved by greedy pursuit algorithms such as

orthogonal matching pursuit (OMP) (Tan et al. 2012).

Accordingly, for a test pixel t, the main goal of the OMP

algorithm is to find a representative atom at each iteration

based on the correlation between the dictionary D and the

residual vector R, where R = t - Da. In fact, at each

iteration, the OMP algorithm consists to (Fang et al. 2014):

1. Calculate the residue correlation vector E 2 RN�1

E ¼ DTR ð3Þ

2. Select a new representative atom (index j) based on the

current residual correlation vector:

ĵ ¼ max Ej

�
�

�
�; j ¼ 1; . . .;N ð4Þ

3. Add the newly selected atom’s index ĵ with the

previously selected atom’s index set I.

4. Estimate the sparse coefficient a by projecting the test

samples t on DI :

â ¼ DT
I DI

� ��1
DT

I t ð5Þ

where DI is found by using the selected atoms.

The class of t can be determined by the characteristics of

the sparse coefficient vector â. In fact, it can be found by

the minimal representation error between t and its

approximation from the sub-dictionary of each class:

ĉ ¼ arg min
i

t � Diâik k2; i ¼ 1; . . .;C ð6Þ

where âi denotes the portion of the recovered sparse

coefficients corresponding to the training samples in the ith

class.

In this paper, we present a new sparse-based classifi-

cation approach based on the incorporating of the spatial

features to ameliorate the accuracy of the classification.

Specifically, the proposed approach consists to recover the

spectral sparse coefficient vector âspect by using the spectral

features vectors of pixels and to compute the spatial sparse

coefficient vector âspat by using the spatial features vectors.

Accordingly, we used the spectral signatures of pixels to

determine âspect and features extracted by EMAPs to cal-

culate âspat.

Classification

To determine the class of a test pixel, we define, in this

paper, a new unified class function that combines the

spectral and the spatial sparse representation (7).

ĉ ¼ arg min
i

tspect � Dspecti âspecti

�
�

�
�

2
� tspat � Dspati âspecti

�
�

�
�

2

� �
;

i ¼ 1; . . .;C

ð7Þ

where tspect is the spectral features vector of the test sam-

ple, Dspecti is the ith class sub-dictionary presenting the

spectral features vectors of training samples in the ith class,

âspecti presents the portion of the spectral recovered sparse
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coefficients corresponding to the training samples in the ith

class, tspect is the spatial features vector of the test sample,

Dspecti is the ith class sub-dictionary presenting the spatial

features vectors of training samples in the ith class, âspecti

presents the portion of the spatial recovered sparse coeffi-

cients corresponding to the training samples in the ith class.

Experimental Results

In this section, we evaluate the proposed approach

according to the classification of a real hyperspectral data

set: AVIRIS Indian pines. For that, we use OMP algorithm

to approximately solve the sparse recovery problems for

each test sample and then find the class by adopting the

proposed unified class function. The classification results

are then compared to those obtained by the spectral–spatial

classifier SVMs with composite kernels (SVM-CK) that

combine the spectral and spatial information via a weighted

kernel summation, which have shown high performances in

hyperspectral classification (Li et al. 2013).

To evaluate the effectiveness of the uses of the spectral

and spatial information, the spectral and the spatial clas-

sification performance using, respectively, the spectral and

the spatial features with the sparse representation classifier

is included (OMPspect, OMPspat).

To build EMAP, it should be noted that we use the

principal components which contain more than 98% of the

total variance of the hyperspectral image and two attributes:

the area with a threshold values ranging from 50 to 500 with

a stepwise of 50 and the standard deviation with a threshold

values in the range {2.5%, 20%} with a stepwise of 2.5%.

In all conducted experiments, the training dictionary is

found by randomly selected samples from the available

reference data, and the remaining samples are used for test.

To evaluate the performance of the classification, we used

the overall accuracy (OA), average accuracy (AA) and the

kappa statistic. Different numbers of training samples have

been used in our experiments to evaluate their impact on

the classification accuracy.

OA ¼ Number of pixels correctly classified

Total number of pixels
� 100

Kappa

¼ Number of pixels correctly classified

Number of pixels correctly classifiedþNumber of confusion
� 100

AA ¼
P

Class accuracies

Classes number

AVIRIS ‘‘Indian pines’’1 is a 1459145 image that

illustrates the Indian Pines region in Northwestern Indiana.

It is collected by AVIRIS sensor in June 1992. The scene

has 220 spectral bands range from 0.4 to 2.5 lm with a

nominal spectral resolution of 10 nm. We used in the

experiments 200 radiance channels (20 noisy bands cov-

ering the region of water absorption have been removed).

The reference map for the scene is presented in Fig. 2, and

it contains 16 classes characterized by their spectral simi-

larity. The number of pixels in each class is reported in

Table 1. For each class, we randomly select 10% of the

labeled samples for training and use the rest for testing.

In our first experiment, we illustrate the advantage of

using sparse representation in spectral and spatial domains

for classification purposes by comparing the classification

accuracies obtained by the proposed approach with that

obtained by other classification approaches. Table 2 illus-

trates the individual class accuracies, the overall accuracy

(OA), average accuracy (AA) and the kappa statistic

coefficient (k) using different classifiers. As observed in

Table 2, the use of the spectral and spatial sparse repre-

sentations to determine the labels of test samples

(OMPspect–spat) leads to have an accurate classification

comparing with the spectral sparse representation classifier

(OMPspect) and the spatial sparse representation classifier

(OMPspat), and it allowed having an OA equal to 95.39%,

10.7% larger than OMPspat and 20.6% larger than

OMPspect, which reflect the importance of incorporating

spectral and contextual information for hyperspectral

image classification purposes. Comparing with SVM-CK,

the proposed approach has showed high performance (OA

1.5% larger than SVM-CK), which illustrates the great

potential of the proposed sparsity-based classification

approach to discriminate similar spectral classes. Focusing

on the individual class accuracies, we note that, in all cases,

OMPspect–spat provides the best results when compared with

other methods. This is because the exploitation of the

spectral and spatial features in the classification based on

sparse representation greatly improves the class

discriminability.

For illustrative purposes, Fig. 3 shows the classification

maps obtained for the experiments reported in Table 2.

In the second experiment, we evaluate the impact of the

size of the training dictionary. Figure 4 illustrates the

obtained accuracies for the different implemented classi-

fication methods (OMPspect, OMPspat, SVM-CK and

OMPspect–spat) as a function of the number of training

samples. Several observations are shown in Fig. 4. First,

the best classification accuracies are obtained by the

OMPspect–spat approach even with limited training samples

(training samples size\ 10%) which shows the perfor-

mance of the proposed classification method. The spectral–

spatial classifications (OMPspect–spat and SVM-CK) out-

perform the classification when we used the spectral

information only (OMPspect) and the spatial classification1 Available at: http://engineering.purdue.edu/*biehl/MultiSpec/.
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(OMPspat). Comparing OMPspect–spat and SVM-CK classi-

fication accuracies, we note that the advantage of

OMPspect–spat is smaller with a high number of training

samples. This is because the SVM is a discriminative

approach based on the estimation of a separator plan in the

transformed kernel space. Therefore, it is reasonable to

have competitive classification accuracies when we used an

important number of labeled samples. This observation

reveals the importance of using sparse representation

technique in the case of the availability of limited training

samples.

Conclusion

In this paper, we have developed a new spectral–spatial

sparsity-based classification approach which combines the

spectral recovered sparse coefficients (when we used

spectral features) and the spatial recovered sparse

Alfalfa                   Oats

Corn-no�ll            Soybean-no�ll

corn-min�ll           Soybean-min�ll

Corn                       Soybeans-clean 

Grass-pasture         Wheat

Grass-trees            Woods

Grass-pasture-m Bldg-Grass-Trees-

Hay-windrowed Stone-Steel-Towers

Fig. 2 Reference map of Indian

Pines data

Table 1 Number of pixels in each class

Class Samples Class Samples

Alfalfa 54 Grass-pasture 497

Corn-notill 1434 Grass-trees 747

Corn-mintill 834 Grass-pasture-mowed 26

Corn 234 Hay-windrowed 489

Oats 20 Wheat 212

Soybean-notill 968 Woods 1294

Soybean-mintill 2468 Bldg-grass-trees-drives 380

Soybeans-clean 614 Stone-steel-towers 95

Table 2 OA, AA, kappa (k) and

class individual accuracies

allowed by different classifiers

on the AVIRIS Indian Pines

data

Class Train OMPspect OMPspat OMPspect–spat SVM-CK

Alfalfa 6 95.83 96.51 97.91 95.83

Corn-notill 144 65.97 72.23 96.89 96.67

Corn-mintill 84 60.67 66.34 90.93 90.93

Corn 24 38.51 52.92 88.09 85.71

Oats 2 33.33 61.11 66.66 55.56

Soybean-notill 97 68.2 83.37 93.8 93.8

Soybean-mintill 247 75.9 88.61 95 95.37

Soybeans-clean 62 54.53 70.49 95.1 93.66

Grass-pasture 50 89.5 74.29 93.74 93.74

Grass-trees 75 95.27 88.73 97.76 97.32

Grass-pasture-mowed 3 21.47 43.47 78.26 69.57

Hay-windrowed 49 97.05 99.98 98.41 98.41

Wheat 22 100 98.61 100 99.47

Woods 130 92.87 95.67 100 99.14

Bldg-grass-trees-drives 38 41.23 75.68 90.64 87.43

Stone-steel-towers 10 94.12 95.11 100 100

OA 74.78 84.7 95.398 93.86

AA 68.61 78.9 92.69 90.73

K 0.73 0.81 0.953 0.941

The highest accuracies are shown in bold
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coefficients (when we used spatial features) via a proposed

unified class function to exploit the wealth of hyperspectral

images. The proposed approach is based on the use of

sparse representation to overcome the problem of the

availability of a limited number of training samples. By

using all the spectral information, EMAPs to extract spatial

attributes and OMP to solve the sparsity problem, the

proposed method provides good accuracies when compared

with the spectral and the spatial classification. It also

exhibits robustness to the SVM classification with com-

posite kernels (it allowed to have an OA 1.5% larger than

SVM with composite kernels in the classification of the

Indian Pines data set). Although our experimental results

are competitive and encouraging when dealing with a

limited training samples, further work should be focused on

incorporating textural features to present pixels in the

spatial domain.
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