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Abstract Soil is a suitable place for vegetation and plant
growth. When this valuable resource is not preserved,
shortage of food, erosion and damage of natural resources
will be respected. Soil is a heterogeneous, diverse and
dynamic system and investigation of its temporal and
spatial changes is essential. In this paper spatial variability
of some chemical and physical soil were investigated.
Three hundred fifty eight soil samples were collected by
systematic sampling strategy at 20 cm depth on a regular
grid spacing of 500 x 500 m? under different vegetation
cover and processed for analysis in the laboratory. Soil
chemical and physical parameters including pH, electrical
conductivity, organic carbon, available phosphorus, avail-
able nitrogen, available potassium, sulphur, calcium,
magnesium and sodium were measured. After data nor-
malization, classical statistical analysis was used to
describe soil properties and geo-statistical analysis was
used to illustrate spatial correlation of soil characteristics.
By using interpolating techniques, spatial distribution of
these properties were prepared. Results indicated that cal-
cium and phosphorus had strong and weak spatial depen-
dence, respectively.
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Introduction

The spatial variability and heterogeneous geographical
distribution of physical and chemical properties of cropland
ecosystem soils are under the impact of physical and bio-
logical factors including topography, vegetation cover, soil
microclimate, various grazing systems and rangeland
management. Soil properties change in time and space
continuously (Rogerio et al. 2006). Heterogeneity may
occur at large scale (region) or small scale (community),
even in the same type of soil or in the same community (Du
Feng et al. 2008). Despite temporal and spatial changes in
soil characteristics at small and large scales, awareness of
these changes related to increasing profitability and sus-
tainable agriculture management is necessary (Ayoubi and
Khormali 2009). Distribution of vegetation is related to soil
moisture and other soil properties such as soil aeration, soil
texture, depth etc. Soil properties in relation to vegetative
cover cause plant diversity and widespread geographical
distribution of plants (Noy-Mire 1973; Burke 2001). Soil
compaction following extensive cultivation and use of
tractors cause homogenous spatial distribution of soil
properties and increase vulnerability of soil and water loss,
and consequently reduce available water for plants (Zhao
et al. 2007). Cheng et al. (2007) reported that spatial vari-
ability of the above ground biomass in shrub lands is greater
than grasslands. There is clear spatial relationship between
plant and soil (Etema and Wardle 2002; Zhao et al. 2007;
Covelo et al. 2008). Determining soil variability is impor-
tant for ecological modeling, environmental predictions,
precise agriculture and management of natural resources
(Hangsheng et al. 2005; Wang et al. 2009). For a long time,
spatial changes of soil characteristics have been attended by
soil scientists. Precise and quantitative information about
these changes is essential for environmental assessment of
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soil quality, risk of soil pollution and retro gradation of soil
characteristics. Soil erosion studies as a part of environment
and non-agricultural interpretations of soils has new chal-
lenges against soil scientists. Soil organic matter, nitrogen
and phosphorus are the most important functions of
ecosystems because they play a direct role in ecosystem
processes such as plant growth and carbon cycle (Robertson
et al. 1988). Organic matter is one of the most indexes of
soil quality, thus investigation of changes and spatial dis-
tribution of organic carbon can be useful for evaluation of
soil function and understanding of soil carbon decomposi-
tion processes and determination of soil quality trends
(Venteris et al. 2004). Temporal and spatial investigation of
data is essential for understanding soil spatial variability.
Kresic (1997) revealed that geostatistics technique is the
most confident, strongest and widest method for interpola-
tion and has acknowledged that geostatistics is the strategy
that considers spatial variance, location and distribution of
samples. Geostatistics is a powerful tool for determining the
spatial variability (Sauer et al. 2006). Geostatistical meth-
ods use mathematical and statistical functions for interpo-
lation and their basis is statistical characteristics of data.
This technique predicts unknown points based on autocor-
relation and their spatial structure of measured points. Soil
property maps show their spatial changes as well. Different
methods exist for creating soil property maps, one of them
is gathering samples from soil depths and analyzing the
samples by using geostatistical technique (Hunter et al.
1982). Since the part of variations are caused by a number
of randomly occurring events and geostatistics lead us to
more accurate estimations with less error. In fact geo-
statistics investigate the variables that have spatial structure
or continuous spatial distribution. Early principal of geo-
statistics is that the similarity between near samples
decreases when the distance increases (Isaaks and Srivas-
tava 1989; Goovaerts 1997). Many studies have shown the
correlation between soil characteristics like organic matter
and were illustrated in map (Zhang and McGrath 2004;
Anderson et al. 2005; Jian-Bing et al. 2006). Zhao et al.
(2007) reported that spatial variability of soil chemical and
physical properties are affected by crop intensity and heavy
cropping decreases soil water content (SWC) and soil
organic carbon (SOC) but increases bulk density (BD) and
shear strength (SS). Mohammadi and RaeisiGahrooee
(2004) showed that spatial variation pattern of soil variables
absolutely depends on cropland management history. Var-
iogram of organic matter at some site has linear structure
and does not access to threshold variance in regional scale.
While the spatial pattern of this variable at enclosure site
has strong structure and determine threshold variance.
Fennessy and Mitsch (2001) evaluated spatial distribution
of soil properties in 2 year period. They found that the
spatial variability of organic matter and total nutrient of soil
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had decreased. Yong et al. (2006) investigated soil prop-
erties and their spatial pattern in a sandy grassland and
reported that continuous grazing lead to decrease spatial
dependence of soil organic carbon and total nitrogen.
According to recent studies and confirmation of spatial
relation between soil properties and plant at different
ecosystems, knowledge of soil spatial variability for
application purposes is necessary as well as model devel-
opment (Sovik and Aagaard 2003). This research was done
to investigate spatial variability of some chemical and
physical soil properties in Bandipora agro-ecosystem of
Lesser Himalayas.

Materials and Methods
Study Area

The study area is located in northern zone of Kashmir,
India (74°27°08"E to 75°21'58"E and 34°10'53"N to
34°45'24”"N). It has 1953 m mean altitude above sea sur-
face and 298,300 ha area (Fig. 1). The land use of this area
is forest, field crops, orchards and grasslands. The climate
is temperate with mean annual precipitation of 990 mm,
mostly falling in the winter, autumn and spring. Minimum
and maximum monthly mean temperatures were —3.2 and
32.4 °C in January and July/August, respectively. The
annual mean temperature is 18.2 °C.

Sampling

The sampling sites were selected in Bandipora district
croplands. Soil samples were collected by a systematic
sampling strategy on a regular grid spacing of
500 x 500 m* from 20 cm depth. 325 points were selected
and also 33 marginal points were added to increase the
accuracy of research (358 soil samples in total). The UTM
coordinates of soil samples were recorded for using in
spatial analysis of soil characteristics.

Laboratory Analysis

The samples were air-dried and passed through a 2 mm
sieve to prepare them for analysis. The methods applied
were: Alkaline KMnO, method for nitrogen (Subbiah and
Asija 1956), Walkley and Black (1934) wet oxidation
procedure for organic carbon content and EDTA method
for measuring calcium and magnesium (Lanyon and Heald
1982). Soil pH and electrical conductivity (EC) were also
measured in the collected samples (McLean 1982). The
amount of phosphorus was determined by Spectropho-
tometer (Olsen and Sommers 1982). Absorbable K and Na
after extraction were measured using 1 N ammonium
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Fig. 1 Geographical position of study area

acetate (pH = 7) (Knudsen et al. 1982). Available sulphur
was determined by following the turbidimetric method of
Chesnin and Yien (1951). The methodology adopted is
presented in the following flowchart

Soil Data
(Physical and chemical properties)

v v

Descriptive statistics
(Mean, Min, Max, Variance, Skew)

v v

Cross Validation Model

—P Ordinary Kriging

Accuracy Assessment

Normalization of Data

v v

Variogram Modelling —

Conclusion

Spatial Analysis of Data

In order to know how data is distributed and accessing the
statistical information summary, each soil characteristics

were investigated using descriptive statistics. Geostatistics
was used to investigate spatial variability of soil properties.
In geostatistical studies, abnormal distribution of data have
such effects that may lead to high fluctuations in vari-
ograms and reduces the reliability of analytical results, thus
normalization of data is necessary. Normal distribution of
data was estimated based on their skewness and the data
within a range of —1 to +1 skewness were considered as
normally distributed data (PazGonzales et al. 2000; Vir-
gilio et al. 2007). This method is widely used in the anal-
ysis of soil ecological heterogeneity (Schlesinger et al.
1996). Since sulphur and calcium had skewness coefficient
greater than —1, after elimination of imperfect data, Log-
arithmic conversion was chosen as the best method
(Webster and Oliver 2001). For every variable before
implementing geostatistical analysis, isotropy and aniso-
tropy of each soil variable were controlled. Geostatistics is
based on spatial correlation between samples and this
correlation can be expressed with mathematical model
called as “variogram”. In fact, variogram is defined as the
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functions which describe spatial variations of one variable
and is defined by following formula:

1 N 2
Mh) = WZ[Z()QH:) — z(x:)]
i=1

N (h) is the number of sample pairs that are located by a
particular distance (h) from each other. Z (xi) and Z
(xi 4+ h) are the values of regionalized variable at location
xi and xi + h, respectively.

After calculating the variogram, fitting a theoretical
model is necessary for generalization of deduction and
estimation of variables from points which have not been
sampled. For spatial interpolation and spatial mapping of
soil characteristics, Kriging method was used. Overall
Kriging method is a statistical estimator that gives statis-
tical weight to each observation so their linear structure’s
has been unbiased and has minimum estimation variance.
This estimator has high application due to minimizing of
error variance with unbiased estimation (Pohlmann 1993).

Z*(Xo) = XN: JZ(Xi)
i=0

Table 1 Summary statistics of soil properties in the study area

where, Z*(Xo) is, estimated variable at Xo location and
Z*(Xo) is values of investigated variable at Xi location and
M is the statistical weight that is given to Z (Xi) sample
located near Xo. N is the number of observations in the
neighborhood of estimated point. Accuracy assessment of
interpolation was done by using Cross-validation methods
(Goovaerts 1997). The software package ARCGIS version
10.2 was used for geo-statistical analysis (ESRI 2014).

Results and Discussion

Sampling method was systematic with almost equal dis-
tances between soil samples in this study. Random sam-
pling can generate points that are very close together so
decreases accuracy of these studies (Weindorf and Zhu
2010). Davatgar (1998) reported whenever variables have
been more randomly distributed and samples have been
less continuous, nugget effect of variogram increases and
precision of interpolation decreases. Also, McBratney and
Webster (1983) and Wang and Qi (1998) expressed that a
systematic sampling pattern provides more accurate results

Soil properties Units Minimum Maximum Mean SD Skewness Kurtosis Median CV%
pH —log [H+] 0.92 8.21 6.91 0.53 —0.44 48.68 691 7.25
EC dS/cm 0.11 0.62 0.21 0.11 0.22 4.33 0.20 52.38
oC %o 0.20 3.00 1.34 0.51 0.32 2.67 1.30 38.06
N kg ha™! 77.30 819.50 393.83 114.87 0.55 3.44 363.00 29.17
P kg ha™! 7.40 81.80 41.69 13.13 0.05 3.32 41.45 31.49
K kg ha™! 4.12 7.71 5.10 0.37 0.96 9.66 5.09 7.67
S kg ha™" 0.00 5.20 3.13 0.62 —1.34 7.66 3.15 19.81
Ca mg kg™ 4.69 6.48 5.92 0.47 —1.16 3.16 6.04 7.94
Mg mg kg™ 1.79 4.03 3.03 0.48 0.13 3.69 3.09 15.84
Na mg kg™ 0.00 26.00 16.34 4.51 —0.88 6.88 18.00 27.60
Table 2 Calculated semivariogram properties of soil parameters

Soil Model Range Nugget Sill Nugget/Sill ratios RMSE RMSSE Spatial dependence
properties Ap (m) (Cp) (Co+ O Co/(Co + C), % level

pH Exponential 21,136 0.129 0.416 31.01 0.53 1.20 Moderate

EC Spherical 2338 0.006 0.011 54.55 0.11 1.09 Moderate

oC Gaussian 2308 0.198 0.265 74.72 0.49 0.98 Moderate

N Exponential 3411 9437 13,630 69.24 111.67 0.99 Moderate

P Spherical 14,983 153.551 174.93 87.78 13.18 1.02 Weak

K Exponential 82,660 0.128 0.146 87.67 126.47 1.76 Weak

S Spherical 497 0.228 0.378 60.32 17.34 0.87 Moderate

Ca Gaussian 378 0.013 0.178 7.30 132.23 0.81 Strong

Mg Exponential 3890 89.52 161.21 55.53 11.64 0.99 Moderate

Na Exponential 12,769 13.633 67.74 67.74 4.02 0.99 Moderate
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Fig. 2 Semivariograms of a pH, b EC, c OC,d N, e P, fK, g S, h Ca, i Mg and j Na. Described parameters are pH, soil reaction; EC, electrical
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Fig. 2 continued

than random sampling pattern, and precision increased with
addition sample size. Table 1 shows the summary statistics
of soil characteristics. Coefficient of variation is used to
show total changes. Among the investigated variables, EC
had highest Coefficient of variation with 52.38 %. The
result is in consistent with the research of Jafarian Jeloudar
et al. (2009). pH had lowest coefficient variation with
7.25 %, which could be because of the uniform conditions
in the region such as small changes in slope and its
direction that led to uniformity of soil in this region.
Cambardella et al. (1994) and Afshar et al. (2009) also
found similar results.

Plotted variograms on different directions including 0°,
45°, 135° for all soil variables in this study showed that
effective range and sill of variograms were uniform and
there was no clear anisotropy, and soil properties were
recognized isotropic. This shows the variability of vari-
ables is equal in different directions and changes depend on
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Fig. 3 Ordinary kriged maps of a pH, bEC, ¢ OC,d N, e P, fK, g S,»
h Ca, i Mg and j Na. Described parameters are pH, soil reaction; EC,
electrical conductivity; OC, organic carbon; N, nitrogen; P, phos-
phorus; K, potassium; S, sulphur; Ca, calcium; Mg, magnesium and
Na, sodium

distance between samples (Mohammad Zamani et al.
2007). The ratio of nugget to sill (Co/Cy + C) reflects the
spatial autocorrelation. If it is <25 %, spatial dependent of
variable is strong, if the ratio is between 25 and 75 %,
spatial dependent of variable is moderate and if it is
>75 %, spatial dependent of variable is weak (Cam-
bardella et al. 1994). Models presented in Table 2 were
selected to soil characteristics because they had less
residual sum of squares and better structure. Suitable model
for soil characteristics was isotropic.

In the study area the spatial dependence of soil char-
acteristics was different. Phosphorus and potassium had
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Table 3 Results of accuracy

. Soil properties
assessment using cross

Regression coefficient

Standard error Y intercept SE prediction

validation pH 0.158
EC 0.106
oC 0.172
N 0.109
P 0.044
K 0.005
S 0.965
Ca 0.887
Mg 0.274
Na 0.173

—0.0004 5.841 0.426
—0.0003 0.184 0.096
0.006 1.095 0.500
0.008 347.151 113.461
0.002 39.812 12.927
—0.084 172.093 67.666
—0.031 25.884 21.723
—0.001 260.913 202.064
0.002 300.943 133.872
0.004 13.912 4.043

weak spatial dependence, because the fitted R? was <0.50
(Emadi et al. 2008). pH, electrical conductivity, organic
carbon, nitrogen, sulphur, magnesium and sodium had
moderate, similar to what had been illustrated in research
of Cambardella et al. (1994). Jafarian Jeloudar et al. (2009)
also reported that organic matter had moderate spatial
dependence according to the results of Yi-chang et al.
(2009) and calcium had strong spatial dependence in the
study area according to results of Cambardella et al.
(1994), Lopez-granados et al. (2002) and Weindorf and
Zhu (2010). Variables with strong spatial structure and
very low nugget effect have high continuous distribution in
this area. Strong spatial dependence can be controlled
through the inherent variability of soil properties such as
soil texture, mineralogy and less spatial dependence by
non-intrinsic factors such as grazing (Cambardella et al.
1994).

Semivariograms and maps of soil characteristics are
presented in Figs. 2 and 3. Semivariograms have different
forms depending on the quality of data and the distance
between samples (Davatgar et al. 2001). The results
showed spatial distribution of sulphur content that can be
described with spherical model according to results of
Jian-Bing et al. (2008), Jafarian Jeloudar et al. (2009),
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Vasques et al. (2010) and Weindorf and Zhu (2010).
Nitrogen can be described with exponential model
according to results of Jian-Bing et al. (2006). Available
phosphorus can be expressed with spherical method as
had been showed in research of Mohammadi and Raei-
siGahrooee (2004), Yi-chang et al. (2009). The value of
nugget effect for EC and calcium is small which suggest
that the random variance of variables is low in the study
area. This means that near and away samples have similar
and different values respectively. In other words, a small
nugget effect and close to zero indicates a spatial conti-
nuity between the neighboring points. Results of Vieira
and Paz Gonzalez (2003), Mohammad Zamani et al.
(2007) showed that variogram of nitrogen had very small
nugget effect equal to 0.006. Jian-Bing et al. (2008),
Afshar et al. (2009) and Kamare (2010) reported that
nugget effect of electrical conductivity was 0.0008.
Assessment of fitted models showed that models of sul-
phur and calcium content had a higher regression coeffi-
cient and thus have more accuracy (Table 3).

Results showed that pH, EC, organic carbon, nitrogen,
phosphorus, potassium, magnesium and sodium had high-
est effective range and sulphur and calcium had minimum
effective range. The larger effective range has more
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widespread spatial structure and this expansion will
increase the virtual range which can be used to estimate the
amount of regional variable at unknown points. Effective
range of some soil properties were higher than others
which probably is due to same impact of intrinsic processes
on these soil characteristics. Spatial structure of these
parameters have been more widespread rather than others
and also in sampling design, one can extend sampling
interval up to effective range. The effective ranges were
378-82,660 meters in this study which represents an
increase in soil heterogeneity or potential of retrospection
processes. The results can be used to make recommenda-
tions of best management and modeling of soil and plant
relationships in future studies.

Conclusions

Estimating the spatial variability of soil physical and
chemical properties is a pre-requisite for soil and plant
specific management. The resulted maps of soil properties
along with their spatial structures has delineated the man-
agement zones to be attended first in future to improve the
soil quality and can be used in making better future sam-
pling designs to make efficient management decisions.
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