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Abstract
Ship detection on the SAR images for marine monitoring has a wide usage. SAR technology helps us to have a better

monitoring over intended sections, without considering atmospheric conditions, or image shooting time. In recent years,

with advancements in convolutional neural network (CNN), which is one of the well-known ways of deep learning, using

image deep features has increased. Recently, usage of CNN for SAR image segmentation has been increased. Existence of

clutter edge, multiple interfering targets, speckle and sea-level clutters makes false alarms and false detections on detector

algorithms. In this letter, constant false alarm rate is used for object recognition. This algorithm, processes the image pixel

by pixel, and based on statistical information of its neighbor pixels, detects the targeted pixels. Afterward, a neural network

with hybrid algorithm of CNN and multilayer perceptron (CNN–MLP) is suggested for image classification. In this

proposal, the algorithm is trained with real SAR images from Sentinel-1 and RADARSAT-2 satellites, and has a better

performance on object classification than state of the art.

Keywords SAR image processing � Synthetic aperture radar (SAR) � Classification � Ship classification � Neural network �
Convolution neural network (CNN) � Multilayer perceptron (MLP) � Hybrid CNN–MLP

Introduction

Target classification using images taken from different

sensors is one of the problems of radar systems known as

automatic target recognition (ATR) (Srinivas et al. 2014).

Among all the targets, the man-made targets are of par-

ticular importance; in recent years, ship monitoring has

been very much considered (Lang et al. 2016). Because of

night-and-day imaging and the lack of sensitivity to

weather conditions, SAR images are very suitable for

vessel monitoring.

CFAR detector is suggested with fixed false alarm rate,

with environment conditions like clutter edge or multiple

interfering targets (Frost et al. 2015; Gao et al. 2009). In a

simpler explanation about this algorithm, it compares the

threshold of the cell under test, and fixates the probability

of false rate alarm. Accuracy of this method mostly

depends on the pixels around then cell under test; because

in SAR images, often target is in a complex background.

Therefore, statistical modeling of neighbor pixels is very

important. Gaussian distribution is often used for modeling

of neighbor pixels; but it’s functionality in high-resolution

SAR images has been confronted with limitations. Some

examples of these limitations are noise speckle existed on

images and also nonhomogenous clutter of the sea surface

on the sea SAR images (Lombardo and Sciotti 2001;

Modava and Akbarizadeh 2017). Other models that are

suggested for distribution of probability on neighbor pixels

are Weibull model and K distribution model (Jakeman and

Pusey 1976). K distribution is one of the most suited

models on high-resolution SAR images for sea level (Watts

1987; Yueh et al. 1989; Weiss 1982). On high-resolution

images, CFAR algorithm functionality for SAR image

process is discussable. In high-resolution images, the

functionality of the CFAR algorithm for pixel-by-pixel

SAR image processing is very complex and time-con-

suming. In the CFAR algorithm, the modeling of the

neighboring pixels of the cell under test is used to
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determine the CFAR type. Regarding the performance of

the CFAR algorithm, it is clear that the presence of

unwanted elements in the SAR image increases the prob-

ability of false alarms. Therefore, eliminating unwanted

items in the background can be effective in reducing false

alarms. One of the most effective ways to remove these

unwanted items is truncated statistics (Tao et al. 2016a). In

this method, the data are eliminated based on the proba-

bility of having useful information. In simpler explanation,

data that are less likely to have information will be deleted.

Therefore, in this paper, the CFAR algorithm is used by

reduced data using the TS algorithm. In the following,

another approach is proposed to reduce the size of the SAR

images

After the initial processing of the image and applying

the CFAR algorithm, the objectives identified are passed to

a hybrid neural network (CNN–MLP) for classification.

The convolutional neural network (CNN) is one of the deep

learning methods that has been widely used in the image

processing, especially optics images. But there are fewer

works in the field of SAR imagery. Recent computational

developments in deep learning and optimization calcula-

tions have caused deep networks trained with a more

efficient method (Bengio 2009; Hinton et al. 2006), which

has led to increased use of deep neural networks (DNNs).

This type of neural network has been developed in many

fields, including object classifications (Chen et al. 2016;

Tang et al. 2015), image recognition (Zhao and Du 2016;

Girshick et al. 2014) and robotics (Bezak et al. 2014).

DNNs are able to process raw data without the need for

manual extraction of features (Lv et al. 2015). The con-

volutional neural network is one of the kinds of deep neural

network that has a content-based function. This type of

neural network has great results in computer vision and

pattern recognition (Schmidhuber 2015) and image recov-

ery (Yang et al. 2015). Bentes et al (2018) used a convo-

lutional neural network for classifying ships in SAR

images. Convolutional neural networks, having received

images as inputs, do not need to extract features for net-

work training and have better performance compared to

other neural networks for classifying images (Ding et al.

2016; Bentes et al. 2015, 2016; Ampe et al. 2012; Hou

et al. 2016).

Multilayer perceptron is a shallow structure neural net-

work, which is trained based on the features of the image.

Neural networks with shallow structure architectural design

have been used extensively in SAR programs (Wu et al.

2015; Makedonas et al. 2015). Zhang et al. (2017) pro-

posed a neural network combining a convolutional neural

network and multilayer perceptron for remote sensing

images. In a multilayered perceptron neural network, to

train the network, it is necessary to extract the features of

the images. Image texture features have good performance

for segmentation (Akbarizadeh and Tirandaz 2015),

recognition (Tan and Triggs 2010) and classification

(Wang et al. 2018). In this study, we used feature properties

with GLCM (gray-level co-occurrence matrix) to train

neural network. GLCM is a common technique, with its

main features of average, variance, contrast, homogeneity,

etc (Geng et al. 2015).

In this paper, 9576 medium-resolution images were

extracted from the data obtained from the SAR images

taken by the RADARSAT-2 and Sentinel-1 satellites for

the training of the convolutional neural network (Sch-

wegmann et al. 2017). These data are divided into three

classes, ship_positives, sea and other things (true_nega-

tives) and similar items (false_positives). The first class

belongs to pictures of the ships; in this dataset, 17% of the

pictures are in this class. The second class specifically

includes images of the surface of the ocean and all items

that are not ships; this class also includes 17% of the data.

In the third class, there are data that are false to be a ship,

such as the shadow of the ships, rocks. This class has the

most members of the collection and contains 66% of the

data. The data in this dataset are matched with the auto-

matic identification system (AIS) sender. AIS is an auto-

matic position reporting system for locating coordinates for

ships and other maritime vehicles (Mazzarella et al. 2015).

Matching data from SAR images and AIS data, the result is

more reliable. In this paper, a hybrid neural network is used

to classify SAR images, and the neural network can com-

pensate for the neural network defects in the detection of

the edges. Here, GLCM texture features of all images are

extracted, and 60% of the data is randomly used to train

multilayer perceptron. To test the neural network, 20% of

the data is used. Twenty percent of the data is not used in

the MLP, and these data are used for the convolutional

neural network as validation data. In the following, the

proposed hybrid neural network is examined. This output

network examines both networks described, and, based on

the output vector, determines the reliability of the output.

Then, it introduces the output with more accuracy as the

network output. In this way, this network uses the positive

features of both networks simultaneously, and improves the

results of the two previous networks.

The general ideas of this paper are summarized in the

following: 1. Using the TS volume reduction method,

which is suggested in this paper, data that are statistically

less valuable are excluded. This will reduce the computa-

tional volume in the CFAR algorithm and significantly

improves the processing speed. 2. The detection of images

using the CFAR algorithm, which uses the slider window

technique, is used to create an adaptive threshold. 3. Using

the hybrid neural network proposed in this paper for SAR

images, the accuracy of classification has been increased,

because in this classification, in addition to the benefits of
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CNN as a deep neural network in extracting the features of

the image internally, which has led to features that should

be hand fed to older neural network, the MLP trained by

the texture features is used too. The result is chosen from

the output of the two networks discussed in this article,

which makes the result the most reliable answer possible.

Methodology

The general work of paper is shown in Fig. 1. First, in

‘‘MLP Multilayer Perceptron’’ section, a short version of

the MLP method is given, and then in ‘‘CNN Convolu-

tional Neural Network’’ section, the CNN method will be

described. ‘‘Preprocessing’’ section describes the operation

of the first block as preprocessor; then, in ‘‘Detector’’

section, how the CFAR detection algorithm is used. In

‘‘Classification’’ section, which is the last part of this paper,

the operations of the CNN convolutional neural network

and the MLP multilayer perceptron are examined sepa-

rately, and then the operation of the CNN–MLP hybrid

algorithm is described.

MLP Multilayer Perceptron

Multilayer perceptron is one of the classical types of neural

networks, in which each set of input outputs particular

vectors. The MLP multilayered perceptron structure

consists of three layers, an input layer, a hidden layer, and

an output layer. The input layer is represented by the fol-

lowing formula:

a1 ¼ x ð1Þ

which indicates x as the input and a1 as the first layer of the

network; and the input of each layer is the weighted output

of the previous layer (Pacifici et al. 2009) and corresponds

to:

aðlþ1Þ ¼ r wðlÞaðlÞ þ bðlÞ
� �

ð2Þ

where l is a specific layer, wðlÞ indicates the layer weight,

and bðlÞ as the bias symbol in the layer l, r also indicates a

nonlinear function, which is used in this network. This

function can be a sigmoid function, a hyperbolic tangent,

etc. The output layer is also shown below:

hw;bðxÞ ¼ aðnÞ ð3Þ

Here, n is the number of network layers, w as weights, and

b as bias. The objective function is a function that mini-

mizes the difference between output and desired output:

Jðw; b; x; yÞ ¼ 1

2
hk ðw;bÞðxÞ � yk2 ð4Þ

CNN Convolutional Neural Network

Convolutional neural networks are designed with the

ability to extract image features for image processing,

which is why their use in image classification is increasing.

Convolutional neural networks contain three main layers,

1. Convolutional layers 2. Pooling layer 3. Output layers.

In this type of neural network, after each convolutional

layer, a pooling layer is enclosed (Romero et al. 2016), and

the final convolutional layer is connected to the output

layer (LeCun et al. 2015).

Different layers have different tasks. There are two

stages of training in each convolutional neural network.

Feed forward and back propagation or post-back phases. In

the first step, the image of the input is given to the network,

and this is in fact the multiplication of the point between

the input and the parameters of each neuron, and finally the

application of convolutional operations in each layer (Arel

et al. 2010). Then, the network output is calculated; to set

the network parameters or, in other words, to train the

network, the output is used to calculate the network false

rate. In the next step, based on the false rate, the back

propagation operation begins.

In this step, the parameters change based on their effect

on the network false rate. After the new parameters become

available, the feed forward stage starts. After completing

enough number of these steps, the network training willFig. 1 Workflow of hybrid CNN–MLP classifier
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end. In a convolutional neural network, the convolutional

layers and pooling layers are one in between, and in the end

there are several layers with a fully connected connection.

Preprocessing

In this part of the work, it has been tried to preview the

image in such a way that applying the following algorithms

to the images becomes simpler and reducing the volume of

computing as well as the processing time of the image.

Because due to the high volumes of SAR images and pixel-

by-pixel processing of CFAR algorithm, the detection of

the detector will be very timely if it is not preprocessed. In

addition, the presence of heterogeneous sea-level clutter is

considered as a complication to obtain various features of

the SAR image of the sea (Lombardo and Sciotti 2001).

Also, changing the posterior aspect of the image due to

ocean and ocean phenomena will create edge clutter. The

existence of intrusive goals also leads to inaccuracies in the

estimation of the parameters and causes the image mod-

eling to be inadequate (Tao et al. 2016a). These cases

increase the number of false alarms in the CFAR algorithm

and weaken its performance (Lombardo and Sciotti 2001).

As a result, excluding data that are not useful information

can be helpful in solving these problems.

This paper uses a truncated statistics method to exclude

data that are not useful information (Tao et al. 2016a). In

this method, the truncation ratio Rt, which represents the

ratio of the excluded data to the total number of data, is

used. The value Rt is obtained by the total amount of

samples NROI, the size of the largest experimental object

Ntarget and the number of targets in the image C, as follows:

NROI � ðC � NtargetÞ
NROI

[Rt �
C � Ntarget

NROI

ð5Þ

As seen in formula (5), it is better to have a large value

of Rt that is true in the formula above, and also its value

should not be below the percentage of the data that contain

the information. It should be noted that the values given for

the number of data in the image NROI, the size of the largest

object Ntarget and the number of targets in the image C are

all experimental values that will be different for each input

image (Tao et al. 2016b), so in this article the value is

considered Rt ¼ 10%, which has been surveyed for more

than 1000 input data, and it is assumed that it is true for

other input images as well.

After excluding the data in the above manner, another

method is also used to reduce the image volume of the

input image to preprocess the image. In the proposed

method, by subsampling the input image, its volume is

reduced. The volume of the image determines the Sth

method (Doulgeris et al. 2011; Doulgeris 2015). Indeed,

this criterion implies that one from each of the Sth

prototypes remains in the image. Therefore, the image size

after the subsampling operations will be equal to:

New image size ¼ Image size

S2
th

ð6Þ

Detector

A CFAR detector is used for detection of the image in this

paper. This method estimates a threshold value for spec-

ifying the target from the background. Clearly, the greater

the difference between the target gray and the background

level, the simpler threshold estimation is and better target

detection is performed. It should be noted that if a con-

stant threshold is used for the whole image, one cannot

expect a satisfactory result, and therefore, to obtain more

accurate results, a CFAR detector with a dynamic

threshold should be used. To determine the amount of

dynamic thresholds, it is necessary to identify the post-

graduate statistical model. With the amount of false rates

and a review of the SAR model, the appropriate value for

the threshold is obtained.

False rates as Pf and detection rates as Pd are shown in

Eqs. (7) and (8):

Pf ¼ r
1

T

PBðxÞdx ð7Þ

Pd ¼
ZT

0

PTðxÞdx ð8Þ

The threshold T value is obtained from the solution of

the following equation.

1 � Pf ¼
ZT

0

PBðxÞdx ð9Þ

In this equation, Pf is the probability of a false alert and

T is obtained by varying its value. If I is the image as input,

the detection is performed according to the following

formula:

Iði:jÞ ¼ 1; Iði:jÞ� T

0; Iði:jÞ\T

�
ð10Þ

To achieve the adaptive threshold, the sliding window

technique is used (Leng et al. 2015; Hwang and Ouchi

2010). By setting a window of the desired size and scrol-

ling the whole image, it introduces a local threshold for

each scroll, thus eliminating the problems from the con-

stant threshold.
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Classification

Three types of neural networks are used in this paper.

Multilayer perceptron neural network MLP, CNN torsion

neural network and CNN–MLP neural network are pro-

posed in this paper.

Multilayer Perceptron Functionality

Multilayer perceptron requires training input vectors as

DATA and expected output vectors corresponding to it. In

a multilayer perceptron, you cannot use the image itself as

an input, and it is necessary to extract the features of the

image first, and then give to network as input. In this case,

the GLCM technique is used to extract the texture features

of the image. As a result, vectors containing textural fea-

tures are used as inputs for the MLP, and these vectors

contain 19 feature of each image in the data.

Another vector is also given for network training, which

is in fact the label or class of each image, and is given by

the number of classes and the number of inputs to the

network input. In this vector, for each image in the input

vector, the corresponding row corresponds to the class

array in Fig. 1.

After training the network, it is time to test it. To test the

network, it is also necessary to give the image or test

images as test input to the network, to determine the output

vector of the test image class.

The resulting output is a vector with 3 members (the

output vector is as large as the class specified in the net-

work), the number in each array of this vector specifies the

probability that the test image will be affixed to each of the

classes.

Convolutional Neural Network Functionality

To train convolutional neural network, it is not necessary to

extract image features because CNNs are able to extract the

image features themselves. So, in this work, 60% of the

images in the data are randomly assigned directly to the

CNN input. It is also possible to input the labels of the

images with their own inputs to the network.

Neural network input image dimensions are

(128 � 128 � 1) and are in three classes, ship_positives as

ship images, true_negatives as images that are not a ship,

false_positives as images that appear to be false as a ship.

CNN-1 (Chen et al. 2016) and CNN-2 (Bentes et al.

2018) and CNN-3 (Wilmanski et al. 2016) networks have

been introduced for comparison with the proposed hybrid

algorithm, also learning rate = 0.001 and the training stops

are adjusted by validation data. The architecture of these

networks is shown in Fig. 2.

Here, the CNN-1 neural network (Chen et al. 2016) is

tested for combining with the MLP multilayer perceptron;

the CNN output can be both a vector, and label of the

image that has been tested.

Hybrid CNN–MLP Functionality

In the hybrid network, it is attempted to take advantage of

the multilayer perceptron MLP and the CNN convolutional

neural network simultaneously. To this end, both networks

need to be trained with the same data and the test image

should be given to the input of both networks. Then, the

output of both networks is extracted; now, the output that is

more valid needs to be introduced as a hybrid network

output.

Here, the output of each network is represented in the

form of Y ¼ y1:y2: � � � :ynf g in which n denotes the number

of classes. i 2 1:n½ � The number yi is in fact the probability

that an image in the class i can be, which can be a number

between zero and one. Classification models represent the

highest probability of membership as predicted outcomes.

Here, a standard is given for the level of output relia-

bility, which is in fact the same standard deviation in the

output vector:

sigma ¼ maxðYÞ � meanðYÞ ð11Þ

maxðYÞ which indicates the largest number of set of Y or

actually the highest probability of membership and the

meanðYÞ is value of average of Y . The criterion sigma

determines the confidence of the class existence in an

image. If the input image has a homogeneous background,

the diagnosis of the image class in the CNN will be more

reliable and sigma will be a larger value, but in a hetero-

geneous background or in the presence of unwanted cases

in the background of the image, the value of the sigma will

be less.

Because the CNN network has a better overall perfor-

mance than MLP and is more suitable for classification of

images, the value sigmaCNN in most cases will be a larger

number. Therefore, sigmaCNN is used as a benchmark. Two

thresholds a and b are also for comparison of sigma, which

amount a 2 ½0:1; 0:4� and amount b 2 ½0:6; 0:9� can be

changed. Now, according to sigma the output class criteria

is specified as follows:

classCNN�MLP ¼

classCNN sigmaCNN [ b

classCNN a\sigmaCNN\b; sigmaCNN [ sigmaMLP

classMLP a\sigmaCNN\b; sigmaCNN\sigmaMLP

classMLP sigmaCNN\a

8>>><
>>>:

ð12Þ

In which, classMLP and classCNN, respectively, are the

result of the classifications derived from MLP and CNN.
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To get the appropriate value for a and b initially b ¼ 0:9

and a starts at the value of 0.1 and increment by 0.05, and

the value for which the highest accuracy is obtained as the

final number is considered. The number b will be obtained

in the same way.

Results

In this section, all three multilayer perceptron neural net-

work, convolutional neural network and CNN–MLP hybrid

network with actual SAR data have been tested (Schweg-

mann et al. 2017), and the average results are displayed for

100 trials in Table 1. The value of a and b is obtained

a ¼ 0:45 and b ¼ 0:65 using the mentioned method.

According to the information in this table, the criterion

precision (indicating the ratio of the number of correct

diagnosis of the target to the total number of goals) has

improved. The amount recall that also indicates the ratio of

the correct target detection value to the total number of

target detection (both true and false) is also better in the

hybrid network than the other two networks (Tables 2, 3, 4,

5, 6, 7).

The hybrid CNN–MLP network, f1 � score which is a

combination of two criteria precision and recall obtained

by the following formula, has been shown to be better.

f1 � score ¼ 2 � precision� recall

precisionþ recallð Þ ð13Þ

The numerical value accuracy, which is precision of the

measurement, is improved compared to the other two

networks.

Neural networks have also been tested for the actual

SAR images (3), (4) and (5). As can be seen in the image,

the hybrid neural network in the targets where the detection

of CNN-1 is incorrect and the MLP is correctly detected, is

correct, in cases where CNN-1 detection is correct, it has

Fig. 2 The models of CNN-1

(Chen et al. 2016), CNN-2

(Bentes et al. 2018) & CNN-3

(Wilmanski et al. 2016), with

their parameters
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Fig. 3 a, b, c, d Real SAR images that are given to the input of all the

neural networks introduced in this article. Items that a network

detected wrong, are in red, and items that detected correctly is in

green, and all other items marked with a yellow rectangle are properly

detected by all networks
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been similar to that of CNN-1. The CNN-1 convolutional

neural network has poor performance for targets where the

boundary of objects is not well defined, while the CNN–

MLP hybrid network has solved this problem using MLP

results. As shown in the figure, all targets marked with a

yellow rectangle are given to the input of all three neural

networks; in cases where the neural network has an

incorrect answer, the response is marked in red and if the

correct answer is given it is marked in green. In all other

Table 1 Average results for 100

trials
Precision Recall f1-score Accuracy

CNN-1 (Chen et al. 2016) 0.92 0.91 0.91 0.91

CNN-2 (Bentes et al. 2018) 0.8766 0.8464 0.8612 0.8934

CNN-3 (Wilmanski et al. 2016) 0.7577 0.8527 0.8024 0.8495

MLP 0.7563 0.8838 0.8150 0.8243

Hybrid CNN–MLP 0.9319 0.9067 0.9191 0.92

Table 2 The probability of membership in each class for Fig. 3a,

image 3.1

CNN-1 CNN-2 CNN-3 MLP

False_positives 0.57 0.14 3 � 10�10 2 � 10�4

Ship_positives 0.46 0.86 1 0.99

True_negatives 3 � 10�8 8 � 10�7 0 2:2 � 10�6

Table 3 The probability of

membership in each class for

Fig. 3a, image 3.2

CNN-1 CNN-2 CNN-3 MLP

False_positives 0.34 0.41 0.99 0.002

Ship_positives 0.66 0.58 9:6 � 10�4 0.99

True_negatives 3:3 � 10�8 4:2 � 10�7 0 1:64 � 10�5

Table 4 The probability of

membership in each class for

Fig. 3a, image 3.3

CNN-1 CNN-2 CNN-3 MLP

False_positives 0.31 0.11 0.99 7:8 � 10�4

Ship_positives 0.69 0.89 8:46 � 10�5 0.99

True_negatives 1:29 � 10�8 4:6 � 10�9 0 3:6 � 10�6

Table 5 The probability of

membership in each class for

Fig. 3b, image 3.4

CNN-1 CNN-2 CNN-3 MLP

False_positives 2:2 � 10�4 1:6 � 10�4 1:1 � 10�19 2:9 � 10�4

Ship_positives 0.99 0.99 1 0.99

True_negatives 6:3 � 10�12 6:6 � 10�14 0 3:01 � 10�7

Table 6 The probability of

membership in each class for

Fig. 3c, image 3.5

CNN-1 CNN-2 CNN-3 MLP

False_positives 0.74 0.5 1:09 � 10�7 0.14

Ship_positives 0.25 0.49 1 0.95

True_negatives 3:9 � 10�5 1:7 � 10�10 0 1:2 � 10�3

Table 7 The probability of

membership in each class for

Fig. 3d, image 3.6

CNN-1 CNN-2 CNN-3 MLP

False_positives 0.51 0.69 2:38 � 10�5 0.35

Ship_positives 0.49 0.31 1 0.61

True_negatives 1:1 � 10�4 2:1 � 10�10 0 2:7 � 10�5
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cases where the answer is not mentioned, all three networks

provide the correct answer.

In the following, the performance of all three networks

has been studied on similar images.

In Fig. 4a, b are shown two images of the class false_-

positive which are given to the input of each of the three

networks. The CNN-1 neural network places these images

correctly in the false_positives class. But the class is

marked by true_negatives multilayer perceptron, and the

value of sigma in these images is as follows:

sigmaCNN�1 ¼ 0:66; sigmaMLP ¼ 0:19�!ð12Þ
class

¼ classCNN�1 ¼ false positives

sigmaCNN�1 ¼ 0:499; sigmaMLP ¼ 0:3�!ð12Þ
class

¼ classCNN�1 ¼ false positives

Given the high values and placement of them in formula

(12), the class specified for both images by the hybrid

network of the same class is CNN-1. It can be seen that

value of sigmaMLP for these images is small, indicating a

low level of confidence in the MLP response to these

images.

Images in Fig. 4c, d are also in the false_positives class,

the CNN-1 response to these ship_positives images and the

MLP response is false_positive, and the value of sigma for

these images is as follows:

sigmaCNN�1 ¼ 0:56; sigmaMLP ¼ 0:66�!ð12Þ
class

¼ classMLP ¼ false positives

sigmaCNN�1 ¼ 0:31; sigmaMLP ¼ 0:67�!
ð12Þ

class

¼ classMLP ¼ false positives

On the right side image, value of sigmaCNN�1 is 0.56,

which is not a low value, but according to the formula (12),

since a\sigmaCNN�1\b; sigmaCNN�1\sigmaMLP, MLP

result is considered as the output. The image on the left,

sigmaCNN�1 ¼ 0:31, which shows low level of confidence

for CNN-1 about the class of this image.

In Fig. 5a, b are shown two images of class ship_posi-

tives which are given as input to all three networks, CNN-1

Fig. 4 a, b, c, d SAR images of

false_positives class that are

tested by the hybrid neural

network proposed in this article
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result for these images is false_positives and MLP result is

ship_positives, and value of sigma is as follows:

sigmaCNN�1 ¼ 0:49; sigmaMLP ¼ 0:65�!ð12Þ
class

¼ classMLP ¼ ship positives

sigmaCNN�1 ¼ 0:12; sigmaMLP ¼ 0:61�!ð12Þ
class

¼ classMLP ¼ ship positives

In Fig. 5c, d are from ship_positives class, CNN-1

results in ship_positives class, and MLP results in false_-

positive class, and the value of sigma is as follows:

sigmaCNN�1 ¼ 0:52; sigmaMLP ¼ 0:41�!ð12Þ
class

¼ classCNN�1 ¼ ship positives

sigmaCNN�1 ¼ 0:65; sigmaMLP ¼ 0:67�!
ð12Þ

class

¼ classCNN�1 ¼ ship positives

According to the above calculations on the right image

sigmaCNN�1 ¼ 0:65; sigmaMLP ¼ 0:67, both CNN-1 and

MLP networks have a high confidence level, but given the

CNN-1 preference, the output response is the same as the

CNN-1 response.

Conclusion

In this paper, a method of working from two neural net-

works, a CNN-1 convolutional network and a multilayer

MLP perceptron, was presented, and then a hybrid method

of these two networks to take advantage of the positive

characteristics of each of them has been suggested. With

respect to the accuracy parameters, it is clear that the

multilayered perceptron has a weaker performance than

CNN-1; however, when it is hybrid with CNN-1, it will

improve the accuracy parameters. The convolutional neural

network also does not work well in cases where the

boundary of the object is not well defined; in which case,

the hybrid of CNN with multilayer perceptron based on the

characteristics of the trained image has solved this

problem.

Fig. 5 a, b, c, d SAR images of

ship_positives class that are

tested by the hybrid neural

network proposed in this article
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