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Abstract
Eight spatial interpolation methods are used to interpolate precipitation and temperature over several integration periods in

a local scale. The methods used are inverse distance weighting (IDW), Thiessen polygons (TP), trend surface analysis,

local polynomial interpolation, thin plate spline, and three Kriging methods: ordinary, universal, and simple (OK, UK, and

SK). Daily observations from 17 stations in the Seyhan Basin, Turkey, between 1987 and 1994 are used. A variety of

parameters and models are used in each method to interpolate surfaces for several integration periods, namely, daily,

monthly and annual total precipitation; monthly and annual average precipitation; and daily, monthly and annual average

temperature. The performance is assessed using independent validation based on four measurements: the root mean

squared error, the mean squared relative error, the coefficient of determination (r2), and the coefficient of efficiency. Based

on these validation measurements, the method with smallest errors for most of the integration periods concerning both

precipitation and temperature is IDW with a power of 3, whereas TP has the highest errors. The Gaussian model is found

superior than other models with less errors in the three Kriging methods for interpolating precipitation, but no specific

model is better than another for modeling temperature. UK with elevation as the external drift and SK with the mean as an

additional parameter show no superiority over OK. For precipitation, annual average and monthly totals are found to be the

worst and best modeled integration periods respectively, with the monthly average the best for temperature.
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Introduction

Precipitation is the main source of soil moisture and

drinking water in semiarid areas. Precipitation observations

are crucial for hydrology, meteorology, geology, clima-

tology and environmental monitoring and analysis. How-

ever, it is almost impossible to have stations (measuring

precipitation, temperature, wind, etc.) that cover the whole

area of interest, particularly in areas with no human

activity. Meteorological stations have limited, localized

and dispersed point distributions. Spatial interpolation of

weather parameters is considered to be an important aspect

for most hydrological studies (Lam et al. 2015; Xu et al.

2015). Spatial interpolation is a technique that is used to

estimate values for any distributed variable where none

exists; develop a surface representing elevation, precipita-

tion, temperature, pollution or other environment layers; or

approximate values for any geographic location using

known specific points. Meteorological stations are used as

known locations, and their values are used to estimate (or

predict) the values of a data surface in locations where no

point data exist, as represented in raster grid format.

Spatial interpolation techniques can be divided into

deterministic interpolation models (e.g. IDW, trend surface

analysis or least square regression, radial basis function,

and global polynomial interpolation) and geostatistical

models (e.g. OK, SK, and UK) (Johnston et al. 2001; Wang

et al. 2014). Deterministic models based on the assumption

that the interpolated surface is more influenced by nearby

points and less by distant points and depend on particular

mathematical formulas that control the smoothness of the

interpolated surface. Geostatistical models based on sta-

tistical models which include statistical relationship
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between the points (i.e. Autocorrelation) and rely on the

assumptions that data come from stationary stochastic

process. Spatial interpolation models can also be classified

into three classes based on the method and scale of the

interpolation application: models considered as simple

interpolative, models use ancillary data, and models using

complex models (Yang et al. 2015).

The desired time scale, spatial resolution (Frazier et al.

2016), the density of the station network, and the topo-

graphic complexity (Hofstra et al. 2008) are the leading

factors of determining the complexity of the suitable spatial

interpolation method and making the spatial pattern. Spa-

tial variance varies especially for precipitation as the time

scale varies mainly for annual means (Frazier et al. 2016;

Nalder and Wein 1998; Tveito et al. 2008; WMO 2008).

The uncertainties related to the predictions increase

noticeably as the time integration and station density

decrease. This leads to the need of more complex models

(Tveito et al. 2008; Frazier et al. 2016).

A number of spatial interpolation models have been

created and applied in several fields of spatial interpolation

(Frazier et al. 2016; Hofstra et al. 2008; Brunetti et al.

2014; Goovaerts 2000; Hutchinson 1998; Lloyd 2005;

Wang et al. 2014; Xu et al. 2015). A number of studies has

been conducted in using interpolation methods with a small

number of stations. For example, Dirks et al. (1998) con-

ducted a comparative study applying four spatial interpo-

lation methods for 13 precipitation stations, Keblouti et al.

(2012) compared three methods using 10 stations, and

Wang et al. (2014) compared six interpolation methods

using 12 meteorological stations. These studies used sev-

eral common methods among them such as IDW and some

of uncommon methods such as local polynomial interpo-

lation (LPI) and Spline without applying several parame-

ters and models. Dirks et al. (1998) and Keblouti et al.

(2012) said IDW while Wang et al. (2014) said LPI out-

performed the other methods.

The objective of this study is to compare the ability of 8

different spatial interpolation methods in modelling pre-

cipitation and temperature with different integration peri-

ods, i.e. daily, monthly, and annual total precipitation;

monthly and annual average precipitation; and daily,

monthly, and annual average temperature, in a local scale

with a small number of stations i.e. 17 stations, using dif-

ferent parameters and models for each method.

The methods used are: inverse distance weighting

(IDW), Thiessen polygons (TP), thin plate spline (TPS),

trend surface analysis (TSA), local polynomial interpola-

tion (LPI), ordinary Kriging (OK), universal Kriging (UK)

(sometimes called Kriging with External Drift KED), and

simple Kriging (SK).

Study Area and Data Collection

This study aims to conduct a thorough comparison of

several interpolation methods and identify the best method

for generating precipitation and temperature maps. In the

scope of this study, the word best refers to the model with

the lowest values of errors (i.e. RMSE, and MSRE) and

highest agreement (i.e. r2 and CE) and the worst, on the

contrast, refers to the model with the highest values of

errors and lowest agreement.

Maps are to be generated for three sub-basins called

(coded) 1822, 1801, and 1805, as seen in Fig. 1. These

three sub-basins are part of the Seyhan Basin located in

southwest Turkey. To include all of the influencing stations

(i.e. having spatial correlation) in the area inside the basin

borders, stations were chosen inside and outside the bor-

ders. The area includes parts of four of Turkey’s provinces:

Adana, Kayseri, Kahramanmaras, and Sivas. During the

study period, the sub-basins are: rural, agricultural, not

hydrologically disturbed, and having no water storage

structure. The annual average temperature of the study area

Fig. 1 The distribution of the meteorological stations and the

topographic map of the study area which is located in Seyhan Basin,

Turkey and covers parts of Kayseri, Adana, K. Maras, and Sivas

provinces
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is 9.1 �C, the maximum temperature 29.8 �C observed in

July, and the minimum temperature - 6.8 �C observed in

January.

Observations of 17 stations were collected from DMI

(Devlet Meteoroloji Isleri), the Turkish General Directory

of Meteorology. The stations density is one station per

3000 km2. The data were collected for the period from 1/1/

1987 to 31/12/1994. For every station, the collected data

included total daily precipitation and average daily tem-

perature. In some stations, some missing (non-recorded)

observations were filled using the arithmetic average; they

had no effect on the result due to the low amount of such

instances. A simple statistical table for the collected data

for all of the stations are summarized in Tables 1 and 2.

Methods

In this study, 8 interpolation methods were used with dif-

ferent parameters for deterministic methods and different

models for geostatistical methods. Each method with dif-

ferent parameters and models was applied to every

Table 1 Statistics of the

observed daily total

precipitation (in mm) of 17

stations for the period of

1987–1994

Station no Station name Min Max Range Sum Median Mean Var SD

17162 Gemerek 0 50.6 50.6 3262.4 0 1.12 10.66 3.27

17196 Kayseri Bolge 0 51.2 51.2 3468.3 0 1.19 12.61 3.55

17762 Kangal 0 33.6 33.6 3091.5 0 1.06 8.21 2.87

17802 Pinarbasi 0 24.7 24.7 2894.4 0 0.99 7.67 2.77

17836 Develi 0 57 57 2789.6 0 0.96 9.74 3.12

17837 Tomarza 0 40.2 40.2 3154.5 0 1.08 10.75 3.28

17840 Sariz 0 48.6 48.6 4310.9 0 1.48 17.95 4.24

17841 Gurun 0 58.2 58.2 2510.5 0 0.86 8.72 2.95

17866 Goksun 0 59.1 59.1 4800.5 0 1.64 28.42 5.33

17908 Kozan 0 152.5 152.5 6614.9 0 2.26 61.43 7.84

18053 Tufanbeyli 0 79 79 4427.26 0 1.52 23.48 4.85

18056 Saimbeyli 0 126.8 126.8 7108.8 0 2.43 56.25 7.50

18156 Andirin 0 168 168 10,406.24 0 3.56 140.38 11.85

18269 Feke 0 98.7 98.7 7339.89 0 2.51 65.29 8.08

18455 Bunyan 0 47 47 3945.8 0 1.35 15.53 3.94

18459 Sarioglan 0 34.5 34.5 2987.6 0 1.02 11.00 3.32

18466 Altinyayla (Sivas) 0 59.33 59.33 2730.72 0 0.94 9.52 3.09

Table 2 Statistics of the

observed daily average

temperature (�C) of 17 stations

for the period 1987–1994

Station no Station name Min Max Range Sum Median Mean Var SD

17162 Gemerek - 21 28.6 49.6 26,909.6 10.4 9.21 94.53 9.72

17196 Kayseri Bolge - 16.1 32.2 48.3 29,708.8 11.2 10.17 97.88 9.89

17762 Kangal - 23.2 26 49.2 17,883.3 7.1 6.12 102.30 10.11

17802 Pinarbasi - 19.6 26.9 46.5 21,117.2 8.5 7.23 92.73 9.63

17836 Develi - 16.8 30.7 47.5 30,970.7 11.5 10.60 98.08 9.90

17837 Tomarza - 23.8 26.3 50.1 22,023.9 8.7 7.54 107.48 10.37

17840 Sariz - 17 26.2 43.2 20,749.4 7.7 7.10 86.57 9.30

17841 Gurun - 14.9 28.5 43.4 26,338.8 9.5 9.01 95.54 9.78

17866 Goksun - 21.8 25.6 47.4 24,884.7 9.4 8.52 100.07 10.00

17908 Kozan 0.7 35 34.3 55,738.2 19.2 19.08 59.75 7.73

18053 Tufanbeyli - 18.6 27.5 46.1 27,983.52 10 9.58 102.41 10.12

18056 Saimbeyli - 7.6 29.2 36.8 37,753.7 13.1 12.92 76.04 8.72

18156 Andirin - 13.34 30.9 44.24 35,844.34 12.9 12.27 68.49 8.28

18269 Feke - 6.65 32.2 38.85 43,366.68 14.9 14.84 71.31 8.45

18455 Bunyan - 15.5 27.6 43.1 25,039.6 9.6 8.57 83.95 9.16

18459 Sarioglan - 24.1 28.8 52.9 28,397.3 11 9.72 99.91 10.00

18466 Altinyayla (Sivas) - 21.7 26.03 47.73 22,066.27 8.6 7.55 90.57 9.52
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integration period. The integration periods used are: daily,

monthly, and annual total precipitation; and daily, monthly,

and annual average temperature.

The main steps of this study are (1) convert the daily (i.e.

average for temperature and total for precipitation) obser-

vations for all stations to monthly and annual values; (2)

apply each method considered in this study with a variety of

parameters; and (3) implement cross-validation to assess

the accuracy of the method using the root mean squared

error (RMSE), mean squared relative error (MSRE), coef-

ficient of determination (r2), and coefficient of efficiency

(CE). All of the steps and methods were implemented using

the statistics language R with the exception of exporting

several maps to ArcGIS. A brief description of each method

is introduced in the next section.

Inverse Distance Weighting (IDW)

IDW is a direct deterministic interpolation method that is

broadly applied in spatial interpolation applications. It was

developed based on the assumption that the interpolated

points are the most affected by the nearest points and the

least affected by the most distant points (Wang et al. 2014;

Borges et al. 2016). IDW is a local, exact, and deterministic

method.

The general equation of IDW is as follows:

Ẑ s0ð Þ ¼
XN

i¼0

kiZðsiÞ; ð1Þ

where Ẑ s0ð Þ is the estimated values at location s0, N is the

number of points located around the point to be estimated

used in the calculation, Z sið Þ is the value of the known

points measured at si, and ki is the weight corresponding to

each known point, which is inversely proportional to the

distance between the known points and the estimated point.

The weights are calculated as follows:

ki ¼
d
�p
i0PN

i¼1 d
�p
i0

; ð2Þ

where p is the power, which controls the influence of the

distance between the points on the estimation value; N is

the number of points used in the estimation; and di is the

distance between the point to be estimated s0 and the

known point si (Isaaks and Srivastava 1989; Nalder and

Wein 1998; Borges et al. 2016). IDW was applied with

three power p values: 1, 2, and 3 for all of the integration

periods for precipitation and temperature.

Thiessen Polygons/Nearest Neighbor (TP)

Thiessen polygons, which are named according for its

developer, Thiessen (1911), are considered to be a special

case of the IDW method because only one point, i.e. the

nearest point, is used in the interpolation. A Thiessen

polygon consists of all of the points in a polygon that lie

nearer to the point used for constructing that polygon than

to any another point (Goovaerts 2000). TP is a local, exact,

and deterministic method (Shope and Maharjan 2015).

Thin Plate Spline (TPS)

Thin plate spline was described in detail by (Wahba 1990).

For a bivariate thin plate spline (i.e. one type of TPS)

estimations of Z sið Þ for measured points i ¼ 1. . .N, is

calculated as follows:

Z sið Þ ¼ f sið Þþ 2 sið Þ; ð3Þ

whereas 2 sið Þ represents random errors, which are

assumed to be uncorrelated random errors and independent

with a zero mean and variance r2, and f sið Þ represents an
unknown deterministic smooth function, which can be

estimated by the minimization of the following:

XN

i¼1

Z sið Þ � f sið Þ½ �2þkJdm fð Þ ð4Þ

where f sið Þ is the fitted function values at the ith data point;

k is the so-called regularizer or smoothing parameter,

which controls the trade-off between fitting the data as

close as possible without losing the smoothness (i.e. if k ¼
0 the function models the points exactly with zero noise,

whereas if k is very large, the function will be a hyper-

plane); and Jdm is a measure of the smoothness of function f .

The form Jdm depends on two parameters: the number of

independent variables d and the order of the partial

derivatives m.

Trend Surface Analysis/Global Polynomial
Interpolation (TSA)

TSA fits a smooth surface to measure points using a

mathematical function. Over the area to be estimated, the

surface of TSA changes gradually from one region to an

adjacent region, and it has the ability to obtain a global

trend in data. TSA utilizes all of the measured points to

interpolate the surface in contrast to several other methods,

such as IDW and LPI (i.e. briefed in the next section),

which use a specific subset of measured points (Wang et al.

2014). TSA/GPI is considered to be a global, inexact,

deterministic method.

The principle of TSA/GPI is that the entire study area is

presented by a formula that estimates the value Ẑ sið Þ at any
location based on the Xi;Yi coordinates of that location.

The general function is described as follows:

1190 Journal of the Indian Society of Remote Sensing (July 2018) 46(7):1187–1199

123



Ẑ sið Þ ¼ f Xi; Yið Þ ð5Þ

The main objective in TSA/GPI is to use all of the

measured points of the study area to obtain a formula that

best describes that area. Many formulas exist, but the

simplest one that can describe a surface is the first order

bilinear surface:

f X; Yð Þ ¼ b0 þ b1xþ b2yþ e ð6Þ

A second order trend surface can be represented by the

following:

f X; Yð Þ ¼ b0 þ b1xþ b2yþ b3x
2 þ b4xyþ b5y

2 þ e ð7Þ

In Eq. (7), not only are the individual variables with

their parameters present, but so too is the cross product (i.e.

b4xy). Higher order trend surfaces include more cross

product terms, not only higher powers of x and y (Huisman

and By 1999). Regardless of using first, second, or even

third order trend surfaces, the parameters of the used for-

mula are obtained using a regression technique utilizing all

of the measured points of the area of interest.

Local Polynomial Interpolation (LPI)

Global interpolation is based on the assumption that the

entire study area can be represented by a general formula.

However, in many cases, representing the study area by the

same mathematical surface misrepresents the real surface.

This representation prevents variations within the natural

geographic field. LPI was developed to override this

shortcoming.

LPI has the same mathematical representation and fitting

procedure as TSA/GPI, except LPI fits a local formula by

utilizing measured points within a specified area, unlike

TSA/GPI, which uses all of the measured point. The

specified areas can overlap, and the estimated surface value

at the center of that area is the predicted value (Huisman

and By 1999; Wang et al. 2014). LPI is a local, inexact,

deterministic method.

Ordinary Kriging (OK)

Kriging is a local interpolation method that was initially

developed by a mining engineer called D. G. Krige and a

geostatistician called Georges Matheron. The Kriging

method uses a subset of geostatistical interpolation meth-

ods with the assumption that closer points are more likely

to be similar, whereas farther points are more likely to be

different. To evaluate the dissimilarity between points,

Kriging uses a semivariogram. The experimental semi-

variogram ĉ hð Þ is calculated using the following equation:

ĉ hð Þ ¼ 1

N hð Þ
XN hð Þ

i¼1

Z sið Þ � Z si þ hð Þ½ �2 ð8Þ

where h is the lag, Z sið Þ is a set of data points, and N is the

number of pairs of data points separated by h. A model is

used to fit the experimental variogram. In this study, three

models are used to compare the results: spherical, Gaus-

sian, and linear. To save space, only the equation of the

spherical model is mentioned. The spherical model is the

most used model because it generally provides the best fit

to the data. The spherical model is represented by the

following:

c hð Þ ¼ h0 þ hs �
3h

2a
� 1

2

h

a

� �3
" #

for h� a

hs for h[ a

8
><

>:
; ð9Þ

where a is the range, hs is the partial sill, and h0 is the

nugget (Frazier et al. 2016; Webster and Oliver 2007). The

lag h is considered to be the average distance between

neighboring points, and the nugget h0 effect is attributed to

the measurement errors for distances smaller than the data

intervals (Borges et al. 2016).

Several types of Kriging methods have been widely used

in different applications. Ordinary Kriging OK is the most

used type. It is, in general, used as a base method to be

compared with other methods (Goovaerts 2000; Mair and

Fares 2011; Frazier et al. 2016; Sanchez-Moreno et al.

2013). OK assumes that the mean is constant, but its

emphases on the spatial mechanisms are unknown (Isaaks

and Srivastava 1989; Cressie 1990; Borges et al. 2016).

The representation of OK for a spatial process Z sð Þ is as

follows:

Z sð Þ ¼ lþ d sð Þ ð10Þ

where l is an unknown expected value of a random process

and d sð Þ is a zero mean naturally from a stationary random

process with an existing semivariogram.

The OK estimator is described exactly as Eq. (1) (i.e.

the same equation of IDW) with the exception of weights,

which are calculated based on the model fitting on the

variogram differently from IDW, which is calculated

according to the inverse distance. Kriging is an unbiased

and optimal estimator, which means that the weights ki in
all Kriging methods are summed to 1. The weights ki :
i ¼ 1; . . .;N are calculated under the uniform unbiased

condition as follows:

E Ẑ s0ð Þ
� �

¼ E Z s0ð Þð Þ
XN

i¼1

ki ¼ 1; ð11Þ

under the restriction of the minimization of the prediction

error variance r s0ð Þ,
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r s0ð Þ ¼ E Z s0ð Þ � Ẑ s0ð Þ
� �2

: ð12Þ

OK is a local, exact, and stochastic method.

Universal Kriging (UK)

The main assumption of UK is that the data have a sig-

nificant spatial trend, which makes it different from OK,

which assumes no trend (Wang et al. 2014). A secondary

variable is used by UK in the form of external drift or a

trend (such as elevation or temperature), which gives UK

the ability to account for nonstationarity in the data

throughout the study area because there is a linear rela-

tionship between the interpolated variable and the used

external drift, which is assessed locally (Goovaerts 2000;

Frazier et al. 2016). Therefore, UK is sometimes called

Kriging with external drift (KED). The trend or drift has

continuous spatial variation, but is too irregular to be

modelled by a simple mathematical functions. UK uses

stochastic and deterministic components to incorporate the

external variable into the Kriging system to overcome the

irregularity (Webster and Oliver 2007). Taking into

account the two constraints on the weights, UK uses N þ 2

equations to solve for the weights. The estimator of UK or

KED is described as follows:

ẐUK s0ð Þ ¼
XN

i¼1

kUKi z sið Þ ð13Þ

In this method, elevation extracted from the ASTER

DEM (NASA 2016) was used as the external drift with the

Fig. 2 Examples of interpolated

maps of monthly total

precipitation (in mm) for each

of the 8 interpolation methods.

The month chosen as an

example is June 1989
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three models. Elevation used considering that it has high

influence in the variation of the spatial pattern as it varies

between 16 and 3764 m (see Fig. 1).

Simple Kriging (SK)

Sometimes the mean of the random variable can be

assumed according to the nature of the problem. This

knowledge should be used to improve the estimation, and

this can be done by using simple Kriging (SK). SK uses N

equations to solve for N unknowns, and the estimator is

described as follows:

ẐSK s0ð Þ ¼
XN

i¼1

kiz sið Þ þ 1�
XN

i¼1

ki

( )
l ð14Þ

The weights ki are no longer constrained to the sum-

mation of 1, and unbiasedness is guaranteed by addition of

the second part of Eq. (14). For the reason that weights are

not summed to 1, covariances, C, must be used instead of

semivariances, c (Webster and Oliver 2007). Comparing

simple Kriging to ordinary Kriging, simple Kriging is

supposed to produce smaller variance by having the mean

estimated from the observed data.

Fig. 3 Examples of interpolated

maps of monthly average

temperature (in �C) for each of

the 8 interpolation methods. The

month chosen as an example is

June 1989
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Validation

The assessment of accuracy can be performed using a

technique called cross-validation that is the most applied

technique in climate studies. Cross-validation helps in

making decisions about which model is best at estimating

the surface using the measured points (Tveito et al. 2008;

Borges et al. 2016). One of the cross-validation methods is

leave one out cross-validation (LOOC). In this method, one

point is left out of sample data, whereas the other points are

used to estimate the value of the left point. This procedure

continues until a value for each of the original data points

is estimated (Isaaks and Srivastava 1989).

One of the shortcomings of using cross-validation is that

the interpolation model is defined using all of the sample

data, which implies that the validation can be considered to

be not completely independent (Tveito et al. 2008; Borges

et al. 2016). Therefore, different techniques were consid-

ered in this study, including separating the precipitation

station data into 15 stations for interpolation and 2 stations

for validation.

Four different measures used in validating interpolation

methods (Borges et al. 2016; Brunetti et al. 2014; Frazier

et al. 2016; Robinson and Metternicht 2006; Seo et al.

2015) were applied in all of the methods for each inte-

gration period and used for comparing the interpolating

methods: The root mean square error (RMSE), The mean

squared relative error (MSRE), The coefficient of deter-

mination (r2), The coefficient of efficiency (CE).

Results and Discussion

The applied 8 interpolation methods are used to provide an

interpolation map for the whole study area utilizing several

measured points. Therefore, a number of maps were gen-

erated. To save space, as examples, maps of every method

for the monthly total precipitation and monthly average

temperature for 1 month (i.e. June 1989) are shown in

Figs. 2 and 3.

By examining these figures, the differences among the

used methods and their theoretical nature can be clearly

seen. The IDW interpolation map constructs circles or

ellipsoids around the points used for the interpolation, and

every one of these shapes represents a value. These shape

Table 3 Validation measurements: RMSE, MSRE, r2, and CE of daily, monthly, and annual total precipitation (in mm) interpolations

Method Power Daily total Monthly total Annual total

RMSE MSRE r2 CE RMSE MSRE r2 CE RMSE MSRE r2 CE

IDW 1 3.64 1.29 0.69 0.62 22.44 1.55 0.82 0.81 118.49 0.10 0.80 0.69

IDW 2 3.38 1.38 0.73 0.67 19.64 1.38 0.86 0.86 102.10 0.08 0.86 0.77

IDW 3 3.31 1.52 0.73 0.68 18.97 1.46 0.87 0.87 103.13 0.08 0.86 0.76

Degree

TSA 1 3.70 1.39 0.67 0.60 21.90 1.40 0.83 0.82 96.53 0.06 0.81 0.79

TSA 2 3.52 1.52 0.69 0.64 20.97 1.59 0.84 0.84 98.82 0.06 0.87 0.78

TSA 3 3.60 2.21 0.71 0.63 21.92 2.24 0.86 0.82 142.15 0.15 0.80 0.55

LPI 1 3.43 1.35 0.71 0.66 19.75 1.12 0.86 0.86 93.81 0.06 0.86 0.80

LPI 2 3.49 2.46 0.72 0.65 21.82 2.20 0.85 0.82 130.90 0.14 0.82 0.62

TP 5.36 5.19 0.65 0.17 44.97 4.88 0.82 0.25 358.32 0.49 0.79 - 1.85

TPS 3.51 1.82 0.70 0.64 20.20 1.89 0.86 0.85 114.92 0.09 0.77 0.71

Model

OK Sph 4.58 3.17 0.47 0.11 23.44 1.85 0.79 0.73 112.56 0.11 0.30 - 0.73

OK Gau 3.15 1.25 0.67 0.63 19.17 1.47 0.86 0.84 104.05 0.09 0.84 0.55

OK Lin 3.29 1.55 0.62 0.59 20.15 1.34 0.82 0.81 147.49 0.10 0.54 0.52

UK Sph 5.22 3.02 0.44 - 0.06 28.49 2.38 0.68 0.61 285.36 0.44 0.01 - 2.63

UK Gau 3.21 1.65 0.62 0.56 19.08 1.82 0.84 0.83 126.61 0.13 0.73 0.48

UK Lin 3.13 0.98 0.65 0.63 19.87 1.67 0.82 0.81 137.20 0.10 0.63 0.58

SK Sph 3.21 0.14 0.46 0.38 23.60 1.48 0.75 0.72 173.28 0.20 0.44 0.27

SK Gau 2.53 0.13 0.57 0.56 20.26 1.40 0.81 0.80 132.73 0.13 0.61 0.43

SK Lin 2.76* 0.13 0.53 0.51 23.96 1.24 0.72 0.72 164.17 0.21 0.45 0.35

*Bold numbers are the lowest in RMSE and MSRE and the highest in r2 and CE
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values decrease, going further from the center, which

highlights the theoretical background, as represented by

Eqs. (1) and (2). The Thiessen polygon interpolation map

shows that every known point is represented by a polygon,

which gives it a district nature. The LPI map is different

from the TSA map in that the former has local shapes

separated from the entire area and has internal disconti-

nuities due to the local nature of the method. TSA uses one

formula to model the whole area, whereas LPI uses many

formulas in several parts of the area. The three maps of the

Table 4 Validation measurements: RMSE, MSRE, r2, and CE of daily, monthly, and annual average temperature (in �C) interpolations

Method Power Daily average Monthly average Annual average

RMSE MSRE r2 CE RMSE MSRE r2 CE RMSE MSRE r2 CE

IDW 1 2.91 2.26 0.97 0.96 2.19 0.67 0.98 0.97 0.79 0.01 0.68 0.65

IDW 2 2.67 1.87 0.97 0.96 2.00 0.52 0.99 0.98 0.90 0.01 0.68 0.54

IDW 3 2.48 1.53 0.97 0.97 1.80 0.37 0.99 0.98 0.85 0.01 0.75 0.59

Degree

TSA 1 3.91 6.73 0.93 0.92 3.37 1.76 0.94 0.94 2.48 0.07 0.15 - 2.48

TSA 2 3.80 5.11 0.94 0.93 3.26 1.06 0.95 0.94 1.75 0.03 0.62 - 0.74

TSA 3 3.73 2.71 0.95 0.93 3.22 0.92 0.96 0.94 1.02 0.01 0.73 0.41

LPI 1 2.55 1.71 0.97 0.97 1.82 0.34 0.99 0.98 0.75 0.01 0.83 0.68

LPI 2 3.14 1.67 0.96 0.95 2.56 0.32 0.98 0.96 1.54 0.02 0.73 - 0.34

TP 4.32 8.37 0.93 0.91 3.80 1.87 0.94 0.92 3.42 0.14 0.14 - 5.63

TPS 3.08 3.60 0.96 0.95 2.40 0.92 0.98 0.97 1.26 0.02 0.87 0.10

Model

OK Sph 2.82 18.39 0.91 0.90 2.13 1.84 0.94 0.91 0.31 0.00 0.95 0.93

OK Gau 2.15 3.56 0.96 0.96 1.30 0.80 0.98 0.98 1.48 0.02 0.78 - 0.25

OK Lin 2.09 3.25 0.96 0.96 1.22 2.82 0.99 0.98 1.11 0.02 0.97 - 0.45

UK Sph 2.01 4.36 0.94 0.94 1.40 2.07 0.96 0.96 1.03 0.01 0.71 - 0.01

UK Gau 1.44* 2.70 0.96 0.96 0.86 0.43 0.98 0.98 0.87 0.01 0.86 0.29

UK Lin 1.99 3.68 0.95 0.95 1.48 2.16 0.97 0.96 0.95 0.01 0.75 0.14

SK Sph 3.62 8.12 0.94 0.94 2.80 8.43 0.96 0.96 0.65 0.01 0.83 0.76

SK Gau 2.63 3.69 0.97 0.97 1.76 2.54 0.99 0.98 1.50 0.03 0.78 - 0.27

SK Lin 2.64 3.65 0.97 0.97 1.69 3.13 0.99 0.98 1.23 0.02 0.78 0.14

*Bold numbers are the lowest in RMSE and MSRE and the highest in r2 and CE
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Kriging methods (i.e. OK, UK, and SK) look similar, with

slight differences in the values in some parts of the study

area. For example, for the precipitation monthly maps

shown in Fig. 2, OK has slightly higher values in the upper

middle part of the study area, whereas SK has slightly

lower values in the center of the study area. In the tem-

perature maps shown in Fig. 3, UK has slightly lower

values in the right part of the study area than in SK and

UK.

After obtaining the results of the interpolation of each

method, cross-validation measurements were obtained to

make comparisons and identify the capability of these

methods to spatially interpolate each weather parameter in

several integration periods with a small number of stations.

The obtained measurements are summarized in Tables 3

and 4. r2 and normalized CE (CE was normalized in the

figures to have comparable values) are shown in Figs. 4, 5,

6 and 7 to provide a better visual comparison.

According to the Figs. 4, 5, 6 and 7, TP has the lowest

values of r2 and CE for both precipitation and temperature,

which may be due to the district nature of this method.

Looking at Tables 3 and 4, TP has the highest values of

RMSE and MSRE, which means that this method per-

formed the worst. Similarly, the OK method with a

spherical model has a poor performance for both precipi-

tation and temperature in all of the integration periods.

Notwithstanding the high r2 values for the average tem-

perature in all the integration periods, it has low values of

CE and high values of MSRE and RMSE.

IDW with a power of three is identified as the best at

modelling precipitation. This finding is not consistent with:

(Apaydin et al. 2004), who found that in 19 studies, IDW

was not recommended (i.e. mentioned in his research) for

interpolating precipitation, except in one, and (Wang et al.

2014) who found LPI outperformed IDW. On the contrast,

this finding agrees with (Dirks et al. 1998; Keblouti et al.

2012). IDW was also found to be the best method for

interpolating temperature, with the highest (high r2 and CE

and low RMSE and MSRE) validations.
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TPS can also be considered to be a well-behaving model

because it has high values for all of the integration periods,

except CE values for the temperature, which are slightly

low. Among the Kriging methods, OK, UK, and SK all

with the Gaussian model performed better by having less

error and higher agreement in modeling precipitation for

the various integration periods, which indicates that the

Gaussian model better models the precipitation data than

the two other models used. However, OK with the linear

model, UK with the Gaussian model, and SK with the

linear model have higher results in modeling the temper-

ature, which gives preference, in general, to the linear

model for the temperature data.

Even though, the elevation was used as an external drift

with hope of improving the result, as in (Goovaerts 2000;

Moges et al. 2007), UK with the three models has shown

no advantage, similar to the findings of (Frazier et al. 2016;

Wang et al. 2014; Mair and Fares 2011), in comparison

with OK and SK.

In terms of integration periods, the annual cross vali-

dation results have shown instability in the interpolation

methods unlike the daily and monthly results, which

changed together in most of the methods. Monthly average

temperature have the highest r2 values, whereas monthly

total precipitation and monthly average temperature have

the highest CE. In precipitation, the best interpolated

integration period is the monthly total, whereas the

monthly average of temperature is the best in most of the

used methods with the various parameters.

Specifically, the values of the cross-validation mea-

surements slightly change from method to method and

from one integration period to another. In one method,

considering a specific measurement can be found as having

the lowest error while in another measurement having the

highest in comparison with other methods, so there is no

clear evidence that one method is superior to another at

modeling an area with small number of stations and highly

changing elevation, with the exception of the TP, IDW and

LPI methods. The obvious worst modeling is achieved

using TP, and the best modeling is achieved using the other

two methods.

Conclusion

Eight deterministic and geostatistical spatial interpolation

techniques were used in this study, and 4 cross-validation

measurements were obtained to compare the capability of

the methods and identify the best modeling method of

precipitation and temperature for several integration peri-

ods for the study area. Generally, no method is superior to

the others from one integration period to another. Com-

paring the four validation measurements, IDW with a

power of three is identified as the best modeling of pre-

cipitation and temperature. Not surprisingly, TP had the

worst performance for all of the integration periods and for

the two weather parameters. All the methods are capable of

modeling the different integration periods for both pre-

cipitation and temperature.

All of the methods are better at interpolating the tem-

perature in the different integration periods, due to the

smoothness in the variation of the temperature through the

area. In contrast, precipitation is worse due to the coarse

variation throughout the area.

The used period is limited to 8 years. Therefore, using

longer time series data for both precipitation and temper-

ature is recommended to examine the annual interpolation

in more detail.

UK with elevation as external drift has no advantage in

comparison with SK and OK even though the elevation

which has high range is thought as an influencing factor in

such scale and station network density. Therefore, the use
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of other factors, such as the distance to rivers, slope, and

aspect, is recommended.
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