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Abstract Assessment of above ground forest biomass

(AGB) is essential in carbon modelling studies to provide

mitigation strategies as demonstrated by reducing emis-

sions from deforestation and forest degradation. Several

researchers have demonstrated the use of remote sensing

data in spatial AGB estimation, in terms of spectral and

radar backscatter based approaches at a landscape scale

with several known limitations. However, these methods

lacked the predictive ability at high biomass ranges due to

saturation. The current study addresses the problem of

saturation at high biomass ranges using canopy textural

metric from high resolution optical data. Fourier transform

based textural ordination (FOTO) technique, which

involves deriving radial spectrum information via 2D fast

Fourier transform and ordination through principal com-

ponent analysis was used for characterizing the textural

properties of forest canopies. In the current study, plot level

estimated AGB from 15 (1 ha) plots was used to relate with

texture derived information from very high resolution

datasets (viz., IKONOS and Cartosat-1). In addition to the

estimation of high biomass ranges, one of the prime

objective of the current study is to understand the effects of

spatial resolution on deriving textural-AGB relationship

from 2.5 m IRS Cartosat data (Cartosat-A, viewing

angle = -5�) to that of IKONOS imagery with near nadir

view. Further, since texture is impacted by several illumi-

nation geometry issues, the effect of viewing geometry on

the relationship was evaluated using Cartosat-F (Viewing

angle = 26�) imagery. The results show that the FOTO

method using stereo Cartosat (A and F) images at 2.5 m

resolution are able to perform well in characterizing high

AGB values since the texture-biomass relationship is only

subjected to 18 % relative error to that of 15 % in case of

IKONOS and could aid in reduction of uncertainty in AGB

estimation at a large landscape levels.
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Introduction

Forests play a critical role in global carbon cycle as carbon

sinks of the terrestrial ecosystem. Tropical forests store

over 40 % of the terrestrial carbon (Dixon et al. 1994),

majorly as above ground biomass (hereafter referred as

AGB or biomass). Quantification of forest spatial biomass

is essential in understanding carbon cycle, and climate

change studies (Beer et al. 2010) as well as for assessing

the forest productivity and sustainability for better man-

agement. It also provides an estimate of carbon dioxide

emissions into the atmosphere due to deforestation or

burning (DeFries et al. 2002; Baccini et al. 2012) and

monitoring carbon stocks (Tuominen et al. 2010). There-

fore, accurate estimation of AGB is essential to assess the

impacts of carbon losses due to deforestation and degra-

dation on global and regional levels (Houghton 2005; Van

der Werf et al. 2009).

The most accurate way of estimating biomass is using

extensive field measurements, especially using destructive

sampling (Gibbs et al. 2007; De Boer 2008). However,

field measurements are often strenuous, expensive, time
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Montpellier, France

123

J Indian Soc Remote Sens (August 2017) 45(4):657–665

DOI 10.1007/s12524-016-0630-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s12524-016-0630-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12524-016-0630-1&amp;domain=pdf


consuming and destructive (which may not be practical for

all forest types due to various environmental regulations).

Therefore, remote sensing is used as a tool for upscaling

small scale field measurements to large areas (Lu 2006;

Couteron et al. 2012).

Satellite remote sensing (both optical and microwave)

provides useful information about structure and phenology

but are usually limited by low spatial resolutions. Several

studies have shown that these signals saturate at interme-

diate biomass levels (around 250 t ha-1) (Madugundu

et al. 2008; Nizalapur et al. 2010; Devagiri et al. 2013;

Thumaty et al. 2015). Further the obtained relations are on

a pixel basis, and does not use any information from

neighboring pixels (texture) (Barbier et al. 2010). This

limits the extension of these relations to areas with high

biomass range (around 500–600 t ha-1), especially over

Western Ghats, India (Rai and Proctor 1986; Swamy et al.

2010). Airborne remote sensing data (e.g., Lidar and ste-

reo-pair images) have shown their potential in estimation

of biomass but are quite expensive to acquire and are

limited to small areas (Véga et al. 2015).

Very high spatial resolution (VHR) data, i.e. a spatial

resolution of about\1 m, are now widely available from

various satellites (viz., Ikonos, Quickbird, Spot5 and Car-

tosat). Due to the level of information on a VHR data,

geometrical/textural characteristics could be taken into

account rather than just considering the individual pixels.

Several attempts have been made to characterize the tex-

tural properties of VHR data over forest canopies, on basis

of spatial autocorrelation methods such as variography

(Bruniquel-Pinel and Gastellu-Etchegorry 1998), lacunar-

ity analysis (Frazer et al. 2005) and 2D-power spectral

analysis (Fourier transform) (Couteron et al. 2005, 2006).

Principal component analysis (PCA) is used to reduce the

dimensionality of the resulting information to compare

with forest parameters (e.g. biomass, DBH etc.) (Couteron

et al. 2005; Proisy et al. 2007).

Fourier Textural Ordination (FOTO; Couteron 2002)

uses the textural properties of the remotely sensed VHR

data using power spectrum constructed from Fourier

transform to identify fineness and coarseness gradients

across the image and relate to AGB. Proisy et al. (2007),

have demonstrated the use of FOTO method in mangroves,

French Guiana for AGB estimation using IKONOS ima-

gery. Recent study shows the potential of FOTO method in

resolving high AGB values of different forest types in oil

palm-tropical forest in Sabah, Malaysian Borneo using

SPOT imagery (Singh et al. 2014). Ploton et al. (2012), has

implemented FOTO method in Western Ghats of India

using both IKONOS and Google Earth imagery. As the part

of the study 15 (1 ha) plots were used to relate the textural

information obtained from VHR data to biomass. However,

the study did not infer on the relation with the change of

satellite view angle geometry, which is a key parameter

that affects texture information due to differences in

canopy shadowing (Barbier et al. 2010).

In this regard, the present study would focus on under-

standing the effect of satellite view geometry by using IRS

Cartosat-1 data and also evaluate the potential of high

resolution Cartosat-1 imagery (2.5 m) to resolve the texture

information with respect AGB and compare the results

with the VHR data of IKONOS (1 m) based estimated

AGB in Western Ghats of India. Indian Remote sensing

Satellite (IRS) Cartosat-1 acquires images at a spatial res-

olution of 2.5 m covering a swath of 30 km. The two

cameras are mounted for near simultaneous imaging of the

same area from two different angles (Aft camera has 5�
viewing angle and Fore camera has 26� viewing angle;

NRSA 2006). By envisaging the effect of viewing angle

difference on the obtained textural-biomass relationship, it

would define the possible inclusion of stereo derived

information for reducing uncertainty in biomass predic-

tions for the future studies.

Materials and Methods

Study Area

Large permanent plots (1 ha) are setup in area of about

30 km2 surrounding Uppangala (12 32 15 N, 75 39 46 E),

located near Pushpagiri wildlife sanctuary in the Western

Ghats of India (Pascal and Pelissier 1996; Pélissier et al.

2011). The study site (Fig. 1) shows extreme topography v

with elevation ranging between 200 and 1000 m above sea

level. Due to the inaccessibility in the study area, this is

regarded as one of the last well preserved wet evergreen

forests of the Western Ghats (Pascal 1988). As part of

reserve forest, no logging has been carried out in recent

past and thus current forest structure is almost natural, but

the gradient of forest degradation levels can also be seen in

the study area caused due to a fire disturbance in the past

(Pelissier et al. 1998).

Field Data Collection and AGB Estimation

A total of fifteen (15) 1-ha plots were laid during two field

campaigns in 2009 and 2010, to cover different canopy

cover gradients observed in the satellite image, since tex-

ture would relate canopy cover. Further, plots were placed

in accessible zones possessing a homogeneous canopy

texture to reduce uncertainties due to plot geolocation.

Each plot was 100 9 100 m corrected for slope angle and

geo-tagged using Trimble Juno SB GPS device (Trimble;

California, USA). For each plot, field measurements of

diameter at breast height (DBH, diameter at 1.3 m above
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the ground or above the buttresses if any) were obtained for

all the trees with DBH[ 10 cm (Ploton et al. 2012). DBH

is measured using standard measuring tape.

AGB was estimated using the regional allometric model

constructed from Rai (1981) dataset obtained by destruc-

tive sampling. A log transformed power model was used to

relate tree AGB and tree DBH (R2 = 0.998; residual

standard error = 0.274; intercept = 0).

ln AGBð Þ ¼ 1:998 ln DBHð Þ

This model was selected as it outperformed the other

model proposed by Rai and Proctor (1986) using the same

dataset (R2 = 0.92) and also global model by Chave et al.

(2005) (R2 = 0.957). The detailed model description and

evaluation is described in Ploton et al. (2012).

Satellite Data

IRS Cartosat-1 is a dedicated stereo platform with two

camera assemblies known as Fore camera (Carto-F) and

the Aft Camera (Carto-A). The Fore camera is tilted at 26�
while the Aft camera is tilted by -5� with respect to nadir

in along track direction. The two images (Carto-A and

Carto-F) acquired are single band panchromatic images

with wavelength of 0.5–0.85 lm at a spatial resolution of

2.5 m.

For the current study, the stereo-pair during Jan 2012

was obtained (sun azimuth = 145, sun elevation = 50).

Both images were ortho-corrected and precisely registered

(*1–2 pixel) with the reference IKONOS imagery to

avoid any geo-location issues. IKONOS imagery (satellite

azimuth = 148; sun elevation = 49), was used to verify

and compare the obtained relationships with Cartosat

(Ploton et al. 2012). No atmospheric corrections were

performed in any of the images.

Fourier Based Textural Ordination (FOTO) Method

The fundamental idea of FOTO method is that different

spatial frequencies relate well to the canopy grain size.

This method has been used to analyze vegetation canopy

information from VHR satellite data and the information

has been used to predict AGB in different forest types with

moderate to high biomass ranges (Proisy et al. 2007; Ploton

et al. 2012).

FOTO method uses multivariate ordination of Fourier

spectra to classify canopy images into different texture

gradients based on canopy grain (Couteron et al. 2005). It

is a two-step process. (1) Converting spatial information

into frequency domain using 2D FFT and computation of

radial spectra (r-spectra) and (2) ordination of r-spectra

using PCA. R-spectra, is obtained by conversion of 2D

FFT information to polar form, which explains the level

of spatial variation in each spatial frequency and is

expressed in the units of cycles km-1 (Barbier et al.

2010). The methodology in the current study has been

adapted from Proisy et al. (2007) and is represented by

Fig. 2.

Fig. 1 Study site showing

location of fifteen (15) 1-ha field

plots in Uppangala, Western

Ghats, India
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The satellite image of the study area was first divided

into 125 9 125 m contiguous unit windows (i.e. at least

five times of the largest crown diameter *25 m in

Uppangala). Also, this allowed to overrule the GPS posi-

tional error (\5 m) and also the orientation of the plots. On

each square unit window, 2D FFT was applied and

r-spectra was generated. The generated r-spectra was then

standardized using z-score normalization over all windows

over the entire image.

Principal component analysis was performed on the

standardized r-spectra. PC axes ordinate the image win-

dows along the coarse–fine texture gradients and also

provides information about the dominant periodicity of

particular texture gradient in the image, that agrees with the

visual appraisal (Couteron et al. 2005). The first three PC

axes (explaining *90 % of the r-spectra variation) are

used as texture indices. These texture indices are related to

15 plots with measured AGB using a multivariate linear

regression.

Results

FOTO Analysis Using Carto-A and IKONOS

The estimated AGB values from the 15 large (1 ha) plots

covered a significant range of biomass varying from a

minimum of 124 t ha-1 to a maximum of 684 t ha-1 with

an average of 435 t ha-1. In comparison, previous studies

by Rai and Proctor (1986) and Swamy et al. (2010) have

reported an AGB range of 420–649 and 416–553 t ha-1

respectively in tropical forests of Western Ghats,

Karnataka.

Textural information was captured using FOTO method

for these 15 plots using both IKONOS and CARTOSAT (A

and F) images. Radial spectra was computed for the

squared windows of 125 m size centered at these plot

locations. The r-spectra captured wide range of information

pertaining to canopy gradient ranging from low to high

biomass ranges in these plots. Figure 3, depicts the dif-

ferent r-spectra obtained from the measured plots for dif-

ferent biomass range using Carto-A images. It was

observed that for higher biomass plot (Plot

H = 632 t ha-1), dominant frequencies at 15 cycles km-1

[i.e. wavelength (k) = 66.7 m] corresponding to the large

contiguous crowns. It was also observed that there was a

secondary dominant frequency at 30 cycles km-1

(k = 33.33 m) corresponding to the secondary crowns. For

the medium biomass plot (Plot U = 365 t ha-1), dominant

frequencies existed at 15 cycles km-1 as in accordance

with plot H but with relatively less dominance in the radial

spectra (Fig. 3). This is due to less number of large crowns

in plot U compared to plot H. In case of lower biomass plot

(Plot J = 160 t ha-1), it was evident that the impact of

larger crowns was considerably small, and is represented

by wide range of dominant spatial frequencies up to 55

cycles km-1 (k = 18.18 m) suggesting smaller canopy

sizes.

Fig. 2 Flow chart of

methodology. (Adapted from

Proisy et al. 2007)
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Non-forest areas were visually masked and radial

spectra was computed on each 125 m window on IKONOS

and Carto-A images. The r-spectra for all these windows

were then standardized and PCA ordination is performed.

The first two PC components were used to interpret unit

windows in terms of canopy gradient ranging from coarse

to fine texture (Fig. 4). The cloud of unit windows in both

IKONOS and Carto-A suggested a similar response in

respect to the positions of the plots (Fig. 4). The first two

prominent axes explained a significant variation of about

45 and 55 % in the data matrix in case of IKONOS and

Carto-A respectively.

Figure 4 also suggested that the position of plots on the

PCA cloud were separated well in case of Carto-A image

than IKONOS image. These principal axes in turn corre-

lated with the stand level parameters. PC1 acts as the

strong predictor variable to explain the variations in stand

structure (Couteron et al. 2005). In the current study, when

related to plot level biomass PC1 has explained about 36 %

of the variation using IKONOS image, but a significant

70 % of the variation using Carto-A image.

The biomass models were estimated using the first three

PC components relating to the plot level AGB values using

a multi-variate linear regression. The regression analysis

suggest that field measured and FOTO derived AGB values

are strongly correlated with both IKONOS (R2 = 0.82;

p\ 0.001) Carto-A (R2 = 0.76; p\ 0.001) images

(Fig. 5). This result show that the FOTO derived texture

information from Carto-A is capturing the similar canopy

gradient in accordance with IKONOS imagery.

Further, the RMSE computed for predicted and field

measured biomass using IKONOS and Carto-A imagery
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were 67.03 and 77.32 t ha-1 indicate that the spatial res-

olution of Carto-A (2.5 m) has least effected the derived

textural-biomass relationship. The spatial biomass maps

were generated using the estimated regression coefficients

as mentioned in Table 1.

Figure 6 depicts the spatial biomass estimate generated

using Carto-A imagery through regression estimation. The

estimated total biomass was found to be 1.24 ± 0.18Mt using

Carto-A imagery,whichwas slightly above the estimated value

of 1.21 ± 0.15 Mt using IKONOS Imagery. A histogram was

plotted with the spatial difference of biomass estimated using

Carto-A with respect to IKONOS reference (Fig. 7). It was

found that the spatial error varied between -100 and

?70 t ha-1 indicating minimal bias between both estimates.

Effect of Viewing Angle (Carto-F)

Textural information was derived again using Carto-F as the

input imagery to understand the effects of viewing angle

geometry in a 26� tilted camera. Themulti-variate regression

between the field measured plots and the derived first 3 PC
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Table 1 Multi-variate linear regression statistics of texture-AGB relationship using IKONOS and Cartosat images

Sensor Biomass = (a) * PC1 ? (b) * PC2 ? (c) * PC3 ? d R2; RMSE; p value

IKONOS (1 m) a = -13.35; b = -3.11; c = -73.24; d = 506.05 0.82; 67.03 t ha-1; p\ 0.001

Cartosat-A (2.5 m) a = -20.16; b = -9.71; c = -13.92; d = 521.96 0.76; 77.32 t ha-1; p\ 0.001
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components showed a similar R2 of 0.76 (p\ 0.001) in

comparison with Carto-A result (Fig. 8). Further, the RMSE

between fieldmeasuredAGB and textured derived AGBwas

found to be 77.28 t ha-1 using Carto-F imagery, which was

similar to that of Carto-A imagery.

In addition, itwas observed that the point cloud distribution

along the PC axes appeared to have shifted along quadrant-2

(Fig. 8). This was largely due to the increased shadowing due

viewing angle variation which led to coarse texture compared

to Carto-A imagery. However, the estimated biomass for the

total extent using Carto-F was found to 1.23 Mt ± 0.18 Mt,

which is nearly equal to the estimate using Carto-A Imagery.

Thus, it could be inferred that the viewing angle has least

influence on the derived texture-biomass relationship.

Discussions and Conclusion

The major challenges in estimation of AGB in tropical

forests using remote sensing data has been the saturation of

non-textural approaches at high biomass levels due to the

presence of complex canopy structure (Malhi and Román-

Cuesta 2008; Mitchard et al. 2012). However, using FOTO

method, the obtained textural-biomass relationship had

avoided the issue of saturation at high biomass levels.

Further, the computed RMSE using IKONOS image

(67.03 t ha-1) was about 15 % relative to the mean plot

AGB, confirmed the potential of very high resolution

optical data for AGB estimation. The computed RMSE

using Cartosat images (both A and F), about 18 % relative

to the mean, suggest that the sensor resolution of 2.5 m has

least affected the derived textural-biomass relationship.

The relationships were further studied to understand the

effects of viewing geometry using Carto-F imagery. It was

noted that the relationship was least hindered by the dif-

ferences in viewing geometry with the evidences of similar

R2 and RMSE in case of both Carto-A and Carto-F

imagery.

It could be inferred that the obtained textural-biomass

relationship has been robust with relatively low RMSE

values constituting different scenarios and would aid in

reduction in uncertainty of AGB estimation. However,

major uncertainty in AGB estimation in tropical forests is

due to use of allometric equations which propagates along

with the model error (Grainger 2010). On the other hand, in

order to reduce uncertainty in AGB estimation, LIDAR has

been used as an alternative technique to incorporate forest

height information. Recently, one such study has been

attempted at the same study site to relate LIDAR derived

metrics to the field measured AGB using different models

(Véga et al. 2015). It was reported that the relative error

varied from 10.92 to 17.24 % and adjusted R2 from 0.74 to

0.90.

In current study, the obtained relative errors are not

significantly different from LIDAR derived estimations and

thus showcase the vast potential of very high resolution

optical data for large-scale biomass assessments consider-

ing the operational costs of an airborne LIDAR system.
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Further, extraction of relative tree height information using

stereo optical data (Straub et al. 2013; Neigh et al. 2014),

along with FOTO derived metrics would obtain a better

relative error so as to reduce uncertainty in AGB estima-

tion. Thus, satellite based VHR optical data along with

field data would offer more cost effective management of

forest cover by tracking ongoing evolution in forests and

changes in related biomass.
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