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Abstract
Object-based image analysis (OBIA) has attained great importance for the delineation of landscape features, particularly

with the accessibility to satellite images with high spatial resolution acquired by recent sensors. Statistical parametric

classifiers have become ineffective mainly due to their assumption of normal distribution, vast increase in the dimensions

of the data and availability of limited ground sample data. Despite pixel-based approaches, OBIA takes semantic infor-

mation of extracted image objects into consideration, and thus provides more comprehensive image analysis. In this study,

Indian Pines hyperspectral data set, which was recorded by the AVIRIS hyperspectral sensor, was used to analyse the

effects of high dimensional data with limited ground reference data. To avoid the dimensionality curse, principal com-

ponent analysis (PCA) and feature selection based on Jeffries–Matusita (JM) distance were utilized. First 19 principal

components representing 98.5% of the image were selected using the PCA technique whilst 30 spectral bands of the image

were determined using JM distance. Nearest neighbour (NN) and random forest (RF) classifiers were employed to test the

performances of pixel- and object-based classification using conventional accuracy metrics. It was found that object-based

approach outperformed the traditional pixel-based approach for all cases (up to 18% improvement). Also, the RF classifier

produced significantly more accurate results (up to 10%) than the NN classifier.
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Introduction

The use of hyperspectral data has increased significantly

with the contribution of recent advanced sensors. Hyper-

spectral images with high spectral and spatial resolution

provide great advantages to image processing and classi-

fication processes. For instance, they help to enhance the

ability to distinguish landscape objects, monitor land and

water resources, conduct research at lowers scales. This

advantage derives from the absorption and reflection

determination capacity of specific and narrow spectral

bands (Kamal and Phinn 2011). Optimal selection of

wavelengths, number of bands, and spatial and spectral

resolution can be given as major problems in the use of

hyperspectral imagery in pattern recognition problems

(Jasani and Stein 2002; Bajcsy and Groves 2004).

Although each individual band of hyperspectral images

reveals different characteristics of the objects, these images

contain high degree of redundancy due to the correlation

between adjacent spectral bands (Lee and Landgrebe 1993;

Kavzoglu and Mather 2000). The redundancy in the data

set, resulting from the correlation among neighbouring

spectral bands, affects all types of analyses, which can

result in increased processing time and inter-class confu-

sions (Kavzoglu and Mather 2002). Therefore, fewer bands

providing the highest separability among landscape fea-

tures are required to ensure the highest possible classifi-

cation accuracy. Redundancy and irrelevancy of spectral

bands are main causes for the failure of classification
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process (i.e. insufficient accuracy level). Hence, reduction

of data dimensionality by selecting features from original

spectral space or estimating features from transformed

feature space is required to conduct a successful hyper-

spectral image classification.

The use of large number of spectral bands can have an

adverse effect on traditional classifiers, particularly when

limited ground reference data are available. Also, the

classifiers utilizing only the first-order statistics show poor

performance compared to the classifiers using second-

order statistics (e.g. covariance matrix) (Lee and Land-

grebe 1993). The use of features more than the optimal

one may cause a decrease in accuracy reached by the

classifiers, which is called ‘‘curse of dimensionality’’

(Hughes 1968). Data in high-dimensional feature space

can be defined by a subspace of lower dimensionality

(Kavzoglu and Mather 2002). When statistical classifiers

are used for high-dimensional data, the required number

of sample size reaches a size that cannot be provided in

most studies. Supervised statistical classification methods

require a priori knowledge of certain aspects of land

use/land cover (LULC) classes, including their statistical

distribution. Two crucial features of ground reference

samples for a successful classification are their size and

representativeness (Kavzoglu 2009). Sample size is

directly related to spectral bands and the underlying

assumptions of the algorithm used in modelling the

dataset. Mather (1999) states that sample size should be at

least 30p pixels per class (preferable more) where p is the

number of spectral bands. From this point of view, for a

200-band hyperspectral image at least 6000 samples are

needed for each class to learn the characteristics of the

dataset, which cannot be collected in most cases. In the

current dataset, samples for LULC classes range from 478

to 2455 pixels, none of which satisfies the minimum

number requirement of conventional statistical classifiers.

Advanced non-parametric classifiers, including neural

nets, random forest, support vector machines and decision

trees, have been lately suggested in the processing of

hyperspectral imagery, mainly because they require

smaller number of training samples to distinguish classes

from each other. Principal component analysis (PCA) and

feature selection algorithms are generally applied in the

literature to reduce the number of spectral bands (Hiro-

sawa et al. 1996; Kavzoglu and Mather 2000, 2002;

Agarwal et al. 2007). PCA is a commonly used trans-

formation method for the analysis of remotely sensed

images. It defines new uncorrelated dimensions with their

variability in the data.

Pixel-based classification has become deficient with

the vast increase in spectral information and spatial res-

olution of the images. Pixels are assigned to one of the

categories considering its spectral, textural and contextual

information. Thematic maps produced through a pixel-

based classification can be noisy, since some pixels in the

image can be atypical or mixed pixels. Object-based

image analysis (OBIA) offers unique advantages and

found robust in handling hyperspectral imagery with high

spatial resolution. It is also effective to eliminate ‘salt

and pepper effect’. Instead of pixel specific information,

OBIA considers spectral, spatial and textural features of

objects that are formed by merging similar or homoge-

nous adjacent pixels in the image. OBIA is much closer

to human vision than the per-pixel analysis (Addink et al.

2007). It has been reported by many researchers that

object-based classification outperforms pixel-based clas-

sification (Gao et al. 2006; Kamal and Phinn 2011; Duro

et al. 2012). The crucial stage of OBIA is the segmen-

tation, in that the image is partitioned into homogenous

parts, called image objects, that intrinsically have a

strong correlation with real world features. Segmentation

reduces the detail level and complexity, and makes image

content more suitable for delineation (Lang 2008). These

methods are usually categorised as pixel-based, edge-

based and region-based. Multi-resolution segmentation,

introduced by Baatz and Schäpe (2000), has been the one

of the most widely-used method in the literature. It

requires setting of three main parameters: scale, shape

and compactness. Because of its relative impact on seg-

mentation quality and subsequent classification accuracy,

the selection of scale parameter is of crucial importance

(Kim et al. 2011; Johnson 2013; Kavzoglu et al. 2017).

Unsupervised and supervised scale selection methods

have been proposed to compute optimum scale value for

a given image. ESP-2 tool, developed by Drăguţ et al.

(2014), was used to calculate the optimum value for the

scale parameter. It should be noted that the tool has a

limitation of maximum 30 input bands for estimating

scale parameter, which also requires reduction in the

number of bands.

In this study, performances of parametric and non-

parametric classifiers were tested on 200-band AVIRIS

hyperspectral imagery, namely the publicly available

Indian Pines data, using pixel- and object-based classifi-

cation approaches. Nearest neighbour (NN) algorithm was

selected as parametric classifier while random forest (RF)

was selected as non-parametric classifier. Due to the cor-

relation between the spectral bands and limited ground

reference data, the dimension of the dataset was reduced by

applying PCA and sequential forward selection based on

Jeffries–Matusita (JM) distance. Performances of the

methods were compared using overall accuracy and Kappa

coefficient, and performance differences were analysed

using Chi squared McNemar’s test.
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Study Area and Dataset

The Indian Pines scene recorded by the AVIRIS sensor in

June 12, 1992 was used in this study. The study site covers

a mixed forest-agricultural land in Northwestern Indiana,

USA. The ground truth data which delineates 16 classes

was gathered by Landgrabe and his students in June 1992

(Jackson and Landgrebe 2001). The image bundle with

additional materials including calibration information is

available online at https://purr.purdue.edu/publications/

1947/1. The image is in the size of 145 by 145 pixels with

16-bit radiometric resolution and 20-m spatial resolution.

The data set contains 220 spectral bands ranging from 0.2

to 2.4 lm, 20 of which (bands 104–108, 150–163, 220)

covering the region of water absorption were removed. The

data set is freely available for the purpose of conducting

scientific research. There are 16 LULC classes in the

original Indian Pine image, but 7 classes were discarded

due to their limited sample sizes. As a result, 9 LULC

classes were selected for this research study (Fig. 1).

Approximately 30% samples for each class randomly

chosen from the ground truth as training samples and the

rest was used in validation process. The data set is regarded

as a challenging classification problem because of two

main reasons. Firstly, the crops in the study site (mainly

corn and soybeans) were very early in their growth cycle

(about 5% canopy cover), and secondly the imagery has

moderate spatial resolution of 20 m, causing high number

of mixed pixels (Plaza et al. 2009).

Methodology

Dimensionality Reduction

The dimension of the 200-band dataset was reduced using

sequential forward selection (SFS) and principal compo-

nent analysis (PCA). The SFS method begins by seeking

the best individual band and then evaluates the other bands

one at a time to locate the second band performing best

with the first one. This process ends when a desired number

of bands are selected. This strategy may reach a sub-opti-

mal solution because selected bands cannot be discarded

later, and there may be interactions between the selected

bands (Kavzoglu and Mather 2002). In this study, Jeffries–

Matusita (JM) distance, which is a saturating transforma-

tion applied to the Bhattacharyya distance, was used as a

fitness measure to evaluate the quality of band combina-

tions. Eventually, sequential forward selection process was

applied with JM distance to seek the optimum 30 bands for

the 200-band test image.

Principal Components Analysis (PCA) has been one of

the most commonly applied method for reducing the size of

multi-dimensional data sets. It has been applied for many

purposes including feature extraction and data compres-

sion. PCA method is applied with the intention of removing

the redundancy existing in the data set. Components are

calculated by ranking them in their importance order. Thus,

data sets can be described or visualised by a smaller

number of components with limited loss of information.

Component loadings show the relative positions of the

Fig. 1 Ground reference data

for Indian Pines image
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variables along the new component axes. Given a matrix

X with each column representing a pixel spectrum, the

PCA dimensionality reduction is obtained by Y = PX. Here

P consists of the n eigenvectors corresponding to the

n largest eigenvalues of the covariance matrix of X. The

resulting data matrix Y contains columns representing the

lower-dimensional spectra that still convey the most

information of the original spectra (Yuan 2012).

Object-Based Image Analysis (OBIA)

The main idea behind OBIA is that the image objects

created by grouping adjacent pixels with similar charac-

teristics are taken into consideration instead of millions of

pixels building up the image. One of the important

advantages of the object-based classification approach is

that it is possible to make various analyses considering

many features including neighbourhood, texture, shape,

size of the objects. Image objects are created in the seg-

mentation process that is the first step of object-based

classification. The selection of the segmentation parameters

is crucially important for the determination of appropriate

object sizes for the real Earth objects. If the specified

parameters are not selected properly, larger or smaller

segments are produced, which results in over- or under-

segmentation. The scale parameter is regarded as the most

important parameter that determines the object sizes (Kim

et al. 2011; Myint et al. 2011; Kavzoglu et al. 2017).

Therefore, many studies have been conducted to analyse

the effect of segmentation scale (e.g. Addink et al. 2007;

Duro et al. 2012; Kavzoglu and Yildiz 2014). In the liter-

ature, although several supervised and unsupervised scale

selection methods have been introduced, the scale param-

eter is usually determined by trial-and-error strategy. While

supervised methods use manually segmented reference

maps to compare segmentation results, unsupervised ones

estimated quality scores or indices for the segmented

image. In this study, ESP-2 tool developed by Drăguţ et al.

(2014), an unsupervised scale estimation method, was

employed to estimate optimal scale values for the images.

The tool quickly estimates the scale parameter embedded

in the eCognition Developer software. It automatically

divides the image into segments according to the amount of

increase defined by the user and calculates local variances

between each object. For each scale parameter value, the

calculated local variance graph is plotted. According to

Drăguţ et al. (2010), ‘‘the thresholds in rates of change of

LV (RoC–LV) indicate the scale levels at which the image

can be segmented in the most appropriate manner, relative

to the data properties at the scene level’’. As a result, RoC–

LV value is calculated for each scale parameter using

Eq. (1). The RoC–LV graph consists of continuous and

abrupt peaks and decays, and the first peak in the

chart theoretically shows the optimum scale parameter.

RoC ¼ L� L� 1ð Þ
L� 1

� �
� 100 ð1Þ

where L is the local variance of the target level, L - 1 is

the local variance of the next lower level. According to the

RoC–LV graph, the most significant change observed that

the scale value of the difference is regarded as the optimum

scale parameter. The ESP-2 tool is an improved version

that allows the use of multiple layers up to 30 input bands.

An important point to note here is that all bands of the

200-band hyperspectral image cannot be used in the ESP-2

tool; therefore, a dimensionality reduction process must be

applied. In order to overcome this problem, the JM sepa-

rability analysis was applied to estimate the best 30 band

combination to be used in ESP-2 tool.

Random Forest

The Random Forest (RF) is a non-parametric method that

can be applied to continuous and categorical data. RF is an

improved version of bagging ensemble, and it has been

reported to be superior to conventional classifiers (e.g. Pal

2005; Kavzoglu et al. 2015). According to Breiman (2001),

‘‘random forests are a combination of tree predictors such

that each tree depends on the values of a random vector

sampled independently and with the same distribution for

all trees in the forest’’. The RF classifier, in fact, includes a

number of decision tree classifiers, each of which is trained

with bootstrapped subset of the input samples. In order to

improve diversity among decision-tree classifiers in

ensemble, different training samples are constructed by

applying bagging method. While about 2/3 of the samples

named as in-bag samples are used for training each indi-

vidual tree, the remaining 1/3 samples named as out-of-bag

samples is used to measure the prediction performance of

the RF model. A voting approach, generally simple

majority voting, is applied to combine the outputs of the

different classifiers to make a final prediction a new sample

(Ghosh and Joshi 2014; Belgiu and Drăguţ 2016). The

number of trees or ensemble size and the number of input

features to be used at each node are the main user-defined

parameters of the RF algorithms.

Performance Evaluation

Assessing the quality or accuracy of a thematic map is one

of the important steps of the classification process. Up-to-

now, a variety of accuracy measures including map-level

and class-level metrics have been suggested and applied for

this purpose (e.g. Foody 2002; Liu et al. 2007; Congalton

and Green 2009; Warrens 2015). In this study, standard and
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widely-used accuracy metrics (i.e. overall accuracy, Kappa

coefficient, user’s and producer’s accuracies) were used for

assessing overall and individual class accuracies for the

produced thematic maps. In addition to these measures, a

non-parametric test, namely McNemar’s test, was applied

to compare the classification errors of two classifiers. The

test, which is based on Chi squared distributions, was used

to analyse the statistical significance of the differences

between the overall accuracies produced by the methods.

McNemar’s test is a non-parametric test based on confu-

sion matrix and the test statistic (v2) can be calculated by

following equation (Foody 2004).

v2 ¼ f12 � f21j j � 1ð Þ2

f12 þ f21
ð2Þ

where f12 indicates the number of samples correctly clas-

sified by classifier-1 but misclassified by classifier-2, f21
indicates the number of samples misclassified by classifier-

1 but correctly classified by classifier-2 and -1 indicates

continuity correction. If the estimated statistic is greater

than the critical table value (3.84), the null hypothesis is

rejected. In other words, the accuracy difference for the

classifiers is statistically significant.

Results

In order to overcome two basic limitations, namely the

availability of small training data and 30-band input

requirement of ESP-2 tool, PCA and sequential forward

selection (SFS) based on JM distance was employed for the

AVIRIS hyperspectral imagery. With the reduced number

of spectral bands, it was possible to apply ESP-2 tool for

optimal scale selection. Dimensionality reduction was first

performed by applying the PCA method to the Indian Pines

scene, and the first 19 principal components (PCs) repre-

senting 98.5% of the data were selected. Thus, the size of

the hyperspectral dataset was reduced by about 91%.

Afterwards, SFS strategy using the JM distance as a fitness

function was applied to the dataset with an in-house pro-

gram written in MATLAB (R2013) software. As a result,

the best 30-band combination was determined. Both data-

sets were classified by the NN and RF methods using the

training data (Fig. 1) and related thematic maps were

produced. In the application of RF, the number of trees and

features at each node were determined by cross-validation.

Accordingly, while the number of trees took values

between 150 and 250, the optimal number of features

varied between 4 and 5. Selected 19 PCs and 30-band

combinations were used separately to determine optimal

scale values for segmentation processes. As can be seen

from Fig. 2, scale values of 13 and 14 were determined for

the 19 PCs and 30-band combinations respectively by

assessing the peaks of the RoC–LV graphs.

Multi-resolution segmentation process was conducted

with these particular scale values and then segments were

created for each case. Segmented images were then utilized

to perform classification using the NN and RF classifiers

and corresponding thematic maps of the study area were

produced. It should be mentioned that object-based clas-

sification of the images was performed with Definiens

eCognition (9.1) software. The accuracies of the thematic

maps generated by the pixel- and object-based classifica-

tions were estimated using validation dataset accounting

for about 70% of the ground reference data. In order to

perform an objective accuracy assessment for pixel- and

object-based classifications accuracy metrics were esti-

mated for validation pixels of each LULC class on the

thematic maps. The results are given in Table 1. While

72% overall accuracy was achieved for the 19 PCs by NN

with pixel-based classification, overall accuracy of 78%

was calculated for object-based classification. The differ-

ence was much higher for 30-band JM dataset (increased

from 67 to 84%). When the results of the RF classifier were

considered, the accuracy increased for both cases at a

significant level, reaching to 13% in terms of overall

accuracy. Interestingly, the RF classifier produced more

accurate results for lower dimensional data (i.e. 19 PCs). It

Fig. 2 Scale selection using ESP-2 tool for a 19 PCA components,

b 30 bands by JM. Dotted vertical lines indicate position of the

optimal scale parameters
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is obvious from the results that using first-order statistics in

classification as in the case of NN produced inferior clas-

sification performance. Another reason could be the use of

limited training data for classification process.

The non-parametric RF classifier outperformed the

conventional NN classifier for all cases and produced sig-

nificantly more accurate results in object-based classifica-

tion. Considering that the particular hyperspectral dataset

used in this study includes a challenging task for classifi-

cation, the accuracy level (88%) achieved by the RF with

object-based classification is quite promising when com-

pared to the results presented in the literature (e.g. Yang

et al. 2014; Ghamisi and Benediktsson 2015).

Statistical comparison of the NN and RF results with

regard to the utilized dataset and the classification approach

(i.e. pixel-based and object-based) was also conducted

using McNemar’s test (Table 2). In the table, statistical

testing for the datasets constructed with PCA components

and feature selection were given separately to make sound

comparisons of the classification results. When the calcu-

lated statistical test results were analysed, it was observed

that the differences in performances of all considered

pairwise comparisons were statistically significant at 95%

level of confidence. For example, in the case of the

pairwise comparison of the object-based classification

results of the NN (O-NN) and RF (O-RF) using PCA

dataset, the calculated test statistic was 88.03. The esti-

mated test value was higher than the McNemar’s

table value (i.e. 3.84 at 95% confidence level). Similarly,

calculated test statistic for pixel-based classification results

of NN (P-NN) and RF (P-RF) was 4.93 greater than the

critical table value. Thus, it can be said that the RF clas-

sifier produced significantly different classification results

for the both object- and pixel-based classification com-

pared to NN classifier for the PCA dataset. In other words,

the differences between overall classification accuracies of

RF and NN classifiers (i.e. 10% for object-based and 3%

for pixel-based classification) were statistically significant.

Furthermore, estimated overall accuracies for object-based

classification were statistically different to the pixel-based

classification for all pairwise comparisons in Table 2.

Results undoubtedly show that the use of object-based

classification significantly improved the estimated classi-

fication accuracies of NN and RF for the reduced size

datasets. These findings supported the above-mentioned

classification results that the use of object-based approach

and non-parametric RF classifier led to statistically sig-

nificant improvements in classification accuracy.

The thematic maps generated by object-based and pixel-

based classification for the first 19 PCs are shown in Fig. 3.

As an expected result for pixel-based classification,

Fig. 3a, b has salt-and-pepper look with lower classifica-

tion accuracies. While some classes including woods, hay-

windrowed and grass-tress were well discriminated with

high individual accuracies (estimated user’s and producer’s

accuracies were up to 95%), some classes including soy-

bean-mintill, corn-notill and soybean-clean were mixed up

with other classes (estimated user’s and producer’s accu-

racies were lower the 60%). The quality of segmentation

and resulting object-based classification can be easily seen

from the result produced by the RF method (Fig. 3d). In

particular, fields of woods (user’s accuracy of 97.78%,

producer’s accuracy of 95.00%), soybean-notill (user’s

accuracy of 92.78%, producer’s accuracy of 88.36%) and

corn-mintill (user’s accuracy of 96.11%, producer’s accu-

racy of 77.58%) were much more accurately identified.

Table 1 Pixel- and object-based

classification results
Principal component analysis Jeffries–Matusita distance

Classifier Object-based Pixel-based Object-based Pixel-based

OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa

NN 78.03 0.75 72.16 0.68 83.83 0.81 67.16 0.63

RF 88.03 0.86 74.51 0.71 85.25 0.83 72.16 0.69

Note that NN, RF, OA and Kappa stand for nearest neighbour, random forest, overall accuracy and Kappa

coefficient, respectively

Table 2 McNemar’s test results for PCA and JM selected bands using

pixel- and object-based classifications

Dataset O-RF P-NN P-RF

PCA

O-NN 88.03 21.61 39.19

O-RF 146.46 148.48

P-NN 4.93

JM distance

O-NN 4.36 127.40 64.61

O-RF 158.78 89.40

P-NN 28.19

Note that test values greater than 3.84 indicate that there is a statistical

difference between two classification results at 95% confidence level.

Prefixes of ‘O-’ and ‘P-’ indicate object- and pixel-based classifica-

tions, respectively
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The thematic maps produced for 30-band dataset con-

structed through feature selection by object- and pixel-

based classification are given in Fig. 4. Similar to the

thematic maps in Fig. 3, pixel-based classifications pro-

duced lower accuracies with salt-and-pepper look, and

object-based classifications, especially the one produced by

the RF classifier, produced more accurate map with better

characterization of the LULC fields. Particularly, woods,

hay-windrowed and grass-tress pixels were accurately

classified with the RF classifier (estimated user’s and

producer’s accuracies were up to 95%).

Conclusions

In this study, a hybrid classification system consisting of a

series of consecutive operations that includes dimension-

ality reduction and OBIA using a non-parametric classifier

Fig. 3 Thematic maps produced for the first 19 PCs by a pixel-based NN, b pixel-based RF, c object-based NN and d object-based RF
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was evaluated for the classification of the Indian Pines

hyperspectral image in this study. For this purpose, PCA

and JM distance methods were employed to reduce the

dimension of the hyperspectral imagery. OBIA was applied

to generate segmented objects that were subject to classi-

fication through NN and ensemble-based RF classifiers. In

addition, pixel-based classification using both methods

were utilized as a benchmark method for the performance

comparison. Results of this study revealed some important

findings. First, it was observed that both feature extraction

and feature selection methods were found to be effective

for reducing dimensionality of hyperspectral imagery and

estimated reduction rate were about 85 and 91% with JM

distance and PCA methods, respectively. As a result, both

complexity of the classification model and the process time

required for supervised classification were significantly

reduced. Second, it was obvious that the use of OBIA

improved the classification accuracy up to 13%. This level

Fig. 4 Thematic maps produced for the 30-bands of feature selection by a pixel-based NN, b pixel-based RF, c object-based NN and d object-

based RF
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of improvement was found to be statistically significant by

the McNemar’s test results. In addition, while some LULC

classes were spectrally similar and difficult to distinguish,

result of object-based image classification appeared more

uniform and intact. Third, estimated accuracy results

revealed that the RF classifier could produce more accurate

results compared to the NN classifier for both object- and

pixel-based classifications. Furthermore, conventional NN

classifier produced better classification performances in

object-based classification with increasing feature set size

(i.e. 30 bands), but the best classification performance was

estimated with the use of 19 principal components for the

RF classifier. In other words, the use of non-parametric

algorithm significantly improved the accuracy of both

object- and pixel-based image analyses in the case of

hyperspectral imagery with the limited training dataset. All

in all, classification of hyperspectral imagery requires

advanced non-parametric classifiers and OBIA together

with feature reduction techniques to handle high dimen-

sionality with correlated spectral bands and limited ground

reference data.
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Drăguţ, L., Tiede, D., & Levick, S. R. (2010). ESP: A tool to estimate

scale parameter for multiresolution image segmentation of

remotely sensed data. International Journal of Geographical

Information Science, 24(6), 859–871.

Duro, D. C., Franklin, S. E., & Dube, M. G. (2012). A comparison of

pixel-based and object-based image analysis with selected

machine learning algorithms for the classification of agricultural

landscapes using SPOT-5 HRG imagery. Remote Sensing of

Environment, 118, 259–272.

Foody, G. M. (2002). Status of land cover classification accuracy

assessment. Remote Sensing of Environment, 80, 185–201.

Foody, G. M. (2004). Thematic map comparison: Evaluating the

statistical significance of differences in classification accuracy.

Photogrammetric Engineering and Remote Sensing, 70,

627–633.

Gao, Y., Mas, J. F., Maathuis, B. H. P., Xiangmin, Z., & van Dijk, P.

M. (2006). Comparison of pixel-based and object-oriented image

classification approaches—A case study in a coal fire area,

Wuda, Inner Mongolia, China. International Journal of Remote

Sensing, 27(18), 4039–4055.

Ghamisi, P., & Benediktsson, J. A. (2015). Feature selection based on

hybridization of genetic algorithm and particle swarm optimiza-

tion. IEEE Geoscience Remote Sensing Letters, 12(2), 309–313.

Ghosh, A., & Joshi, P. K. (2014). A comparison of selected

classification algorithms for mapping bamboo patches in lower

gangetic plains using very high resolution WorldView-2

imagery. International Journal of Applied Earth Observation

and Geoinformation, 26, 298–311.

Hirosawa, Y., Marsh, S. E., & Kliman, D. H. (1996). Application of

standardised principal component analysis to land-cover char-

acterisation using multitemporal AVHRR data. Remote Sensing

of Environment, 58(3), 267–281.

Hughes, G. F. (1968). On the mean accuracy of statistical pattern

recognizers. IEEE Transactions on Information Theory, 14(1),

55–63.

Jackson, Q. Z., & Landgrebe, D. (2001). Design of an adaptive

classification procedure for the analysis of high-dimensional data

with limited training samples. Ph.D. thesis, Purdue University.

Indianapolis.

Jasani, B., & Stein, G. (2002). Commercial satellite imagery: A tactic

in nuclear weapon deterrence. Chichester: Springer Praxis

Publishing Ltd.

Johnson, B. A. (2013). High-resolution urban land-cover classification

using a competitive multi-scale object-based approach. Remote

Sensing Letters, 4(2), 131–140.

Kamal, M., & Phinn, S. (2011). Hyperspectral data for mangrove

species mapping: A comparison of pixel-based and object-based

approach. Remote Sensing, 3(10), 2222–2242.

Kavzoglu, T. (2009). Increasing the accuracy of neural network

classification using refined training data. Environmental Model-

ling and Software, 24(7), 850–858.

Kavzoglu, T., Colkesen, I., & Yomralioglu, T. (2015). Object-based

classification with rotation forest ensemble learning algorithm

using very-high-resolution WorldView-2 image. Remote Sensing

Letters, 6(11), 834–843.

Kavzoglu, T., & Mather, P. M. (2000). The use of feature selection

techniques in the context of artificial neural networks. In

Proceedings of the 26th annual conference of the remote sensing

society, Leicester, UK. September 12–14, 2000.

Kavzoglu, T., & Mather, P. M. (2002). The role of feature selection in

artificial neural network applications. International Journal of

Remote Sensing, 23(15), 2919–2937.

Kavzoglu, T., & Yildiz, M. (2014). Parameter-based performance

analysis of object-based image analysis using aerial and

Quikbird-2 images. In Proceedings ISPRS annual photogram-

metry, remote sensing spatial information sciences, II-7 (pp

241–247).

Kavzoglu, T., Yildiz Erdemir, M., & Tonbul, H. (2017). Classification

of semiurban landscapes from VHR satellite images using a

novel regionalized multi-scale segmentation approach. Journal

of Applied Remote Sensing, 11(3), 035016. https://doi.org/10.

1117/1.JRS.11.035016.

Journal of the Indian Society of Remote Sensing (August 2018) 46(8):1297–1306 1305

123

https://doi.org/10.1117/1.JRS.11.035016
https://doi.org/10.1117/1.JRS.11.035016


Kim, M., Warner, T. A., Madden, M., & Atkinson, D. S. (2011).

Multi-scale GEOBIA with very high spatial resolution digital

aerial imagery: Scale, texture and image objects. International

Journal of Remote Sensing, 32(10), 2825–2850.

Lang, S. (2008). Object-based image analysis for remote sensing

applications: Modeling reality—dealing with complexity. In T.

Blaschke, S. Lang, & G. J. Hay (Eds.), Object-based image

analysis: Spatial concepts for knowledge driven remote sensing

applications. New York: Springer.

Lee, C., & Landgrebe, D. A. (1993). Analyzing high dimensional

data. IEEE Transactions on Geoscience and Remote Sensing,

31(4), 792–800.

Liu, C. R., Frazier, P., & Kumar, L. (2007). Comparative assessment

of the measures of thematic classification accuracy. Remote

Sensing of Environment, 107, 606–616.

Mather, P. M. (1999). Computer processing of remotely sensed

images (2nd ed.). Chichester: Wiley.

Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng,

Q. (2011). Per-pixel vs. object-based classification of urban land

cover extraction using high spatial resolution imagery. Remote

Sensing of Environment, 115(5), 1145–1161.

Pal, M. (2005). Random forest classifier for remote sensing classi-

fication. International Journal of Remote Sensing, 26(1),

217–222.

Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J.,

Bruzzone, L., Camps-Valls, G., et al. (2009). Recent advances

in techniques for hyperspectral image processing. Remote

Sensing of Environment, 113(Suppl. 1), 110–122.

Warrens, M. J. (2015). Properties of the quantity disagreement and

the allocation disagreement. International Journal of Remote

Sensing, 36, 1439–1446.

Yang, L., Yang, S., Jin, P., & Zhang, R. (2014). Semi-supervised

hyperspectral image classification using spatio-spectral Lapla-

cian support vector machine. IEEE Geoscience Remote Sensing

Letters, 11(3), 651–655.

Yuan, J. (2012). Remote sensing image segmentation and object

extraction based on spectral and texture information. Ph.D.

Thesis, Ohio State University, Ohio.

1306 Journal of the Indian Society of Remote Sensing (August 2018) 46(8):1297–1306

123


	Dimensionality Reduction and Classification of Hyperspectral Images Using Object-Based Image Analysis
	Abstract
	Introduction
	Study Area and Dataset
	Methodology
	Dimensionality Reduction
	Object-Based Image Analysis (OBIA)
	Random Forest
	Performance Evaluation

	Results
	Conclusions
	References




