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Abstract We evaluated the relationships among three

Landsat Enhanced Thematic Mapper (ETM?) datasets,

top-of-atmosphere (TOA) reflectance, surface reflectance

climate data records (surface reflectance-CDR) and atmo-

spherically corrected images using Fast Line-of-Sight

atmospheric analysis of Spectral Hypercubes model (sur-

face reflectance-FLAASH) and their linkto pecan foliar

chlorophyll content(chl-cont). Foliar chlorophyll content as

determined with a SPAD meter, and remotely-sensed data

were collected from two mature pecan orchards (one grown

in a sandy loam and the other in clay loam soil) during the

experimental period. Enhanced vegetation index derived

from remotely sensed data was correlated to chl-cont. At

both orchards, TOA reflectance was significantly lower

than surface reflectance within the 550–2400 nm wave-

length range. Reflectance from atmospherically corrected

images (surface reflectance-CDR and surface

reflectance-FLAASH) was similar in the shortwave infrared

(SWIR: 1550–1750 and 2080–2350 nm) and statistically

different in the visible (350–700 nm). Enhanced vegetation

index derived from surface reflectance-CDR and surface

reflectance-FLAASH had higher correlation with chl-cont

than TOA. Accordingly, surface reflectance is an essential

prerequisite for using Landsat ETM? data and TOA

reflectance could lead to miss-/or underestimate chl-cont in

pecan orchards. Interestingly, the correlation comparisons

(Williams t test) between surface reflectance-CDR and chl-

cont was statistically similar to the correlation between chl-

cont and commercial atmospheric correction model.

Overall, surface reflectance-CDR, which is freely available

from the earth explorer portal, is a reliable atmospherically

corrected Landsat ETM? image source to study foliar

chlorophyll content in pecan orchards.

Keywords Landsat � Chlorophyll content � Remote

sensing � Carya illinoinensis

Introduction

Volatility in the cost of agricultural inputs and outcomes

causes instability in farm profits. This instability mandates

the introduction of new farming approaches such as, pre-

cision agriculture to stabilize the farm economy. Precision

agriculture supports field management practices based on

modern technologies such as yield monitoring instrumen-

tation, geographic information systems and remote sensing

(Seelan et al. 2003).

The use of remote sensing in precision agriculture is not

new (Othman et al. 2014; Xiao et al. 2005). For example,

Othman et al. (2014) found that surface reflectance data

derived from Landsat sensors holds promise for detecting

water deficit in pecan (Carya illinoinensis) orchards.

However, inadequate repeated measurements during the

growing season, coarse spatial and spectral resolution and

atmosphric attentution couldlimit the overall utility of

space-borne remote sensing data (Chander et al. 2009;

Moran et al. 1997; Primicerio et al. 2012).

The atmosphere reduces reflected light from the canopy

and this diminishes reflectance significantly. This lessened
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reflectance reduces the performance of remote sensing

systems (Jensen 2005). However, atmospheric attenuation

may not be a significant issue for specific remote sensing

applications. For example, correcting Landsat TM images

for atmosphere is unnecessary in image classification

studies, but mandatory for those that monitor terrestrial

areas over time (Song et al. 2001).

Algorithms such as, FLAASH, CDRs and dark object

subtraction have been used to reduce the atmospheric

attenuation in satellite sensor data (Butson and Fernandes

2004; Cooley et al. 2002; Othman et al. 2014). FLAASH is

a commercial model and derives its physics-base from the

MODTRAN4 radiative transfer algorithm. This model

potentially improved the accuracy of remotely-sensed data

by providing precise and physics-base derivation of aero-

sol, water vapor column, surface pressure and cloud

overburdens (Cooley et al. 2002). However, atmospheric

correction models require data related to the condition of

the atmosphere at the time the image is acquired (Chry-

soulakis et al. 2010). Collecting atmospheric data is time

consuming, expensive, and not always possible (Chrysou-

lakis et al. 2010). The conversion of at-sensor spectral

radiance to TOA can also be used to reduce image-to-

image variability over time (Chander et al. 2009). How-

ever, TOA reflectance does not account for atmospheric

effects, which can be significant (Chavez 1996) and vari-

able during the growing season.

High spatial and spectral sensors such as RapidEye,

Sentinel-2, and handheld spectroradiometer potentially

detect crop growth, physiology and development during the

growing season (Kross et al. 2015; Othman et al. 2015).

However, input cost could be a drawback to farmer adop-

tion. Landsat sensor data hold promise for detecting pecan

physiological status (Othman et al. 2014). The commercial

FLAASH atmospheric algorithm has been used to process

Landsat sensors images to study pecan physiology (Oth-

man et al. 2014). But, FLAASH requires ground data at the

time the image is acquired and licensing costs. Landsat

ETM? TOA and atmospherically corrected images (sur-

face reflectance-CDR) are freely available from the earth-

explorer portal. However, the reliability of those Landsat

datasets to assess chl-cont in pecan is not known.

Measuring foliar chl-cont is important because it is

associated with abiotic stresses (Huang et al. 2015) and

yield (Ramı́rez et al. 2014), can be used as a proxy for

nitrogen status in trees including pecans (Hardin et al.

2012), and is a rapid and easy nondestructive measurement

to assess the health of trees (Percival et al. 2008). However,

collecting physiological measurements from pecan trees

which can grow to 30 m is quite challenging. Using

remotely-sensed data from Landsat ETM? to detect chl-

cont could speed and scale up the measurements to large

areas. But, estimating chl-cont from space is influenced by

atmospheric conditions and background reflectance

(Daughtry et al. 2000). Accordingly, finding reliable

Landsat ETM? dataset to study foliar chlorophyll content

in pecan can be of great interest. The objective of this study

was to evaluate the usefulness of Landsat ETM? TOA

reflectance, atmospherically corrected images from earth-

explorer NASA data portal (surface reflectance-CDR) and

atmospherically corrected data set using FLAASH model

(surface reflectance-FLAASH) for detecting pecan chl-cont.

Materials and Methods

Study Sites

This studywas carried out in two seasons, fromMay25, 2012

to Nov. 20, 2013 over twomature pecan (Carya illinoinensis

Wangenh. C. Koch) orchards in the Mesilla Valley, New

Mexico, USA. Pecan is the major orchard crop in this area.

Site 1 was located in the northern Mesilla Valley

(32�17006.2500N, 106�50004.2600 W, elevation 1185 m) and

site 2 was at New Mexico State University’s Leyendecker

Plant Science Research Center (32�120 01.1400 N,

106�44030.3200 W, elevation 1173 m). Trees from site 1 were

about 30 years old, 7–10 m wide (canopy), 9–11 m high,

grown in sandy loam soil, and spaced at 6–7 m within rows

and 8–10 m between rows. The orchard was flood-irrigated

once every 16–24 days fromMay toOctober every year. Site

2 trees were 20–30 years old, 4–6 m wide (canopy), 7–9 m

high, grown in clay loam soil, spaced at 6–7 m within rows

and 8 m between rows and flood-irrigated once every

3–10 weeks from May to November every year.

Ground Reference Sampling

Ten trees were selected randomly from both sites for chl-

cont and handheld spectroradiometer hyperspectral mea-

surements (Table 1). Measurements were taken between

11:00 a.m. and 1:00 p.m. Leaf chl-cont was determined

using a chlorophyll meter (SPAD-502 Plus, Minolta,

Japan). SPAD readings were converted to chlorophyll

content using the equation of Percival et al. (2008).

Total chl - cont lg=g FWð Þ ¼ 1:8159 � SPAD0:8809

ð1Þ

Field measurements were synchronized with the over-

passes of the Landsat 7 ETM? satellite acquisition dates.

Remotely-Sensed Data Acquisition and Analysis

We used three Landsat ETM? datasets; TOA, surface

reflectance-CDR and surface reflectance-FLAASH. Field-level

reflectance from the handheld spectroradiometer (ASD,
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Fieldspec Pro 2, Analytical Spectral Devices, Boulder, CO,

USA) was also used to assess the impact of soil background

and atmosphere on the correlation between remotely

sensed data and chl-cont. Cloud free Landsat 7 ETM?

Imagery was identified and downloaded from United States

Geological Survey Global Visualization Viewer (USGS

2015a). Images then were georectified with 1 m ortho-

photography (NAIP 2011) using Environment for Visual-

izing Images (ENVI) 5.0 (Research Systems, Boulder, CO,

USA). TOA reflectance was derived from the imagery

uncalibrated digital numbers using the equation of Irish

(1998):

qTOA ¼ p Lkd
2=ESUNk cos hs ð2Þ

where Lk is the at-sensor spectral radiance at band k, d is

Sun-Earth distance in astronomical units, ESUNk is the

mean solar irradiance for band k and hs is the solar zenith

angle in degrees. For Landsat ETM? surface reflectance,

two data sets were used. The first dataset (surface reflec-

tance-CDR) are atmospherically corrected Landsat ETM?

scenes available from the earth-explorer NASA portal

(USGS 2015b). Landsat surface.

Reflectance-CDR images are atmospherically corrected

using the Landsat Ecosystem Disturbance Adaptive Pro-

cessing System (LEDAPS) program. During image pre-

processing, LEDAPS applies Moderate Resolution Imaging

Spectroradiometer atmospheric correction routines to

ETM? Level-1 images (USGS 2015b). The second

ETM? set was derived using FLAASH atmospheric

correction algorithm in ENVI.FLAASH incorporates

MODTRAN atmosphere models (Matthew et al. 2000). In

FLAASH, United States Standard Atmospheric Model was

used to determine water vapor concentration and Rural

aerosol was the aerosol type. Atmospheric model was

selected according to the known weather and initial visi-

bility data collected from Las Cruces airport and the nearby

weather stations (\5 km from study sites). For aerosol

model, four drop-down list of the standard MODTRAN

aerosol/haze types are available (1) tropospheric, applies to

calm, clear conditions (visibility[40 km) (2) maritime

represents the boundary layer over oceans (3) urban

appropriate for high-density urban/industrial areas and (4)

rural which represents aerosols in areas not affected by

high urban density. Because both sites were located in

areas not strongly affected by urban or industrial sources

and the visibility was\40 km, the Rural aerosol model was

selected.

Field-level reflectance was determined by simulating

Landsat ETM? surface reflectance using handheld spec-

troradiometer data. Canopy spectral reflectance within the

350–2500 nm spectral range (1 m nadir distance) was first

measured on clear sky days between 11:00 a.m. and 1:00

p.m. with the handheld spectroradiometer. Field-level

reflectance measurements were synchronized with the

overpasses of the Landsat 7 ETM? satellite acquisition

dates. A hydraulic manlift (10-m platform height) was used

to raise the operator and the handheld spectroradiometer

instrument above the tree canopy (Fig. 1). The

Table 1 Handheld spectroradiometer and chlorophyll content (SPAD) measurements and Landsat ETM? acquisition dates for both sites during

the 2012 and 2013 experimental period

Site Year Date of Measurement

Site 1 (sandy loam) 2012 26 May, 11 June, 27 June, 13 August, 15 September, 1 October, 17 October

2013 29 May, 2 September, 18 September, 4 October

Site 2 (clay loam) 2012 26 May, 11 June, 27 June, 30 August, 15 September, 17 October, 2 November

2013 29 May, 14 June, 17 August, 2 September, 20 October

Fig. 1 Left field-level surface reflectance measurements using handheld spectroradiometer, and right instrument calibration using calibrated

diffuse white reference panel
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spectroradiometer sensor (25 field of view) was oriented in

a nadir position above the canopy. The distance from the

top of the canopy and the spectroradiometer sensor was

1 m. An average of ten spectral measurements distributed

to cover the top part of the canopy was used (Fig. 1). Then,

Landsat ETM? bands were simulated by convolving the

hyperspectral bands with the relative response curves for

the visible (VIS) and the NIR bands (USGS 2015c). During

convolving process, handheld spectroradiometer bands

were convolved with the relative spectral response curves.

The spectral response function used in convolving process

for blue band (ETM? band 1) ranged from 410 to 522 nm,

green (ETM? band 2) ranged from 500 to 650, red

(ETM? band 3) ranged from 580 to 740 nm, NIR

(ETM? band 4) ranged from 730 to 945 nm, SWIR

(ETM? band 5) ranged from 1514 to 1880 nm and SWIR

(ETM? band 7) ranged from 2000 to 2400 nm. A weigh-

ted average for convolved bands was calculated using the

following equation:

Weighted average for band xð Þ ¼ w1x1 þ w2x2. . .wnxn

ð3Þ

where w is relative weight (%) of specific ETM? band

and x is the specific specroradiometer band correspond to

the same ETM? band. Then, the total sum of the

hyperspectral bands was calculated to derive the simu-

lated Landsat ETM? reflectance (field-level reflectance).

For Landsat ETM? data, the total fraction of vegetation

cover/soil visible in Landsat ETM? pixel was about 55–

65% in site 1 and 50–55% in site 2. The trees location in

the pixel was determined from aerial photographs. Then,

the pixel that represented the location of trees was used to

derive vegetation indices that significantly detected

chlorophyll content in other crops. Vegetation indices

included, Enhanced Vegetation Index (Huete et al. 2002),

Chlorophyll Index-Green (Gitelson et al. 2003), Triangu-

lar Vegetation Index (Broge and Leblanc 2000), Chloro-

phyll Vegetation Index (Vincini et al. 2008), and

Normalized Difference Vegetation Index (Rouse 1974).

The EVI was vegetation index that best detected chloro-

phyll content. For this reason only the EVI results are

presented:

EVI ¼ G� qNIR � qRð Þ= qNIR þ C1 � qR�C2 � qB þ Lð Þ
ð4Þ

where qNIR, qR and qB are reflectance at NIR red and blue

bands from TOA and atmospherically corrected images;

C1 and C2 are the coefficients of aerosol resistance

(C1 = 6 and C2 = 7.5), G is the gain factor (G = 2.5),

and L is the canopy background adjustment (L = 1). The

coefficients C1 and C2, G, and L used in the EVI equation

were adopted from Huete et al. (1994, 1997).

Statistical Analysis

Analysis of variance and Fisher’s least significant differ-

ence (P = 0.05) were used to compare Landsat

ETM? wavelength reflectance from TOA, surface reflec-

tance-CDR and surface reflectance-FLAASH. Due to the fact

that field-level reflectance (using handheld spectrora-

diometer) and Landsat ETM? datasets (TOA, CDR, and

FLAASH) represent different land surface and are not

comparable, field-level reflectance did not include in mean

separation analysis (Fig. 2). Pearson correlation was con-

ducted to assess the relationship between chl-cont and

remotely sensed data. Then, Williams’s t-test was used to

compare Pearson correlations coefficients (Williams 1959).

We used the t test to determine if the atmospheric cor-

rection of Landsat ETM? data significantly improved the

correlation between remotely sensed data and chl-cont. In

William’s t test, two non-independent correlations with a

variable in common (chl-cont) as described by Weaver and

Wuensch (2013) were used.

Results and Discussions

Mean separation revealed significant differences in reflec-

tance between TOA and atmospherically corrected images

across the wavelengths and over both sites (Fig. 2). Except

for blue band (450–520 nm), TOA (Fig. 2a, b) had lower

reflectance than Landsat ETM? surface reflectance-FLAASH
(Fig. 2c, d) and surface reflectance-CDR (Fig. 2e, f) at both

sites and across sampling dates (2012 and 2013). These

results conflict with the spectral properties of plants which

normally reflect more light in the green than the blue

spectral regions (Gates et al. 1965). However, this is nor-

mal for non-atmospherically corrected data. Within the

visible and NIR spectral range, a significant difference in

reflectance was found between surface reflectance-FLAASH
(Fig. 2c, d) and surface reflectance-CDR (Fig. 2e, f). But, no

significant difference was found between atmospherically

images in the SWIR (1550–1750 and 2080–2350 nm)

spectrum regions.

Field-level reflectance had higher canopy surface

reflectance in VIS (350–700 nm), NIR (700–1200 nm),

and SWIR bands than the TOA and surface reflectance at

both sites (Figs. 2a, b). Lower reflectance within the NIR

and SWIR in both TOA and surface reflectance data could

be attributed to atmospheric absorption (Jensen 2005).

Furthermore, the pixel size of ETM? is 30 by 30 m and

this pixel contains trees and soils. In contrast, field-level

reflectance data from handheld spectroradiometer (1 m

above canopy) has limited soil background reflectance in

the pixel. Because ETM ? data sets contains mixed pixels
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of vegetation and soil which make the two datasets

incomparable, field-level reflectance was not included in

the mean separation process (Fig. 2).

Enhanced vegetation index was developed using par-

tially or fully corrected atmospheric corrected reflectance

data in order to optimize the vegetation signal in high

biomass regions (Huete et al. 2002). In our study, TOA

reflectance data which did not account for atmospheric

effects was also used to derive EVI. This is because the

accuracy of atmospheric correction models are variable

(López-Serrano et al. 2016) and could be low.

Additionally, direct use of measured TOA reflectance has

been recommended for estimating biophysical and bio-

chemical variable in forests studies (Laurent et al. 2011).

Tebbs et al. (2013) found that near infrared (NIR): red

(R) ratio derived from Landsat TOA reflectance gave a

better fit to chlorophyll-a than atmospherically corrected

data. However, EVI derived from TOA had the lowest

correlation with chl-cont when compared to surface

reflectance datasets (Fig. 3). The correlation coefficient

was 0.22in site 1 (Fig. 3a) and 0.5 in site 2 (Fig. 3b).

Williams’s t-test matrix (Table 2) revealed that
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Fig. 2 Wavelengths reflectance derived from Landsat ETM? (a,
b) top-of-atmosphere (c, d) surface reflectance- FLAASH (e, f) surface
reflectance-CDR and (g, h) field-level reflectance at site 1 (sandy loam

soil) and site 2 (clay loam soil) during the study period 2012 and

2013. Orchards are located in the Mesilla Valley, New Mexico. At

each wavelength, mean with different letters are significantly

difference across the datasets at P = 0.05.Double asterisk and triple

asterisk denote significance at P\ 0.01, and P\ 0.001, respectively.

Because field-level reflectance and Landsat ETM? represent differ-

ent land surface, field-level reflectance did not included in the mean

separation analysis

J Indian Soc Remote Sens (February 2018) 46(2):211–218 215

123



atmospheric correction process significantly improved the

correlation between Landsat ETM ? data and chl-cont

when compared to non-processed images (TOA in site 1).

In fact, the correlation coefficients from atmospherically

corrected images (surface reflectance-CDR and surface

reflectance-FLAASH) were statistically similar to those from

field-level reflectance (limited soil background and atmo-

sphere effect) (Table 2). Interestingly, Williams’s t-test

revealed that EVI-surface reflectance-CDR which is freely

available from the earth-explorer was statistically similar to

surface reflectance derived using the commercial atmo-

spheric model, FLAASH. Overall, atmospherically

corrected scene (surface reflectance-CDR) available from

the earth-explorer significantly improved the capability of

Landsat ETM? to detect chl-cont in pecan and was similar

to those corrected using commercial atmospheric algorithm

(surface reflectance-FLAASH).

Conclusions

At both orchards, TOA reflectance was significantly lower

than surface reflectance within NIR and SWIR spectral

regions. Additionally, the correlation between TOA-EVI
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Fig. 3 Correlation coefficients between chlorophyll content (lg g-1

fresh weight) and enhanced vegetation index (EVI) from Landsat

ETM ? (a, b) top-of-atmosphere (c, d) surface reflectance- FLAASH

(e, f) surface reflectance-CDR and (g, h) field-level reflectance at both

sites during the experimental period, 2012 and 2013. Orchards are

located in the Mesilla Valley, New Mexico
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was significantly lower than surface reflectance in sandy

loam site. Therefore, surface reflectance is essential in

detecting chl-cont in pecan trees. However, EVI derived

using commercial atmospheric algorithm (FLAASH) was

similar to surface reflectance data available from earth-

explorer portal. Accordingly, using Landsat ETM ? sur-

face reflectance-CDR is sufficient and reliable atmospheric

corrected image source to study foliar chlorophyll content

in pecan orchards.
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