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Abstract
In this study, we have evaluated the potential use of spectral mapping algorithms in deriving spectrolithological maps of

metasedimentary rocks of Vindhyan group of rocks. In this regard, we have processed visible near infrared (VNIR) and

shortwave infrared (SWIR) bands of Advanced Speceborne Thermal Emission and Reflection Radiometer (ASTER) data

using similarity based spectral mapping algorithms such as spectral angle mapper (SAM) and spectral information

divergence (SID). Laboratory spectra were collected by Fieldspec 3� spectroradiometer for main rock types of study area

and the spectra were resampled to ASTER bandwidth to compare laboratory spectra with image spectra of respective rocks.

Overall matching of image spectra of rocks with their ASTER resampled laboratory counterparts justified the spectral

integrity of these rocks on the image. Therefore, image spectra of rocks were used as end member for deriving spectral

maps using SAM and SID method. These maps were compared with the conventional field based lithological map

(consequently updated using ASTER false colour image composite and band ratio images). SAM spectral map had over all

accuracy of 67.41% and the SID map had overall accuracy of 69.67%. Present study has brought out the fact that spectral

mapping algorithms would be useful in deriving moderate accuracy lithological maps even if the sedimentary rocks are of

close mineralogy and these rocks have very close reflectance spectra within the spectral bandwidth of ASTER sensor.

Spectral maps corroborate well with the discrete geochemical data.

Keywords Confusion matrix � Spectral angle mapper � Spectral information divergence � Spectral absorption feature �
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Introduction

Spaceborne remote sensors have an advantage for their

synoptic viewing capability on capturing information for

reasonably large areas at a time. This was proved advan-

tageous for spatial mapping of rock types of different

geological provenances since the launch of LANDSAT

programs by National Aeronautics Space Administration

(NASA), America (Bhan and Hegde 1985; Meer Van Der

et al. 2012; Sabins 1999). Broad spectral bands of Landsat

Enhanced Thematic Mapper (ETM) were used for mapping

of rock types of different sedimentary rocks for containing

spectrally sensitive iron, clay and carbonate minerals

(Andrews Deller 2006; Dogan 2008; Kavak 2005; Lever-

ington 2010; Mezned et al. 2010; Tangestani and Moore

2000; White et al. 1997). Remote sensing sensors actually

collect spectral radiances in few spectral bands. These

spectral radiances data are further calibrated to reflectance

or emittance for delineating terrain elements and also used

for deriving band rationing and spectral indices. Accuracies

of these information are dependent on sensor parameters

such as spectral resolution (number of spectral bands used
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for collecting spectral information), temporal resolution

(frequency or interval of data collection), spatial resolution

(area of minimum detectable uniton the ground) of data,

radiometric details or degree of quantization with which

spectral information’s are collected. In this regard, band

ratio images have also been coined for delineating different

rock types using Landsat Thematic Mapper (TM), ETM

based bands (Bhan and Hegde 1985; Sabins 1999).

In last two decades, we have witnessed the launch and

extensive utilization of advanced multispectral sensor

known as Advanced Space borne Thermal Emission and

Reflection radiometer (ASTER); which can collect infor-

mation with reasonably significant spectral details coupled

with its moderate spatial resolution and appreciable radio-

metric resolution. In this regard, it is also important to

mention that the capability of hyperspectral speceborne

sensors (sensors collect continuous and contiguous spectral

data in finer spectral bandwidth); which can collect image

with spectral information comparable with the laboratory

spectra. Hyperion, global hyperspectral sensor, which collect

information with 10 nm spectral resolution and 30 m spatial

resolution is operative within visible near Infrared and

shortwave infrared (VNIR–SWIR) spectral domain.

Although, spaceborne hyperspectral sensors have its poten-

tialsfor lithological mapping, but limited swath, coarser

spatial resolution, poor signal to noise ratio (SNR) and

intrinsic optical distortions of these sensors (Smile effect

etc.) limit the prospect of hyperspectral sensors for litho-

logical mapping with higher accuracy than their airborne

counterparts (Kruse et al. 2003a; b; San and Lutfi Suzen

2011). On other hand, multispectral sensors collect spectral

data in few significant spectral bands with larger swath,

better SNR and higher spatial resolution (Chabrillat et al.

2000; Chen et al. 2010). ASTER sensor with nine spectral

bands in VNIR and SWIR domain and five spectral bands in

thermal infrared (TIR) region have provided geologist, the

scope of using spectral remote sensing data for mapping

different rock types. Recent literatures of geological remote

sensing have brought out wide geological research applica-

tions using ASTER data (Hewson et al. 2005; Hubbard and

Crowley 2005; Rowan and Mars 2003; Rowan et al. 2006;

Tangestani et al. 2011; Tommasao and Rubinstein 2007).

Detail records of different spectral indices for mapping

different silicate rocks using ASTER data are also available

in the literature (Kalinowski and Oliver 2004). It was also

shown that ASTER data could delineate carbonate, hydroxyl

mineral bearing and iron mineral rocks effectively and

derived similar accuracy in lithological mapping with ref-

erence to Hyperion data (Pour and Hashim 2014). Further, it

was demonstrated that the classification accuracy of litho-

logical maps derived from ASTER and Hyperion data were

similar to each other in terms of overall accuracy and Kappa

coefficient (Zhang et al. 2007). However, records of ASTER

data utilization for mapping of sedimentary rocks exposed

under tropical weathering set up are limited. ASTER data

were subjected to spectral mapping of different volcanic

rocks in Iran and the accuracy of spectral maps were tested

for selected ground truth areas without including entire area

using conventional lithological map (Hadigheh and Ranjbar

2013) Efficiency of spectral angle mapper method was tes-

ted on ASTER data and results of the mapping was validated

with reference to the image enhanced products like principle

component image composite and band ratio images for

different volcanoclastic and pyroclastic rocks in Golova

region (Gürsoy and Kaya 2017). In recent time, it was

demonstrated that conventional image enhancement tech-

niques such different band combinations, FCC image of

principle component were suitable for mapping pre-rift and

syn rift sedimentary units in Egypt (Youssef et al. 2009) But,

Implementation of spectral mapping algorithm for mapping

sedimentary rocks is a challenge as these rocks are often

known for contrasting textures (grain size varies one rock to

another) but close mineralogy (e.g. Greywacke and mud-

stone are compositionally close). Further, mineralogical

variations within a specific sedimentary unit are gradational.

Sedimentary rocks are easily weathered and often have

poorly preserved exposures in patches under the tropical

weathering set up and chemical weathering (oxidation and

hydration). This often contributes in changing the surface

mineralogy of these rocks. Therefore, in this study, attempt

has been made to use ASTER data for lithological mapping

based on the implementation of two important similarly

based spectral mapping algorithms. These algorithms take

into consideration overall shape of end member spectra and

their contrast rather focusing on diagnostic absorption fea-

ture. These similarity based algorithms are expected to

derive good results when spectra of different rocks have

closely spaced absorption features in wavelength domain.

We have used spectral profiles of sedimentary rocks of

lower Vindhyan Group collected from ASTER image and

these image spectra are compared with the laboratory

spectra of same rock types after resampling them to the

bandwidth of ASTER channels. Once the image spectra and

respective laboratory spectra of each rock type are compared

and proved similar, these image spectra are used in spectral

mapping algorithms and spectral maps thus prepared have

been compared with the geological map prepared using field

survey and supplemented with image interpretation of

ASTER data.

Study Area and General Geology

The study area is bounded by latitude 24�2303300 to

24�2800400 and longitude from 83�3201500 to 83�3704000
(Fig. 1). The study area is situated in North East part of
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Palamu and Garhwa districts, Jharkhand state, India and

Vindhyan metasediments of Proterozoic age. The Vind-

hyan rocks were deposited in intra cratonic basin in

Proterozoic time. Rocks exposed in the study area are

straigraphically related to lower part of Vindhyan groups;

which were deposited under marine environment prevailed

during the initial period of basin formation (Valdiya 2010).

In the study area, limestone for lower basal formation and

Khenjua formation (occur along fold limb) were mapped.

Limestone of Bhawanthapur and sandstone at south west of

Duwarasai area were shown in the Fig. 2. Bhawanthpur

area is known as for the important limestone mine.

Materials and Methods

Data

We used VNIR–SWIR bands of ASTER data for the pur-

pose of present study. The detail specification of ASTER

datasets used for spectral mapping provided in Table 1

(Abrams 2000). We also used the regional geological map

of the study area, prepared by Geological Survey of India

(1:50,000) (GSI, Unpublished) (Fig. 3). We have updated

the reference geological map using the field data collected

along selected traverses and also using the ASTER false

colour composite (FCC) based on image interpretation. In

addition to above, spectral profiles of rocks were collected

in the laboratory used as a reference. Spectral data were

collected using Fieldspec 3� spectro radiometer and

halogen lamp was used as illuminator. This spectrometer is

operative within the spectral domain of 350–2500 nm.

Methods

The entire methodology has been segmented in six parts;

each segment is elaborated in separate sub-sections. These

segments are 1. ASTER data preprocessing and coregis-

tration of geological map (reference) with ASTER data, 2.

Reference geological map updation, 3. Spectral data col-

lection and end member selection, 4. Spectral mapping, 5.

Accuracy assessment, 6. Point geochemical data collection

and analysis to relate them with spectral map. A flow

chart (Fig. 3) is also provided to illustrate the links between

major sequences of the methods followed for spectral

mapping.

Fig. 1 Study area shown with the field points on the ASTER FCC (false colour composite) image. R = 3rd band G = 2nd band B = 1st band).

Field points are the place from where samples were collected for spectral analysis (color figure online)
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Preparation of Reference Geological Map

Field work was carried out along selected traverses to

collect rock samples and also to update existing geological

map. The geological map (1:50,000 scale) was further

modified based on field survey and image interpretation of

ASTER false colour composite image at few places

(Fig. 2). Porcellanite (P) had widely distributed exposures

in the study area (Fig. 4a). It was delineated in the ASTER

FCC image from other rocks based on its bright greenish

tone. Sandstone (S) exposures were delineated from por-

cellanite based on its relatively rough texture (i.e. frac-

tured) with the reddish green in the false color composite

(Fig. 4a). Shale was characterized with blush tint in the

same FCC image. Limestone exposures had brighter tone

and exposures were found in the low lying areas and

characterized with the occurrence of sparse vegetation than

the calcareous shale (Fig. 4a). In the band ratio image

derived using band 6, band 9 and band 8 of ASTER sensor,

limestone was brighter than porcellanite (Fig. 4b). The

updated geological map derived from image interpretation

of ASTER FCC image is illustrated in Fig. 4c.

Preparation of Reference Spectral Database
and Spectral Endmember Selection

Field work was carried out to collect the rock samples for

acquiring spectral profiles and also updating the existing

geological map of the study area. Rock samples were cut

into rectangular chips (size ranges from 500 9 700 to

600 9 700) for collecting the rock spectra. Spectral profiles

of rocks were collected using the Fieldspec 3� spectrora-

diometer using halogen as light source in the laboratory

condition (Fig. 4a). The field of view used for collecting

the spectral profiles was 25� and angle between the source

of light and measurement sensor was kept 45� (this angle is
called phase angle). The approach and methodology fol-

lowed for collecting rock spectra have already been dis-

cussed in the published literatures (Milton et al. 2009;

Guha et al. 2012a, b, 2013). Feature at 0.6 lm in addition

to prominent absorption feature at 2.33 lm (Fig. 5).

Further, these laboratory spectral profiles of rocks were

resampled to ASTER VNIR–SWIR bandwidth (Fig. 4b). It

was observed from the analysis of each end member

spectra that porcellanite and sandstone had their diagnostic

absorption feature in VNIR bands around 0.8 and 0.6 lm
respectively. On the other hand, sandstone was character-

ized with two absorption features in 2.2 and 2.33 lm in

SWIR domain whereas porcellanite was identified with one

absorption feature at 2.33 lm. Limestone had absorption at

2.33 lm in its reflectance spectra. Calcareous shale with Fe

concretion was identified with absorption

Spectral integrity of ASTER derived image spectra of

selected rock exposures of Porcellanite and limestone were

checked based on comparing them with their respective

ASTER resampled counterparts (Fig. 6a, b). It was found

that spectral profiles of these rocks were well translated

from sample to image and the overall shape of ASTER

resampled laboratory spectra matches well with their image

spectra counterpart (Fig. 6a, b). Therefore a mean image

spectrum (mean spectra of different pixels of same rock) of

each rock was used as end member for spectral mapping.

Fig. 2 a Limestone near Bhawanthiput section (N = NORTH).

b Surface expsoure Sandstone at southwest of Duwarsi. c Porcellanite
at the Baligarh area (North West part of the study area). d Shale

exposed near Sindhuria village (south-eastpart of the study area). Top

of the field photos can be understood from the top of the hammer or

following the arrow wriiten with ‘‘T’’. North direction is shown with

arrow and label ‘‘N’’
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Selection of image spectra provides the scope for incor-

porating the spectral variability of each rock across the

spatial domain of their occurrence. For implementing

spectral mapping algorithms, mean image spectra of each

lithounits collected from the few region of interest (ROI)

from the prominent exposures of the rocks.

Fig. 3 Flowchart showing details of the methodology

Table 1 ASTER data specifications

Data product aster L1A Spectral bands Spectral range (lm) Spatial resolution (m) Radiometric resolution (in terms of bits)

VNIR 1 0.5–0.60 15 8

2 0.63–0.69 15 8

3 N 0.78–0.86 15 8

3B 0.78–0.86 15 8

SWIR 4 1.60–1.70 30 8

5 2.145–2.185 30 8

6 2.185–2.225 30 8

7 2.235–2.285 30 8

8 2.295–2.365 30 8

9 2.360–2.430 30 8
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Aster Data Preprocessing

ASTER level 1B data was used for mapping lithology of

the area. At first, ASTER level 1B data were preprocessed

to derive reflectance image. VNIR bands of ASTER data

were calibrated using IARR (Internal Average Relative

Reflectance) method; whereas SWIR bands were calibrated

using Log residual method (ITT 2014). Both the methods

are ‘‘in-scene atmospheric correction’’ method. Calibration

was done for deriving relative reflectance from radiance

data (ASTER level 1B data is georectified radiance data).

The IARR method was used (this method uses mean

radiance of all the terrain element as a normalizing factor)

for deriving relative reflectance of VNIR bands, whereas

log residual (LR) method was used for SWIR bands (Azizi

et al. 2010). The log residual method by normalizing the

radiance to calculate geometric mean for each pixel to

eliminate effect of topography consequently spatial mean

of radiance of all pixels for each band was used to nor-

malize radiance of each pixels of particular band to derive

relative reflectance (ITT 2014). Once, relative reflectance

image was derived, vegetation covers were masked in

ASTER data using the NDVI image derived using 3rd and

2nd band of ASTER data. NDVI greater than 0.5 values

were used as cut off to mask vegetation covers.

Aster Data Processing and Spectral Mapping

For spatial mapping of rocks using spectral characters, we

used spectral mapping algorithms known as spectral angle

mapper (SAM) and spectral information divergence (SID).

In SAM method, spectra of reference and pixel of the

image were considered as vectors and consequently angle

(SAM angle) between these two vectors in that data

dimension space were calculated to measure the spectral

similarity (Chen et al. 2010). In this method, similarity of

reference and pixel spectra was compared based on SAM

angle. As per this method, smaller the SAM angle, better

would be the match/similarity between the target and the

pixel spectra. SAM algorithm was found suitable for sep-

arating targets based on overall shape of the spectra rather

than the specific absorption features (Chen et al. 2010).

Fig. 4 a False colour composite of ASTER image delineating major

rock types (In this FCC, Red = Band 4, Green = Band 3 and

Blue = Band 1 of ASER). Band ratio (band 6 ? band band 9) band 8

used to show the spectral contrast between two mineralogically

similar rocks. L, limestone; P, porcellanite; SH, shale and S,

sandstone (color figure online)
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Fig. 5 Reflectance spectra of

type samples of different rocks

of the study area collected using

Fieldspec 3 spectrometer.

b ASTER resampled

counterpart of laboratory

reflectance spectra

Fig. 6 a Image spectrum of

each of the limestone type

sample is compared with

corresponding ASTER

convolved laboratory spectra.

Limestone, b image spectrum of

each of the limestone type

sample is compared with

corresponding ASTER

convolved laboratory spectra
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SID was also used along with spectral angle mapper (SAM)

for spatial mapping of rock types. SID algorithm calculates

statistical divergence to derive the similarity between ref-

erence end member spectra and pixel spectra (Chang

1999). SID algorithm assumes the spectral feature of mixed

pixel is a random variable and spectral histogram was used

to determine the shape of probability density function

(Chang 1999). The spectral similarity between target and

reference was measured based on the contrast or differ-

ences in the probabilistic behavior between the target and

sensor (Chang 1999). This method was known effective in

using spectral correlation between target and reference as

the key for target delineation. SAM is regarded determin-

istic method while SID is probabilistic methods as it could

accommodate specified tolerance in the spectral variations

of target for spectral delineation in the scale of 0–1 (Chang

1999). SAM and SID were used to derive the lithological

maps (Fig. 7b, c.).

Accuracy Assessment

We used confusion matrix analysis as statistical compar-

ison method of accuracy assessment of automated spectral

maps of rook types with the reference lithological map

derived from field survey and image interpretation (Con-

galton 1991). Confusion matrix was used to find out the

accuracy of spatial distribution of each rock type in each of

the spectral map with respect to the same lithological map.

Based on matrix based analysis, parameters like overall

accuracy, producer accuracy, user accuracy, error of

omission, error of commission were estimated.

Wet Chemical Analysis

We have taken samples from selected points to relate the

spectral map with the broad variation of silica and calcium

carbonate. The rocks of the study area are known for

varying calcium carbonate concentration and silica varia-

tion. For example, calcium carbonate gradually decreases

from limestone to Porecellanite to shale while silica is

expected to increase.

We have carried out simplistic wet chemical analysis of

the samples (IBM 2017). In this method, each of the rock

samples were crushed and sieved into 3–5 mm size. Then

100 g of sample were prepared for each rock after

mechanically grinding it and sieving it. The powdered

sample finally was used for chemical analysis. 500 mg of

powdered sample was taken in a beaker and 25 ml 1:1

Hydrochloric acid was added with it. Then the sample is

dried on hot plate at 250–300 �C for an hour. After this,

5 ml concentrated Hydrochloric acid and 50 ml distilled

water were added to it and boiled on hot plate at 250 �C.
After boiling, the solution was filtered and further it was

collected in 250 ml volumetric flask for estimating CaO,

SiO2 etc. CaCO3 was derived from CaO values assuming

entire CaO was combined with CaO (Table 2).

Fig. 7 a Updated lithological map derived based on ASTER FCC image interpretation and limited field traverses. b Lithological map derived

using spectral angle mapper (SAM) algorithm. c. Lithological map derived using spectral information divergence (SID) algorithm
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Results and discussions

SAM and SID derived lithological maps had moderate

overall accuracy with respect to reference geological

map.SAM map had accuracy 67.41% (Table 3 whereas

SID map had over all accuracy 69.67% (Fig. 7b and c and

Table 3). It was also observed that SID map reflected

overall accuracy slightly higher in comparison to the SAM

map. This was due to the fact that the SAM was deter-

ministic algorithm and it accommodated lesser variability

in the pixel spectra (with respect to end member spectra)

during classification than SID, which was probabilistic

algorithm (Chang 1999). However, both the algorithms

were conceived assuming pixel spectra as vector to high-

light overall spectral variations (Chang 1999). These

algorithms performs well in delineating sedimentary units

which can be mapped based on the overall spectral contrast

within the bandwidth of ASTER data in contrary to using

diagnostic spectral feature based spectral mapping. How-

ever, lower spectral contrast of the rocks within the

bandwidth of ASTER data was responsible for reduced

accuracy (around 70%) for these spectral maps. Lower

spectra contrast of spectral characters of these rock types

was attributed to weathering, in situ land cover developed

above the rocks and intra-pixel mixing of different rocks

resulted due to their gradational facies variations and also

for the coarser pixel size of ASTER than the size of the

preserved exposures. Moreover, while preparing reference

geological map during field survey, it was possible to

integrate the geoscientific knowledge on geological trend

of the exposures, field evidences from geological sections

of river, channel, to extrapolate the boundary of different

rock types beyond the extent of surface exposures (Fig. 7a).

On the other hand, spectral map was derived here based on

spectral signature of pixels from the surface rock expo-

sures. In addition, physical absence of exposure was

another limiting factor for such mapping. Therefore,

accuracy of spectral map on lithology was also controlled

by the extent to which rocks were weathered, type of land

cover developed above each rock type and the distinc-

tiveness of the spectral feature of rock types. It was

observed that calcareous shale were poorly classified in

both the spectral maps as error of omission and error of

commission both were higher for calcareous shale. This

was due to fact that calcareous shale was spectrally similar

with limestone and known for few surface exposures

(Tables 2, 3). This had reduced low producer accuracy for

calcareous shale in comparison to limestone and porcel-

lanite having relatively large exposures and intense

absorption features in their respective reflectance spectra

(Tables 2, 3).

Calcium carbonate variations in the samples occurring

within limestone (1, 2 sample location in Fig. 7c) was

higher than the calcium carbonate concentration in shale

(2) and porcellanite (4, 5). Silica content was higher in

sample occurring within sandstone (6) (Fig. 7c and

Table 4).

Table 2 Statistical comparison of SAM and reference lithological map

Lithounits/rock types Producer’s accuracy (in %) User accuracy (in %) Commission (%) Omission (%)

Accuracy assessment

Limestone 60.11 83.66 16.28 41.47

Sandstone 58.09 67.89 32.46 42.16

Porcellanite 84.48 78.43 23.59 15.55

Calc. shale with Fe concretions 61.45 50.30 49.37 38.51

Overall accuracy = (104,480/154,971) = 67.4191%; Kappa coefficient = 0.5583

Table 3 Statistical comparison of SID and reference lithological map

Lithounits/rock types Producer’s accuracy (in %) User accuracy (in %) Commission (%) Omission (%)

Accuracy assessment

Limestone 65.56 74.21 25.79 34.44

Sandstone 56.95 65.12 34.88 43.05

Porcellanite 83.78 75.25 24.76 16.17

Calc. shale with Fe concretions 63.91 49.02 50.98 36

Overall accuracy = (107,979/154,971) 69.6769%; Kappa coefficient = 0.5747
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Conclusions

Following conclusions may be drawn from the present

study.

1. It has been understood that the spectral maps of

Vindhyan rocks (SAM and SID) derived from the

processing of ASTER data are comparable with the

lithological map derived by conventional method

(derived based on field survey with limited modifica-

tion using satellite image signatures).

2. Both the spectral maps are comparable to each other

and are of moderate accuracy in terms of delineation of

lithological units. This can be attributed to the fact that

the few sedimentary rocks of the area are characterized

with limited surface exposures, and are affected with

the gradational compositional variations (limestone

and calcareous shale). Overall shape of the broad band

spectra of these rocks are also close to each other as the

rocks are mineralogically similar (e.g. Porcellanite,

Calc. shale and limestone all have calcium carbonate

with variable concentration).

3. However, SID based lithological map has slightly

higher accuracy than the SAM map. This is due to the

fact that the probabilistic method like SID takes into

account the statistical variability of pixel spectra using

statistical divergence while comparing image spectra

with the reference end member spectra.

4. Further, accuracy of these spectral maps is also

dependent on the details with which the spectral

signatures of end members (i.e. spectra of each rock)

are recorded in the image (in this case, ASTER image).

Accuracy of these spectral maps is also affected by the

closeness of diagnostic spectral feature in wavelength

domain (i.e. how spectral features are getting over-

lapped with the spectral feature of other rock within

the broad spectral domain of multispectral band of

ASTER).

5. Spectral mixing is generally resulted by weathering,

gradational variation in composition of each sedimen-

tary unit, extent or size of the rock exposures on the

surface. Spectral mixing thought to have contributed in

the variation of image spectra of same rock from one

place to other. This also have negatively affected the

results of spectral mapping algorithms. Spectral map-

ping algorithm (SID method) suitable to accommodate

statistical variation of image spectra using divergence

tolerance would provide better accuracy in spectral

mapping of rock types.

6. Spectrolithological maps derived using spectral map-

ping methods correspond well with the discrete

geochemical data showing variations of calcium car-

bonate (roughly estimated from Cao abundance) and

silica.
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