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Abstract
In high-resolution remote sensing image processing, segmentation is a crucial step that extracts information within the

object-based image analysis framework. Because of its robustness, mean-shift segmentation algorithms are widely used in

the field of image segmentation. However, the traditional implementation of these methods cannot process large volumes

of images rapidly under limited computing resources. Currently, parallel computing models are generally employed for

segmentation tasks with massive remote sensing images. This paper presents a parallel implementation of the mean-shift

segmentation algorithm based on an analysis of the principle and characteristics of this technique. To avoid the incon-

sistency on the boundaries of adjacent data chunks, we propose a novel buffer-zone-based data-partitioning strategy.

Employing the proposed data-partitioning strategy, two intensively computation steps are performed in parallel on different

data chunks. The experimental results show that the proposed algorithm effectively improves the computing efficiency of

image segmentation in a parallel computing environment. Furthermore, they demonstrate the practicality of massive image

segmentation when computer resources are limited.

Keywords High-resolution remote sensing images � Image segmentation � Mean-shift � Parallel computation �
Data-partitioning

Introduction

With the development of high-resolution remote sensing

technology, massive remote sensing images are constantly

appearing, which are mainly reflected in the following

aspects. First, the continuous production of massive data.

Remote sensing data can obtain ground surface phenomena

in real time by space borne or no-load sensors. They can be

continuously transmitted to ground stations as long as

storage space and transmission bandwidth are allowed. For

example, the Chinese domestic satellites, ZY-3 with 2.1 m

resolution and 5 days return cycle, generates an average of

more than 0.5 TB of data per day. Second, the rapid growth

of the amount of single view image. Because of the

enhancement of the sensor technology, the spatial resolu-

tion of the data is improved continuously. While the quality

of the remote sensing image is improved, the data volume

of a single scene is greatly increased. For instance, the

original ZY-3 multi-spectral image can exceed the

500 MB, and its fusion image can even exceed 5 GB.
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Third, the enhancement of the quantitative level of data.

The development of the sensor also improves the spectral

resolution of the image. The data of the new satellites, such

as ZY-3 in China and Landsat 8 in the USA, have reached

10 bits of quantization, which increases the capacity of the

distribution data more than one time. These situations

determine the eventual generation of massive high-resolu-

tion remote sensing data, and thus, how to process them

effectively and quickly has become an important problem

in practical engineering applications.

Among the processing tasks of high-resolution remote

sensing images, segmentation is an important step for

object-based image analysis (Dikshit and Behl 2009;

Blaschke 2010; Wu et al. 2015; Zoleikani et al. 2017). The

segmentation performance directly affects the accuracy and

efficiency of object-based information extraction (Zhou

and Luo 2009; Kavzoglu et al. 2018). Among various

segmentation methods, the watershed algorithm, mean-

shift algorithm, and Definiens’ multi-resolution image

algorithm are widely used in the segmenting high-resolu-

tion remote sensing images (Vamsee et al. 2018). In par-

ticular, the image segmentation algorithm from Definiens is

integrated into eCognition software, and its implementation

is computationally efficient but not fully open source at

present (Baatz et al. 2004). As a statistical approach, mean-

shift segmentation algorithm with open source has been

proven to converge efficiently and provide a robust seg-

mentation (Li et al. 2005). This method has been inten-

sively investigated in recent years, and applied widely in

the fields of cluster analysis, target tracking, image seg-

mentation, image smoothing, and image edge extraction

(Huang et al. 2014; Zalik and Zalik 2009; Mukherjee et al.

2009). However, its traditional implementation cannot

process massive images rapidly under limited computing

resources (Michel et al. 2014, 2015) as the algorithm needs

to transfer all the data to the computer’s internal memory

for a one-time process. Inevitably, the speed of segmen-

tation substantially decreases, which makes it difficult to

rapidly process massive amounts of data. Moreover, the

algorithm may behave unpredictably when computing

resources are limited and the amount of data increases

(Grizonnet et al. 2017; Su and Zhang 2017), while the data

volumes of widely used high-resolution remote sensing

images are increasing because of the development of sen-

sors and storage ability. Therefore, mean-shift segmenta-

tion algorithm needs to be improved to accommodate the

processing requirements of massive remote sensing

images.

In most of the published literatures, the improvements in

mean-shift algorithms have been mainly carried out in the

algorithm itself. A variety of research approaches for better

segmentation such as the selection of different kernel

functions (Wang et al. 2008) and parameter optimization

(Mukherjee et al. 2009) have been investigated deeply.

However, few studies have focused on improving the

algorithm from the perspective of its computational effi-

ciency. In fact, researchers within the field of image pro-

cessing often adopt parallel methods to perform computing

tasks on large amount of data (Shen et al. 2007; Innocenti

et al. 2009; Huang and Guo 2001; Shen et al. 2006). The

processing speed can be increased by using parallel com-

putation, which is always implemented through multi-

threaded computing on a single computer or collaborative

computing on multiple processors connected by an internal

local area network. The ability to process large amounts of

data can be significantly increased using these schemes.

For instance, in an agricultural survey of land-cover types,

the generation of the final maps often needs to segment a

whole scene of a Systeme Probatoire d’Observation de la

Terre 5 (SPOT5) fused image. Generally speaking, the

internal memory requirements of the mean-shift segmen-

tations of such a massive image are not realistic for an

ordinary computer. Therefore, a major concern today is

how to improve the processing performance and then

reduce the hardware requirements. Although much effort

has been made on these improvements, an efficient and

effective segmentation has yet to be developed based on

mean-shift algorithms. A parallel computation with

appropriate data-partitioning may overcome their limita-

tions on computing resource. Hence, in this paper, we

propose a parallel implementation of several computing-

intensive steps within the mean-shift segmentation proce-

dure. In this implementation, we mainly focus on the data-

partitioning methods in the parallel computation. Crucially,

a novel buffer-zone-based data-partitioning strategy is

proposed to avoid the inconsistency on the boundaries of

adjacent data chunks when parallel computation is

employed. The performance analysis demonstrates that the

proposed approach can effectively improve the processing

efficiency and make the segmentation more rapid when

computer resources are limited.

The rest of this paper is structured as follows. ‘‘Method

Implementation’’ section presents the principles of mean-

shift parallel segmentation algorithm. In ‘‘Experiments and

Results’’ section, experiments are performed to evaluate

the effectiveness of the implementation. Conclusions and

future research works are given in final last section.

Method Implementation

Mean-Shift Segmentation

In this paper, mean-shift algorithm is focused owing to its

robustness in image segmentation. As a kind of region-

based statistical segmentation method, this algorithm
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performs a nonparametric density function estimation and

automatic clustering using means that are iteratively shifted

toward the local maxima of the density functions in the

feature space (Comaniciu and Meer 2002). Recently,

because of its accuracy and stability, mean-shift algorithm

has been increasingly applied to the field of remote sensing

image segmentation (Huang and Zhang 2008).

Remote sensing images are typically represented as a

spatial range in a joint feature space. The dimensionality of

the joint domain is d = 2 ? p (two for the spatial domain

and p for the spectral domain). That is, for a point

x ¼ ðxs; xrÞ, spatial domain xs ¼ ðlx; lyÞT denotes the coor-

dinate of a pixel, and range domain xr ¼ ðr1; . . .; rpÞT
represents the spectral signals for its channels. The multi-

variate kernel is then defined using joint density estimation,

Khs;hrðxÞ ¼
C
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where C is a normalization parameter, kð�Þ is the kernel

profile, hs and hr are the kernel bandwidths for the spatial

and range sub-domains. After the kernel function and its

bandwidths have been determined, image clustering can be

achieved through mean-shift filtering. Regions are then

merged according to minimum merging parameter M. Fi-

nally, the vectorization technique is employed to extract

the boundaries of objects through area marking. A more

detailed description of the algorithm can be found in

(Comaniciu and Meer 2002; Huang and Zhang 2008).

The implementation of mean-shift segmentation is

summarized in Fig. 1. As described in this figure, two main

steps are carried out in the (2 ? p)-dimensional feature

space, namely mean-shift filtering and region merging.

First, the image is clustered through the mean-shift filtering

step, which consists of many iterations. In the iterative

computing process, it is necessary to map the values of the

image pixel into a high-dimensional feature space. Hence,

high memory capacity is required during this one-time

process. Therefore, single-core computers cannot handle

the processing tasks of a large amount of data. Parallel

computing is thus necessary to deal with the massive cal-

culations needed in such cases. In addition, each pixel must

be calculated to approximate its ‘‘local mean point’’ in the

mean-shift process. Computational complexity substan-

tially increases along with the increase in pixel volume,

and this becomes a bottleneck that prevents the speed of

segmentation from increasing. Hence, we first consider a

parallel implementation of the computationally intensive

steps in the mean-shift segmentation algorithm.

Implementation of Mean-Shift Parallel
Segmentation

For parallel computation pattern in the field of massive

remote sensing image processing, there are three kinds of

models according to the characteristics of images, namely

pipeline parallelism, functional parallelism, and data par-

allelism. Pipeline parallelism successively moves different

lines in an image into various functional modules in the

procedure, while functional parallelism moves an image

into the various functional modules simultaneously and

performs the calculation at the same time. Data parallelism

divides an image into several sub-blocks and performs the

same operations on each chunk (Zhou 2003). Note that

different processes in pipeline parallelism accomplish dif-

ferent functions and deal with different data. Pipeline

parallelism takes the characteristics of functional paral-

lelism and data parallelism both into account (Shen et al.

2012). If properly designed, this kind of parallelism can

obtain a higher efficiency. However, it is unsuitable for the

current mainstream structure of parallel processing because

of its high hardware requirements. Furthermore, because of

the correlative relationships between various steps in an

algorithm, it is also difficult to neatly make use of func-

tional parallelism for image processing. In fact, owing to

the strong regularity and consistency of image contents, the

pattern of data parallelism is more appropriate for meeting

the tasks of parallel segmentation for high-resolution

remote sensing images. It is also more suitable for current

mainstream parallel computing systems, such as massively

parallel processing (MPP) and cluster systems. Conse-

quently, this study adopts data parallelism to achieve par-

allel segmentation.

Considering these, we collect distributed computing

nodes in the parallel implementation and compute the

computationally intensive steps in the process of mean-

shift segmentation, i.e., the filtering and merging steps, in

parallel to seek better performance. The procedure is set as

follows: (1) Set uniform segmentation parameters in each

computing node to obtain uniform segmentation results. (2)

The master computing node separates the image into n1
chunks and assigns the chunks to different computing

nodes (such as different threads and cluster nodes) to

perform the mean-shift filtering separately. (3) The master

computing node merges the filtered blocks back together to

form a whole clustered image. (4) The main computing

node then splits the filtered result into n2 chunks and

assigns them to different computing nodes to merge the

regions separately. (5) Finally, the master computing node

assembles the merged chunks into areas and marks them as

image objects.
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This process is illustrated in Fig. 2, where the inputs of

the filtering and merging steps are both partitioned into

different data chunks by the master node. After performing

the data partition, the chunks are distributed to different

computing nodes. To speed up processing, different data

chunks are simultaneously filtered and merged in a parallel

computing environment. This parallel computation can be

achieved through multi-threaded computing or multi-point

interface (MPI)-based cluster computing. Therefore, using

this workflow, the key part of the parallel segmentation

algorithm is the data-partitioning strategy, which directly

affects the effectiveness and efficiency of the

parallelization.

Figure 3 gives a specific example of a commonly

employed data-partitioning strategy (strategy I). In this

strategy, divided chunks are, respectively, filtered without

considering their effects on each other, and thus, each has

different global statistical features. After combining the

filtering results, there will be a clear ‘‘merging line’’ on the

final segmentation map (see Fig. 3c). The upper and lower

areas that touch the data partition border do not correspond

to each other, which leads to an inconsistent segmentation

around the boundary.

To avoid this inconsistency, we propose a novel buffer-

zone-based data-partitioning strategy (strategy II) in this

paper, as shown in Fig. 4. In this approach, the original

data block is divided into more than the conventional

number of chunks. Data chunks in the buffer zone are

assigned to assure filtering consistency in the regions close

to the boundary. The divided filtering results (clustered

regions) on each chunk are fused together on the master

node for subsequent region merging. Note that, the height

of buffer zone is set as 2hs. When the filtered chunks are

merged in this step, the pixels in the upper part of buffer

area (i.e., 50% pixels of buffer area) are taken from the

above chunk, while the other 50% pixels in the lower part

are taken from the next chunk. In this way, we can get the

overlaps between the chunk and the dotted buffer in the

second chunk and there is a smooth combination of the

filtering results when the filtering steps are performed on

the boundaries of adjacent data chunks. Then, in the fol-

lowing merging processing, several chunks are also

extracted from the combined filtering result. In this stage,

as no global statistics need to be calculated, a simple data-

partitioning can be employed. However, considering the

integrity of the edges between the partitions, we further

propose a two-step data-partitioning for the merging step.

First, as shown in Fig. 4, several regular data chunks of the

filtered images are partitioned like a chessboard. Gaps are

left between the regular chunks, and they are thus not

related to parallel merge computing. After the chunk

merge, the data in the irregular chunk area (i.e., gap area)

with dotted lines including the intersection area is read for

further processing. Merging step is single-handed on this

Remote sensing image

Construction of d=2+p dimensional feature space

Determination of parameters in kernel function hs and hr

Image clustering through mean-shift filtering 

Determination of the minimum merging parameter M

Region merging

End

Filtering

Merging

Areas marking and vectorization (objects extraction)

Fig. 1 Workflow of the mean-

shift segmentation algorithm
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chunk adjacent with the above regular chunks. To avoid the

merging line, only the results on the regions does not

intersect to the dotted borders are written into the final

map. After the merging has been performed on each chunk,

the final segmentation map can be obtained by combining

the divided results.

Set segmentation parameters

Data partition strategy

Mean-shift 
filtering

Node 1

Merging result 

Areas marking and vectorization (objects extraction)

Data chunk 1 Data chunk 2 Data chunk n1

...

Node 2 Node n1

Mean shift 
filtering

Mean shift 
filtering

...

Region 
merging 

...Region
merging 

Region
merging 

Filtering result

Data partition strategy

Node 1

Data chunk 1 Data chunk 2 Data chunk n2

Node 2 Node n2

...

Filtering

Merging

Remote sensing image 

End

Master  node

Master  node

Master  node

Master  node

Fig. 2 Workflow of the mean-

shift parallel segmentation

algorithm

(a) (b)  (c)  

Fig. 3 Simple data-partitioning strategy (strategy I) for parallel segmentation: a original image, b data chunks, and c final segmentation result
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Following questions are further clarified. In the merging

process, only the distance between each region and its

adjacent regions is computed. If the distance is less than a

given threshold, their neighborhood label will be re-labeled

after merging. So all regions are merged once, and then the

region adjacency table is re-established according to the

region label to prepare for the next round of merging.

Because the homogeneity of the region will change after

the merging, the distance between adjacent regions will

also change greatly, which makes the threshold-based

merging step stopping after several iterations. From the

above regional merging strategy, it can be seen that the

regional distance actually plays a role of merging standard,

and therefore plays a decisive role in the merging accuracy.

Since the phenomenon of different objects with the

similar spectra characteristics is common in multi-spectral

remote sensing images, an appropriate distance measure is

important for improving the final segmentation accuracy.

Thus, for each data chunk in the merging step, the fol-

lowing spectral distance is applied to determine the simi-

larity between adjacent regions, calculated as,

dðs1; s2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½Eds1;s2 �
2
Normlized þ ð1� rs1;s2Þ

2
q

; ð2Þ

where s1 and s2 are the mean pixel values of spectral signal

vectors in two adjacent regions. The first term in the

Eq. (2), ½Eds1;s2 �Normlized, is the normalized Euclidean dis-

tance of two spectral vectors. This term is lower for similar

vectors and is higher for dissimilar vectors. Further, rs1;s2 in

the second term is the correlation coefficient that exploits

the overall shape difference between the reflectance curves.

Combining these two metrics, the resulting measure in

Eq. (2) matches the total difference between two adjacent

regions in the aspects of shape and spectrum (Thenkabail

et al. 2007). Smaller values of d(s1, s2) indicate that two

adjacent regions are more similar and there is a larger

probability of merging with a given threshold. For remote

sensing images with abundant spectral information, this

kind of measure can achieve better merging effect by

making full use of the distance measurement of spectral

information in the variation and direction of each band (van

der Meer 2001).

Experiments and Results

Data Set A

First, several experiments are carried out to illustrate the

effect in Fig. 3 by comparing the results from different

data-partitioning strategies. A multi-threaded programing

technique is adopted on data set A to implement parallel

computation in these experiments. A subset of a panchro-

matic image from IKONOS satellite over Beijing City,

China, is used as the experimental data. As shown in

Fig. 5a, the spatial resolution of the image is 1 m, and the

original image size is 600 9 600 pixels. Figure 5b shows

the parallel segmentation result using data-partitioning

strategy I in the filtering step, where the merging line is

clearly visible in the dotted box. Figure 5c shows the

Chunk Merging

Merging

Chunk Filtering

Chunk Filtering

Chunk Filtering

Filtering 
result

Final  
result

Remote 
sensing 
image

Chunk Merging

Chunk Merging

Chunk Merging

Parallel computation

Fig. 4 Data-partitioning strategy (strategy II) in the mean-shift parallel segmentation algorithm
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parallel segmentation result using strategy II in the filtering

step. The use of the buffer-zone data-partitioning in the

filtering step eliminates significant ‘‘merging line’’ on the

final segmentation map. The result is nearly the same as the

result obtained using a mean-shift without data-partitioning

in segmentation, which improves its credibility.

Data Set B

The experiment on data set B aims to further verify the

performance of the proposed algorithm. A SPOT5 fused

image with 2.5 m spatial resolution and 18,000 9 12,000

pixels (the total amount of this remote sensing image is

close to 1 GB) is used to assess the efficiency of the par-

allel implementation. During the experiment, data-parti-

tioning strategy II is employed in the filtering and merging

steps, respectively.

Figure 6 presents intermediate filtering results in a local

region near the block line with different data-partitioning

strategies. It can be clearly found that the results of chunk

filtering have obvious errors when they are not buffered,

and the effect of filtering result without data-partitioning

can be basically achieved using our buffer-zone-based

data-partitioning strategy. For this local sub-region, the

quantitative analysis of the homogenization degree near the

‘‘merging line’’ is further carried out by calculating the

Euclidean distances Ed of the pixels near the ‘‘merging

line’’ in the filtering results. The statistical results with 87

pixels near the ‘‘merging line’’ are shown in the following

Table 1. The above experimental results reflect the

advantages of buffer-zone-based data-partitioning strategy

in dealing with image segmentation via synergetic con-

sideration of efficiency and accuracy. It provides a good

guarantee for the implementation of subsequent merging

step, and can meet the performance needs of practical

applications.

Figure 7 presents the following parallel merging pro-

cess. That is, five data chunks of this image are extracted

from the filtering result for the region merging steps.

Chunks 1, 2, and 3 are then computed in parallel on

different threads. After that, serial computing rather than

parallel computing is used for the intersecting chunks.

That is, region merging is carried out in order on chunks

4 and 5. The excellent merging result in the final map

further illustrates the effectiveness of the developed

data-partitioning strategies for mean-shift parallel

segmentation.

Figure 8 shows a local sub-region’s merging results

(i.e., segmented image objects) with different data-parti-

tioning strategies. For this local sub-region, we further

calculate the time consumption of merging and the number

of segmented image objects after merging step. From

Fig. 8 and Table 2, we find that the data partition (i.e., the

methods with strategy I and II) has a significant improve-

ment in the speed of operation. In addition, the buffer-

zone-based data-partitioning strategy (i.e., strategy II)

sacrificed some computation efficiency by comparing

strategy I. However, it basically obtains the precision of the

method without data-partitioning whether from visual

comparison or the number of segmented image objects,

while the precision of the method without buffer (i.e.,

strategy I) is the lowest among them, and thus, it is obvi-

ously not suitable for the application of massive image

segmentation. Therefore, it is not difficult to find that the

parallel method in this paper obviously improves the speed

while guaranteeing the accuracy by properly using the

data-partitioning strategy.

To further show the compute performance and accel-

eration effect on massive image segmentation, we com-

pare our method with the multi-resolution image

segmentation algorithm implemented in Definiens’

eCognition software. Two indexes are employed in this

(a) (b)  (c)  

Fig. 5 Comparison of parallel segmentation results using different data-partitioning strategies for the filtering step: a original image,

b segmentation result using data-partitioning strategy I and c segmentation result using data-partitioning strategy II
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comparison, namely the computing time and consump-

tion of internal memory as the focus of this paper is how

to improve the computational performance of segmenta-

tion algorithms. The computer in this experiment is

equipped with an Intel(R) Core(TM) i7-2760QM,

2.40 GHz frequency 4-core (four threads) CPU, 8 GB

memory and a 64-bit operating system. The experimental

results in Table 3 show that the total computing time and

maximum internal memory needed during the overall

parallel segmentation process for routine mean-shift

algorithm are both more than those of eCognition’s

algorithm, while a significant improvement in the per-

formance of these two aspects is achieved by applying

our proposed strategy in mean-shift algorithm (about a

third of the processing time is saved and memory uti-

lization is higher). This indicates that our approach has a

high speed-up ability and processing stability for the

segmentation of large-scale data. Furthermore, because

less necessary internal memory is required during the

processing, our parallel algorithm makes it possible to

segment massive images under limited memory con-

straints. Consequently, the proposed data-partitioning

strategy avoids the limitations of data size and the

problem of insufficient computer memory. Hence, the

proposed technique can be employed as a robust and

rapid segmentation algorithm for massive high-resolution

remote sensing images.

Fig. 6 Comparison of filtering results (true color bands) using

different data-partitioning strategies in a local sub-region. a original

sub-image, b filtering result without data-partitioning, c filtering

result with data-partitioning strategy I, d filtering result with data-

partitioning strategy II

Table 1 Quantitative comparison of the homogenization degree near the ‘‘merging line’’ and time consumption of different data-partitioning

strategy (for sub-image in Fig. 6)

Data-partitioning setup Without data-

partitioning

Data-partitioning strategy I with two

chunks

Data-partitioning strategy II with two

chunks

Time consumption of filtering

(s)

54.2 29.4 30.1

Number of pixels (Ed[ 2) 19 73 35

Number of pixels (Ed[ 10) 8 63 17

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Chunk 5

Fig. 7 Data-partitioning strategy in the merging step for parallel segmentation of data set B
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Conclusions

To increase the speed of segmentation for massive remote

sensing images, this paper proposed a parallel mean-shift

segmentation algorithm. Because the process of the mean-

shift algorithm requires global data analysis, conventional

simple data-partitioning methods will lead to visible

merging lines between different data chunks. According to

the characteristics of conventional mean-shift algorithms,

we presented a buffer-zone-based data-partitioning strategy

in this paper for the parallel computing in the computa-

tionally intensive steps. The experiments showed the pro-

posed data-partitioning strategy can effectively solve the

problem of visible merging lines. It was also demonstrated

to be a feasible and efficient segmentation algorithm for

massive images when computer resources are limited.

Therefore, to a certain extent, the proposed strategy can be

extended to other similar algorithms for image parallel

processing.

Although this paper demonstrated the feasibility of the

proposed method from the perspective of algorithm

implementation, we did not evaluate how to determine the

optimal sizes of the buffer zones and the number of chunks.

Moreover, the performance of our algorithm should be

further evaluated when implemented using MPI-based

cluster parallel computing rather than multi-threaded

Fig. 8 Comparison of merging results (true color bands) using different data-partitioning strategies in a local sub-region. a filtered sub-image,

b filtering result without data-partitioning, c merging result with data-partitioning strategy I, d merging result with data-partitioning strategy II

Table 2 Quantitative comparison of the homogenization degree and time consumption of different data-partitioning strategy (for sub-image in

Fig. 8)

Data-partitioning setup Without data-

partitioning

Data-partitioning strategy I with two

chunks

Data-partitioning strategy II with two

chunks

Time consumption of merging

(s)

13.7 8.3 8.8

Number of segmented image

objects

11,451 11,474 11,459

Table 3 Comparison of the computational efficiency of our segmentation algorithm and eCognition’s algorithm

Method Overall time of parallel segmentation (s) Maximum necessary internal memory (GB)

eCognition’s algorithm 1505 2.7

Routine mean-shift algorithm 1791 3.4

Mean-shift algorithm using our strategy 1027 2
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computing. All these issues are challenging problems

worthy of further investigation.
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