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Abstract
Supervised multi-class classification (MCC) approach is widely being used for regional-level land use–land cover (LULC)

mapping and monitoring. However, it becomes inefficient if the end user wants to map only one particular class. Therefore, an

improved single-class classification (SCC) approach is required for quick and reliable map production purpose. In this regard,

the current study attempts to evaluate the performance of MCC and SCC approaches for extracting mountain agriculture area

using time-series normalized differential vegetation index (NDVI). At first, samples of eight LULC classes were acquired using

Google Earth image, and corresponding temporal signatures (TS) were extracted from time-series NDVI to perform classifi-

cation using minimum distance to mean (MDM) and spectral angle mapper (i.e., multi-class SAM—MCSAM) under MCC

approach. Secondly, under SCC approach, the TS of three agriculture classes (i.e., agriculture, mixed agriculture and plantation)

were utilized as a reference to extract agriculture extent using Euclidean distance (ED) and SAM (i.e., single-class SAM—

SCSAM) algorithms. The area of all four maps (i.e., MDM—19.77% of total geographical area (TGA), MCSAM—21.07% of

TGA, ED—15.23% of TGA, SCSAM—13.85% of TGA) was compared with reference agriculture area (14.54% of TGA) of

global land cover product, and SCC-based maps were found to have close agreement. Also, the class-wise detection accuracy

was evaluated using random sample point-based error matrix which reveals the better performance of ED-based map than rest

three maps in terms of overall accuracy and kappa coefficient.
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Introduction

Consistent, accurate and timely agriculture information at the

regional level is crucial for the policy maker, government and

non-government agencies and researchers (Wardlow et al.

2007; Husak et al. 2008; Wu et al. 2014). Irrespective of

scale, information about the extent and location of agriculture

area is mainly used as a baseline for time-to-time resource

assessment for addressing food security issues (Justice and

Becker-Reshef 2007). With the regular availability and

significant improvement in terms of spatiotemporal resolution

of remote sensing-based satellite data product over the last

four decades, agriculture mapping became feasible, especially

in those areas where reliable agriculture information is

inconsistent mainly due to the inaccessible complex terrain

(Wu et al. 2008; Delrue et al. 2013).

Regional-level mapping using coarse resolution data has

grown recently among remote sensing community, espe-

cially for mapping and monitoring of natural vegetation as

well as agriculture (Hamandawana et al. 2005; Erasmi et al.

2006; Estel et al. 2015). The selection of a suitable classi-

fication algorithm also depends upon input data and

application (Lu and Weng, 2007). The distance-based

nonparametric classification algorithms such as Euclidean

distance (ED), spectral angle mapper (SAM) and spectral

correlation mapper (SCM) are well suited and established

in the literature to classify vegetative classes using coarse

resolution time-series data at regional scale (Lhermitte
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et al. 2011; Rodrigues et al. 2013). These algorithms are

supervised in nature and work as a function of distance

such that the most likely class for an unknown observation

is determined through minimum distance. This can be

termed as multi-class classification (MCC) approach, in

which some predefined thematic class and a set of training

sample (i.e., temporal signature) for each class of interest

are a prerequisite (Foody 2010). However, the thematic

map production is often determined by the interest of

extracting the distribution of one particular class (i.e.,

agriculture class in the current study), where the user is

interested in obtaining a highly accurate map of the target

class. In the case of less number of input classes, the MCC

approach resulted in higher uncertainty. Therefore, imple-

menting MCC approach using single-class training data

and obtaining a highly accurate map of the target class is

tricky.

The objective of extracting one particular thematic class

is termed as ‘‘single-class or one-class classification’’ (SCC

or OCC) problem (Tax 2001). In SCC, the inclusion or

exclusion of any unknown observation into the one pre-

defined class is decided by the closeness or matching

threshold. That means unknown observation will only be

accepted if the distance with the target class is less than the

closeness threshold. As a consequence, the classifier per-

formance is highly dependent on the choice of threshold

identification method and usefulness of any method in

terms of minimum error rate is dependent on the specific

application (Mack et al. 2014). Therefore, both threshold

selection and resulted thematic class must be evaluated

using a reference dataset.

The primary objective of this study is to test the

potentiality of MCC and SCC approaches to extract the

mountain agriculture extent of Himachal Pradesh, India,

using 250-m time-series MODIS NDVI. In this regard, two

nonparametric algorithms, i.e., minimum distance to mean

(MDM) and spectral angle mapper (SAM), have been used

in MCC approach, and Euclidean distance (ED) and SAM

have been used in SCC approach. Finally, the accuracy of

the extracted agriculture maps has been evaluated using

random sample point verified with Google Earth (GE)

image and using already available high-resolution agri-

culture map through binary error matrix.

Methodology

Study Area and Data

Himachal Pradesh, one of the mountain states situated in

northern India, was chosen as a study site. Total geo-

graphical area of Himachal Pradesh is 55,673 Sq. km and

extends between 33�230N to 33�150N latitude and 75�150E
to 79�000E longitude (Fig. 1). Despite the mountainous

location, strong altitudinal variability, topographic com-

plexity and climatic diversity, Himachal Pradesh is the

third fastest economically growing state of the country.

Agriculture is one of the major contributing sectors after

hydroelectric and tourism toward total state gross domestic

product, and about 16.9% of the total geographical area

(TGA) of the state is under agriculture practice (12.9% of

TGA under cultivated area and 4% of TGA under horti-

culture area) (DES 2015). However, despite great impor-

tance, the agriculture growth of the state is under stress

(Basannagari and Kala 2013; Singh et al. 2016) and,

therefore, an efficient and timely monitoring approach is

required.

MODIS Terra (MOD13Q1 Version 5) NDVI having

250-m spatial and 16-day temporal resolution is used as a

primary input data in the study. The study was carried out

in 1-year (2012) time-series dataset, and therefore, a total

of 23 composites of the h24v05 grid were acquired from

the LP-DAAC Web site. Though MODIS provides the

best-quality product at the 16-day interval through maxi-

mum value compositing technique, it is not 100% error free

and additional filtering is required to clean the inherited

noise. Therefore, a temporal moving window-based gap-

filling filter was applied to remove unwanted drops and

then smoothed using discrete Fourier transform to reduce

high temporal variability (Jakubauskas et al. 2001; Jega-

nathan et al. 2010). DFT is advantageous over other

competitive technique due to the requirement of less

number of model parameters (Atkinson et al. 2012).

The high-resolution (30 m) land use–land cover data

(i.e., global land cover [GLC]-30 m) over Himachal Pra-

desh were downloaded from www.globallandcover.com

(Chen et al. 2015). The cultivated land class extracted from

GLC-30 m data has been used as reference data. The cul-

tivated land class covers lands used for agriculture, horti-

culture and gardens, including paddy fields, irrigated and

dry farmland, vegetation and fruit gardens. ASTER global

digital elevation model (GDEM) having 30-m spatial res-

olution was used to extract elevation information of

Himachal Pradesh.

The current study is mainly focused on agriculture land

use mapping of Himachal Pradesh. From the initial analysis

using GLC-30 m agriculture area and ASTER DEM, it was

observed that region above 2700 meters of elevation covers

about 54% of TGA, but contains a negligible amount of

agriculture area (0.34% of TGA). Therefore, all the pixels

above 2700 m elevation in MODIS NDVI composite were

masked out to save computation and analysis time of the

study and all the further processing was carried out on a

region below 2700 m elevation.
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Methods

The methodology of the study has three main components,

i.e., (1) multi-class classification, (2) single-class classifi-

cation and (3) validation and comparative evaluation. The

schematic illustration of the overall methodology is shown

in Fig. 2. In MCC approach, eight different land use–land

cover classes were predefined, i.e., (1) agriculture, (2)

mixed agriculture, (3) plantation, (4) dense forest, (5)

degraded forest, (6) alpine forest (coniferous), (7) grassland

and (8) waterbody, whereas only three agriculture-related

classes were selected in the SCC approach. As the study

was mainly focused on agriculture area mapping, valida-

tion and evaluation of all the output maps were carried out

on three agriculture-related classes only.

Multi-Class Classification (MCC) Approach

In the MCC approach, selection of training samples is the

first important requirement. The surface pattern of each

class is visible in the high-resolution GE image and helpful

for reference data collection (Clark et al. 2010; Adhikari

and de Beurs 2016), and hence, well-distributed sample

clusters for each of the eight predefined classes were

collected using GE image. As 250-m MODIS NDVI is the

main input data, the edge or boundary of each cluster (or

polygon) may be affected by the class-mixing problem in

coarse resolution pixel. Therefore, each training polygon

was converted into a set of points and points falling at the

edge of the polygon were removed. Then, randomly 75%

of a total number of points in each class was selected as

training point set to classification purpose, and the

remaining 25% was retained as test point set for accuracy

evaluation purpose. The training point set was further used

to extract the temporal signatures from Fourier smoothed

NDVI stack. Finally, minimum distance to mean (MDM)

and spectral angle mapper (MCSAM, i.e., multi-class

SAM) classification algorithms were performed using

ERDAS Imagine software. The test point set was used to

calculate the classification accuracy of both of the algo-

rithms. Four accuracy metrics such as user accuracy (UA),

producer accuracy (PA), overall accuracy (OA) and kappa

coefficient were computed using a confusion matrix.

Single-Class Classification (SCC) Approach

In the SCC approach, the temporal signatures of each

agriculture class were used as reference and two different

Fig. 1 Location map of the

study area
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distances or similarity measures, i.e., Euclidean distance

(ED—Eq. 1) (Lambin and Strahlers 1994) and spectral

angle mapper (SCSAM, i.e., single-class SAM—Eq. 2)

(Kruse et al. 1993), have been used to compute the distance

or similarity between reference and unknown observation.
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where N is the maximum number of the temporal bands

(i.e., 23), r and o are the reference and observed signatures,

respectively, and a is the angle (in radian) between the

reference and observed signatures in N-dimensional feature

space.

At first, the pixel-wise calculation was performed using

ED and SCSAM to compute distance maps (d1; d2; . . .dn)

corresponding to each reference signature s1; s2; . . .snð Þ for
an agriculture class (ACi), where n is the maximum number

of signatures in that class. Further, a minimum distance

map MDMACi
ð Þ was computed for the respective agricul-

ture class (ACi) to identify the distance of most likely

reference sample in a pixel as follows:

MDMACi
¼ Minðd1; d2. . .dnÞ: ð3Þ

The class having the lowest or minimum distance is

generally considered as most likely in MCC approach

using nonparametric similarity measure (Rodrigues et al.

2013). However, in the SCC approach (i.e., in the absence

of other LULC class), the accurate detection of an indi-

vidual class largely depends on the proper distance

boundary or closeness threshold. Therefore, an inflection

point (IP)-based approach was used to determine the

closeness threshold (Kaivanto 2008; Frazier and Wang

2011). To identify the IP, a cumulative matching area was

calculated between MDM of a class (i.e., MDMACi
) and

reference agriculture mask (extracted from GLC-30 m) at

Fig. 2 Schematic illustration of the overall methodology of the study
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multiple threshold level. Under an iterative approach,

incremental distance threshold was applied on MDM at

each iteration to extract the area below the threshold, and

the common area with reference agriculture mask was

recorded. The distance threshold of the first iteration was

set to 0 and increased by 0.005 in each iteration. The total

number of iterations was determined as the maximum

value of MDM divided by the threshold increment. Finally,

a cumulative common area curve or cumulative distribu-

tion function (CDF) curve was generated and IP or close-

ness threshold was identified as the position on CDF curve

where the rate of change in curvature reaches to its max-

ima. In this regard, first derivative of CDF curve was cal-

culated using the cumulative common area curve to

identify the maximum rate of change.

Class-wise closeness threshold was then applied to the

MDM to get binary agriculture class mask. The same

process was iteratively applied to compute MDM of each

agriculture class under consideration, and binary class

mask of each class was obtained. All three masks were

merged to get a final agriculture extent map. However, if a

pixel was detected as agriculture in more than one class

during the merging process, then the most likely class was

identified based on minimum distance criteria.

Validation

The accuracy assessment of thematic product is generally

carried out using reference samples either collected

through a ground survey or existing reference data. In this

study, an approach similar to Clark et al. (2010) was

adopted (based on independent random sample point) for

accuracy assessment of agriculture classes obtained from

MCC and SCC approaches. A grid map as per MODIS

pixel size was generated and exported to Google Earth

engine for the ground (proxy) verification purpose. The

random grid was selected as a sample and labeled

according to agriculture type and coverage within corre-

sponding grids and priority given to majority class (Clark

et al. 2010). Grids covering more than 20% of the

Fig. 3 Temporal NDVI signature of eight LULC classes. Training sample set of third iteration was used to compute the mean profile of each

class. Error bar is showing the sample variation (i.e., standard deviation) in each NDVI composite
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agriculture pattern were considered. Finally, pixel-based

information was extracted from each agriculture map using

labeled samples and UA, PA, overall accuracy and Kappa

coefficient were computed from the error matrix.

Results and Discussion

Identifying Best Sample Set in MCC Approach

The classification using each of the two algorithms, i.e.,

MDM and MCSAM, was performed 10 times (i.e., 10

iterations chosen arbitrarily) using 10 different training

(i.e., 75% random point) and test (i.e., remaining 25%

point) point sets to identify the best training and test sample

set. Totally, 1600 points (i.e., 200 points per class) were

used for the final classification purpose. That means, a total

of 1200 points were used as training signatures and the

remaining 400 test points were used for accuracy evalua-

tion for each iteration. The mean temporal NDVI signature

of eight LULC classes extracted using the training sample

set of third iteration is presented in Fig. 3. The error

matrix-based accuracy statistics of each iteration (i.e., the

total number of correctly classified samples, overall accu-

racy and kappa coefficient) computed using all eight clas-

ses and only for agriculture-related classes are presented in

Fig. 4. The highest overall accuracy and Kappa have been

obtained in eighth and third iterations for MDM (Fig. 4a)

and MCSAM (Fig. 4b), respectively, when all eight classes

were considered. The accuracy results considering only

three agriculture classes (i.e., agriculture, mixed agriculture

and plantation) showed that sample set 3 (corresponding to

third iteration) provided the best classification accuracy

(Fig. 4c, d) in both classifiers. So, the classified agriculture

area (for three classes) obtained using sample set 3 was

Fig. 4 Graphical illustration of statistical parameters obtained from

the classification map of each iteration. The parameters were

estimated using all eight classes of a MDM-based map and

b MCSAM-based map, and using only three agriculture-related

classes (i.e., agriculture, mixed agriculture and plantation) of cMDM-

based map and d MCSAM-based map
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considered for further comparative analysis with the results

from the single-class approach.

Threshold Specification of SCC Approach

Figure 5 represents an example of inflection point-based

threshold identification concept. In general practice, the

cross section point (i.e., point ‘‘b’’ in Fig. 5) of omission

and commission error curves is considered as an optimum

threshold (Yang et al. 2015; Jiménez-Valverde 2012; Lobo

et al. 2008). However, in this study, the cross section point

(i.e., point ‘‘a’’ in Fig. 5) of cumulative common area curve

and cumulative commission area curve is selected as an

inflection point (IP) or optimum closeness threshold as rate

of change is maximum in corresponding derivative curve

(i.e., point ‘‘c’’ in Fig. 5). Here, the IP is representing the

trade-off or balanced threshold position between the com-

mon area and committed area of a class. That means, if we

choose threshold above the IP location, spatial matching

will increase at decreasing rate and commission error will

increase at increasing rate. Here, it is important to note that

higher distance between training and observe signature

increases the possibility of dissimilarity. Therefore, any

distance threshold higher than IP may classify other land

cover features as target class leading to higher commission

error. So in the current study, consideration of the next

theoretical point (i.e., point ‘‘b’’) as optimum threshold will

be misleading since it will yield higher commission error.

The closeness threshold was computed for all the three

classes for ED and SCSAM and is presented in Table 1.

The significant variation in the closeness threshold repre-

sents that variation present in the temporal pattern (i.e.,

annual NDVI profile) of each class is different in the study,

and hence these three classes cannot be treated as one class.

The higher threshold in agriculture class in both ED and

SCSAM is mainly due to the higher variation in signature

pattern.

Evaluation of Extracted Agriculture Maps

The agriculture maps of Himachal Pradesh from four

algorithms are presented in Fig. 6 [MDM (Fig. 6a),

MCSAM (Fig. 6b), ED (Fig. 6c) and SCSAM (Fig. 6d)]

and GLC-30 m-based agriculture class (Fig. 6e). District-

wise agriculture area extracted from four extracted

Fig. 5 Inflection point (i.e., point a)-based threshold identification concept. All the parameters were extracted using the ED-based agriculture

class. The first-derivative curve is representing the rate of change in common area between two successive iterations

Table 1 Class-wise closeness threshold extracted using inflection

point-based approach for ED and SCSAM

Agriculture class ED SCSAM

Agriculture 0.37 0.12

Mixed agriculture 0.23 0.09

Plantation 0.26 0.07
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Fig. 6 Agriculture map of Himachal Pradesh extracted using multi-class [i.e., a MDM, b MCSAM] and single-class [i.e., c ED, d SCSAM]

classification approach. e The GLC-30 m-based agriculture map was used as a reference to compare f the district-wise agriculture area of four

extracted agriculture maps
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Table 2 Distribution of district-wise accuracy statistics computed from the random sample-based error matrix

District name No. of samples Algorithm Agriculture Mixed agriculture Plantation Overall accuracy Kappa

UA PA UA PA UA PA

Bilaspur 123 MDM 59.09 72.22 71.59 85.14 – – 67.48 0.37

MCSAM 45.45 71.43 68.18 78.95 – – 60.98 0.23

ED 72.73 64.00 77.27 93.15 – – 74.80 0.51

SCSAM 77.27 65.38 80.68 92.21 – – 76.42 0.53

Chamba 229 MDM 33.33 76.92 18.46 52.17 78.05 19.75 40.13 0.17

MCSAM 26.67 72.73 15.38 37.04 80.49 20.75 38.80 0.15

ED 45.45 39.47 43.55 52.94 92.68 31.40 46.49 0.27

SCSAM 78.79 40.00 45.16 53.85 48.78 38.46 55.18 0.34

Hamirpur 143 MDM 40.00 33.33 86.07 90.52 – – 78.32 0.26

MCSAM 20.00 25.00 81.15 91.67 – – 74.83 0.25

ED 70.00 87.50 95.08 93.55 – – 88.11 0.53

SCSAM 70.00 63.64 87.70 95.54 – – 83.92 0.49

Kangra 556 MDM 71.61 88.10 87.45 71.21 53.85 50.00 73.20 0.57

MCSAM 60.65 94.00 85.55 65.98 45.45 38.46 68.71 0.49

ED 72.26 77.78 86.36 78.62 58.33 58.33 73.38 0.58

SCSAM 77.42 70.59 77.07 75.93 55.56 45.45 71.04 0.55

Kinnaur 32 MDM – – – – 73.68 63.64 59.38 –

MCSAM – – – – 84.21 57.14 53.13 –

ED – – – – 47.37 69.23 56.25 –

SCSAM – – – – 31.58 66.67 50.00 –

Kullu 199 MDM – – 44.83 86.67 92.31 69.68 66.83 0.33

MCSAM – – 18.18 57.14 91.45 72.30 64.58 0.25

ED – – 51.72 88.24 79.49 78.15 70.35 0.47

SCSAM – – 37.93 78.57 64.96 88.37 63.82 0.42

Mandi 344 MDM 36.59 73.17 76.43 79.47 86.11 67.39 63.95 0.48

MCSAM 34.15 50.91 67.52 72.11 83.33 69.77 63.08 0.47

ED 50.00 64.06 63.69 88.50 80.56 82.86 63.95 0.50

SCSAM 75.61 46.62 54.78 87.76 27.78 71.43 57.56 0.41

Shimla 372 MDM – – 22.50 56.25 94.59 79.85 72.31 0.46

MCSAM – – 15.00 40.00 95.50 79.40 70.70 0.42

ED – – 20.00 44.44 90.99 82.11 69.35 0.42

SCSAM – – 32.50 65.00 53.04 77.22 48.92 0.18

Sirmaur 160 MDM 48.15 89.66 27.27 68.18 – – 53.13 0.31

MCSAM 37.04 95.24 29.09 50.00 – – 50.00 0.26

ED 44.44 88.89 60.00 73.33 – – 61.25 0.54

SCSAM 46.30 80.65 49.09 77.14 – – 60.00 0.53

Solan 149 MDM 74.19 86.79 18.52 76.92 – – 57.05 0.38

MCSAM 67.74 93.33 24.07 54.17 – – 56.38 0.37

ED 72.58 88.24 50.00 87.10 – – 66.44 0.57

SCSAM 77.42 85.71 38.89 77.78 – – 63.09 0.53

Una 202 MDM 86.54 91.84 68.63 67.31 – – 77.23 0.64

MCSAM 65.38 85.00 76.47 51.32 – – 67.82 0.50

ED 88.46 90.20 74.51 82.61 – – 81.68 0.73

SCSAM 85.58 88.12 66.67 73.91 – – 78.22 0.68

If any class for a given district contains less than 30 samples after verification, then the class was discarded from accuracy estimation for reliable

estimation purpose. Kappa was not computed in Kinnaur District as only one abundant class (i.e., plantation) was observed. The italicized value

represents the district-wise best result
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agriculture map is presented in Fig. 6f. The agriculture

class of GLC-30 m data was upscaled to MODIS pixel size

to compare the area statistics at same spatial scale (Vintrou

et al. 2012). The total agriculture area extracted using

MDM [19.77% of the total geographical area (TGA)] and

MCSAM (21.07% of TGA) in MCC approach was con-

siderably higher than GLC-30 m-based agriculture area

(14.54% of TGA), whereas a close estimate was obtained

from ED (15.23% of TGA) and SCSAM (13.85% of TGA).

Figure 6f shows the consistency among all five maps in

Bilaspur, Hamirpur and Una districts. However, MDM and

MCSAM provide a considerable overestimation than ED

and SCSAM in Chamba, Kullu, Mandi and Shimla districts

in which the concentration of plantation or mixed agri-

culture class is high, whereas an underestimation was

observed, irrespective of the algorithm, in Sirmaur and

Solan districts mainly due to the minimal size of agricul-

ture cluster in these two districts.

Random Sample-Based Evaluation

Table 2 shows the district-wise class detection accuracy

statistics computed using random sample-based error

matrix. Overall, the class detection accuracy of the algo-

rithm used in the SCC approach has been better than the

MCC approach. However, in both MCC and SCC

approaches, SAM algorithm performed poorly than MDM

and ED (Table 2). For agriculture class, SCSAM produces

higher UA in the majority of the districts, but no one

algorithm was able to provide consistent higher PA and

varied district to district. However, ED produces higher UA

and PA for mixed agriculture class extraction, whereas

both UA and PA varied algorithm to algorithm in different

districts in case of plantation class. Considerably lower PA

value (than UA) shows poor detection of plantation class

irrespective of the algorithm. This is mainly due to the

similar temporal signature pattern between plantation

(Fig. 3c) and alpine forest (i.e., coniferous) (Fig. 3f).

Snowfall during the winter season in higher elevation

region reduces the NDVI value, and therefore, sharp valley

occurs during the winter time (i.e., between day 33 and day

97 in Fig. 3c, f). Though minor variation exists between

two temporal patterns, differentiability is very less in terms

of distance and resulted in false detection of plantation

class. Overall, the class detection accuracy of ED under

SCC approach was found better in terms of overall accu-

racy and Kappa coefficient in the majority of the districts,

except Bilaspur, Chamba and Shimla.

Conclusion

This study examined multi-class and single-class classifi-

cation approaches for agriculture area mapping on complex

mountain terrain of Himachal Pradesh using 250-m time-

series MODIS NDVI data. At first, MDM- and SAM-based

multi-class classifiers are used to generate eight class-based

LULC map. Then, two single-class classifiers (ED and

SCSAM) were utilized to extract only agriculture-related

class based on similarity computation. The district-wise

agriculture area from both approaches was compared with

agriculture area from reference global land cover product.

It was found that two SCC-based classifiers performed

better than MCC-based classifiers in the majority of the

districts of Himachal Pradesh. Also, a class-wise assess-

ment carried out using random sample-based error matrix

revealed the better performance (i.e., higher overall accu-

racy and Kappa value among four algorithms) of ED

algorithm under the SCC approach. Our study recommends

that coarse resolution (250 m) time-series imagery can be

successfully used for regional or large area agriculture

monitoring.
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Estel, S., Kuemmerle, T., Alcántara, C., Levers, C., Prishchepov, A.,

& Hostert, P. (2015). Mapping farmland abandonment and

recultivation across Europe using MODIS NDVI time series.

Remote Sensing of Environment, 163, 312–325.

Foody, G. M. (2010). Assessing the accuracy of remotely sensed data:

Principles and practices. The Photogrammetric Record, 25(130),

204–205.

Frazier, A. E. & Wang, L. (2011). Optimal Ranges to evaluate sub-

pixel classifications for landscape metrics. In ASPRS 2011

annual conference, Milwaukee, Wisconsin (pp. 1–12).

Hamandawana, H., Eckardt, F., & Chanda, R. (2005). Linking

archival and remotely sensed data for long-term environmental

monitoring. International Journal of Applied Earth Observation

and Geoinformation, 7(4), 284–298.

Husak, G. J., Marshall, M. T., Michaelsen, J., Pedreros, D., Funk, C.,

& Galu, G. (2008). Crop area estimation using high and medium

resolution satellite imagery in areas with complex topography.

Journal of Geophysical Research: Atmospheres, 113(D14112),

1–8.

Jakubauskas, M. E., Legates, D. R., & Kastens, J. H. (2001).

Harmonic analysis of time-series AVHRR NDVI data. Pho-

togrammetric Engineering and Remote Sensing, 67(4), 461–470.

Jeganathan, C., Dash, J., & Atkinson, P. M. (2010). Mapping the

phenology of natural vegetation in India using a remote sensing-

derived chlorophyll index. International Journal of Remote

Sensing, 31(22), 5777–5796.
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