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Abstract Landslide hazard assessment at the Mu Cang

Chai district; Yen Bai province (Viet Nam) has been done

using Random SubSpace fuzzy rules based Classifier

Ensemble (RSSCE) method and probability analysis of

rainfall data. RSSCE which is a novel classifier ensemble

method has been applied to predict spatially landslide

occurrences in the area. Prediction of temporally landslide

occurrences in the present study has been done using

rainfall data for the period 2008–2013. A total of fifteen

landslide influencing factors namely slope, aspect, curva-

ture, plan curvature, profile curvature, elevation, land use,

lithology, rainfall, distance to faults, fault density, distance

to roads, road density, distance to rivers, and river density

have been utilized. The result of the analysis shows that

RSSCE and probability analysis of rainfall data are

promising methods for landslide hazard assessment.

Finally, landslide hazard map has been generated by inte-

grating spatial prediction and temporal probability analysis

of landslides for the land use planning and landslide hazard

management.

Keywords Landslide hazard assessment � GIS � Fuzzy
unordered rules induction algorithm � Random SubSpace �
Viet Nam

Introduction

Landslide is a geo-environmental hazard of mainly hilly

and mountainous regions. It is often triggered by natural

causes such as heavy and prolonged rainfall or snowmelt,

earthquakes or volcanic eruptions, and anthropogenic fac-

tors such as ground excavation, deforestation and land use

changes (Guzzetti et al. 2005). Out of these factors, rainfall

is considered one of the most prominent triggering factors

of landslide occurrences in Viet Nam (Kjekstad and

Highland 2009). Landslides in this area often cause hun-

dreds of fatalities and loss of millions of US dollar every

year (Pham et al. 2016a). Therefore, now landslide studies

have been turning into urgent tasks requiring landslide

hazard assessment.

Landslide hazard is defined as the probability of

occurrences of potential landslide in specified period of

time (Varnes 1984). Therefore, in the landslide hazard

assessment, spatial prediction and temporal probability of

landslide occurrences are considered. Most of these studies

are related to spatial prediction of landslides (Alkhasawneh

et al. 2014; Pham et al. 2016a). However, only few

attempts have been made to establish temporal probability
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of landslides (Guzzetti et al. 2005; Tien Bui et al. 2013)

mainly due to limitation of availability of site specific data

such as exact time, magnitude and velocity of mass

movements.

For spatial prediction of landslides, three approaches are

generally considered namely analytical methods, expert’s

opinion based methods, and machine learning methods

(Pradhan 2013). Out of these, machine learning methods

which are based on statistical analysis of the spatial rela-

tionship between a set of geo-environmental factors and

landslide occurrences are known more effective for spatial

prediction of large regions (Pradhan 2013). Kavzoglu et al.

(2014), and Pradhan (2013) used support vector machines

as an effective machine learning method for landslide pre-

diction. Moreover, Pham et al. (2015)and Choi et al. (2012)

applied successfully artificial neural networks machine

learning method for landslide susceptibility assessment.

Other machine learning methods such as decision trees

(Alkhasawneh et al. 2014), logistic regression (Akgun

2012) have also been applied widely for spatial prediction

of landslides. In general, performance of these methods is

good; however, it can be further improved using ensemble

techniques as it uses machine learning algorithms to com-

bine multiple classifiers (Pham et al. 2016b).

Regarding temporal probability of landslides, two

approaches can be applied such as analysis of potential

slope instability and statistical analysis of past landslide

events (Saez et al. 2012). The first approach is based on

evaluation of impact of the current slope conditions to the

potential instability of slopes; however, this approach is not

applicable for large investigated regions (Tien Bui et al.

2013). The second approach is based on the probability

analysis of past landslide events based on historical land-

slides records especially of rainfall induced landslide

events (Corominas and Moya 2008). Out of these, statis-

tical analysis approach based on information of rainfall

induced landslide events is considered more suitable for

temporal probability of landslides (Tien Bui et al. 2013).

In term of landslide hazard assessment, Guzzetti et al.

(2005) employed probabilistic model, Terlien et al. (1995)

used the deterministic model. In another study, Tien Bui

et al. (2013) utilized machine learning methods such as

support vector machines, logistic regression, evidential

belief functions, bayesian neural networks, and neuro-fuzzy

integrated with probability analysis of rainfall data to assess

landslide hazard in Hoa Binh province (Viet Nam), and

stated that machine learning methods integrated with prob-

ability analysis of rainfall data is a promising approach for

landslide hazard assessment in landslide prone areas.

Therefore, main objective of the present study is to assess

landslide hazard at the Mu Cang Chai district, Yen Bai

province (Viet Nam) using a novel machine learning method

of Random SubSpace fuzzy rules based Classifier Ensemble

(RSSCE) in conjunction with probability analysis of rainfall

data. RSSCE based on Fuzzy Unordered Rules Induction

Algorithm (FURIA) classifier and Random SubSpace (RSS)

ensemble has been proposed to predict spatially landslide

occurrences. Probability analysis of available rainfall data

for the period 2008–2013 has been considered for the pre-

diction of temporally landslide occurrences.

Random SubSpace Fuzzy Rules Based Classifier
Ensemble (RSSCE) Method for Landslide Spatial
Prediction

Spatial prediction of landslide harzards in the present study

has been carried out by RSSCE method. It is a combination

of Fuzzy Unordered Rules Induction Algorithm (FURIA)

classifier and Random SubSpace (RSS) ensemble. FURIA

was first introduced by Hühn and Hüllermeier (2009)

which is an extension of well-known RIPPER algorithm

(Cohen 1995). It uses fuzzy rules and unordered rule sets to

learn the classified algorithm. In addition, FURIA also uses

rule stretching method to solve uncovered cases (Hühn and

Hüllermeier 2009). Therefore, it usually results in higher

accuracy than the RIPPER algorithm, and C4.5 classifier

(Hühn and Hüllermeier 2009). Meanwhile, RSS is known

as one of the most efficient ensemble techniques that have

been utilized to improve performance of the individual

classifiers (Onan 2015). RSS was first proposed by Ho

(1998) that could combine multiple classifiers for training

in modified feature space. It also creates optimally the

number of training subsets that are employed to train base

classifiers (Ho 1998). Therefore, RSS is known as an

efficient ensemble method in dealing with datasets of many

redundant features and over-fitting problems (Onan 2015).

The proposed RSSCE method in the present study takes

advantages of these two techniques that could result desire

outcomes for spatial prediction of landslide hazards which

involves three main steps (1) initiation, (2) optimization,

and (3) classification.

Initiation The imitative step is to generate the input data

which has been generated from data collected from the

Mu Cang Chai district. It included training dataset and

testing dataset. Meanwhile, training dataset has been

created using 174 landslide pixels (70 % historical

events) and 174 non-landslide pixels, testing dataset

has been generated using 74 landslide pixels (30 % other

historical events) and 74 non-landslide pixels. All fifteen

landslide influencing factors have been utilized to
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overlay with these landslide and non-landslide pixels for

creating final datasets. Basically, training dataset is used

to construct the RSSCE model whereas testing dataset is

employed to validate predictive capability of the RSSCE

model.

Optimization In this step, the RSS method has been

applied to divide training dataset into optimal sub-

training datasets that are then used to train the base

classifier. Main theory of the RSS method is based on

stochastic discrimination (Kleinberg 1990) that is

applied to partition of the feature spaces, and then

to construct classifiers based on the combination of

many components that have weak discriminative

capability but good penalization (Gao and Wang

2006). In final step, the RSS method has been then

used to combine results of all classifiers that use sub-

training datasets to give final outcomes of the RSSCE

model.

Classification This step is carried out to classify

landslide or non-landslide variables for spatial prediction

of landslide hazards, it uses the FURIA method to

analyze spatial relationship between landslide occur-

rences and a set of geo-environmental factors using

optimal sub-training datasets obtained from the opti-

mization step. In this step, fuzzy rules have been applied

using trapezoidal membership function as following

equation (Hühn and Hüllermeier 2009).

IF lð Þ¼df

1 wc;L � l �wc;U

l� Us;L

Uc;L � Us;L
Us;L � l �Uc;L

Us;L � l

Uc;U � Us;U
Uc;U � l �Us;U

0 else

8
>>>>><

>>>>>:

ð1Þ

where Uc;U and Uc;L are the upper and lower bounds of the

fuzzy set corresponding to unit elements membership,

respectively. Also, Us;U and Us;L are the upper and lower

bounds of the fuzzy set respective with elements mem-

bership bigger than zero.

Notably, while applying the RSSCE model, it can be

observed that performance of the RSSCE model

depends significantly on the selection of learning

parameters such as number of folds that is used to

determine the amount of data for reduced-error pruning

of the FURIA classifier, and the number of iterations

that is used to learn the RSSCE model. Therefore,

optimization task of these parameters has been carried

out to obtain the best performance of the RSSCE model

using the trial-and-error process (Pham et al. 2015). As

a result, in the present study the number of folds is set

to 5, and the number of iterations is set to 13 to train

the RSSCE model.

Study Area

The Mu Cang Chai district (Lat. 21�3900000N–21�5000000N;
Long. 103�5600000E–104�2300000E) affected by landslides have
been selected as the study area. It is located in the northwest of

Yen Bai province of Viet Nam (Fig. 1), covering an area of

about 1196.47 km2. The area is situated in a tropical monsoon

region having heavy rainfall (average 3700–5490 mm) during

the months May–October. The annual mean humidity in this

area is about 81 % and mean temperature 14.3 �C.Most of the

study region is covered by forests (61.76 %).

Topography of the area is hilly with intervening deep

valleys.Mountains in the region occupy steep slopes up to 88

degrees at places and elevation of the area varies from 280 to

2820 m with the average elevation of about 1515 m (above

standard sea level). The area is occupied by igneous, sedi-

mentary and metamorphic rocks. The volcanic extrusive

rocks of Tu Le and Ngoi Thia complexes and intrusive

igneous rocks of Phu Sa Phin complex and Tram Tau for-

mation are predominant in the area. The area is tectonically

active and dissected by three main faults namely Phong

Tho—Van Yen, Nam Co—Minh An, and Nghia Lo.

Landslide Inventory

Data of landslide inventory is essential in landslide hazard

assessment (Tien Bui et al. 2013). In this study, landslides

data has been obtained from the Vietnam Institute of Geo-

sciences and Mineral Resources under the national project

namely ‘‘Survey, assessment and zoning of landslide warn-

ing in the mountainous region of Vietnam’’. In all 248

landslide locations have been identified by interpreting air

photos (Year 2013) on 1:33,000 scales. These landslides

have been subsequently validated by field investigations.

Landslides in study area are having varying sizes small

(\200 m3), average (200–1000 m3), large

(1000–20,000 m3), very large (20,000–100,000 m3). The

biggest landslide event occurred at the Che Cu Na commune

in February, 2011 having volume size of 10,000 m3. The

volume of landslides has been determined through field

investigation and spatial analysis. In the study area transla-

tional (35 locations), rotational (124), toppling (45), debris

and mixed (36) type of landslides have been observed.

Maximum number of landslides is of rotational type (124).

Analysis of the landslide inventory shows that most of

landslides in the study region occurred during rainy season

(May–October). Specific date of land slide occurrence is

available only of 42 landsides in the available record.

Therefore, these landslide events have been employed for

temporal prediction of landslides and 248 landslide events

have been utilized for spatial prediction of landslides.
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Fig. 1 Location map and landslide photos of the study area (courtesy: Yen Bai and Dan Tri newspapers)
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Spatial Prediction of Landslides Hazards

Geo-environmental Factors in Relation

with Landslide Occurrences

In spatial prediction of landslides, spatial relationship

between geo-environmental factors and landslide occur-

rences is often analyzed based on the assumption that

future landslides will occur under identical conditions of

past landslides (Pham et al. 2015). Thus determination of

geo-environmental factors that affected past landslide

occurrences is very important. Based on the analysis of

mechanism of landslide occurrences and geo-environ-

mental characteristics of the study region, a total of fif-

teen geo-environmental factors (slope, aspect, curvature,

plan curvature, profile curvature, elevation, land use,

lithology, rainfall, distance to faults, fault density, dis-

tance to roads, road density, distance to rivers, and river

density) have been considered as landslide affecting fac-

tors in the present study. Maps of these affecting factors

have been constructed as raster data (pixel size of

20 9 20 m) with different classes (Table 1; Fig. 2) based

on the degree of susceptibility of each class to landslide

occurrences. These classes are based on the experience of

analysis of adjacent area carried out by authors Pham

et al. (2016a) and other workers Cevik and Topal (2003)

and Dai and Lee (2002).

Evaluation of Predictive Capability of the RSSCE

Model

In literature, Receiver Operating Characteristic (ROC)

curve method has been utilized as a standard quantitative

method to evaluate the predictive capability of landslide

models (Pham et al. 2016a). Therefore, in the present

study, the ROC curve has been selected to validate the

performance of the RSSCE model. Basically, the ROC

curve is generated by plotting pairs of two statistical

indexes such as ‘‘sensitivity’’ and ‘‘100-specificity’’ (Tien

Bui et al. 2016). The AUC value is area under the ROC

curve that is employed to evaluate quantitatively the per-

formance of landslide models (Pham et al. 2015). Addi-

tionally, statistical indexes namely accuracy (ACC), kappa

(k), and root mean squared error (RMSE) have also been

used to evaluate the performance of landslide models

(Bennett et al. 2013).

Furthermore, other benchmark landslide models such as

Support Vector Machines (SVM) (Vapnik 1995), Multiple

Perceptron Neural Network (MLPN Nets) (Zare et al.

2013), and Logistic Regression (LR) (Akgun 2012) have

Table 1 Geo-environmental factors and their classes

No. Geo-environmental

factors

Classes

1 Slope (degree) (i) 0–10, (ii) 10–20, (iii) 20–30, (iv) 30–40, (v) 40–50, and (vi)[50

2 Aspect (i) flat, (ii) north, (iii) northeast, (iv) east, (v) southeast, (vi) south, (vii) southwest, (viii) west, and (ix)

northwest

3 Elevation (m) (i)\700, (ii) 700–900, (iii) 900–1100, (iv) 1100–1300, (v) 1300–1500, (vi) 1500–1700, (vii) 1700–1900, (viii)

1900–2100, (ix) 2100–2300, and (x)[2300

4 Curvature (i) concave (\-0.05), (ii) flat (-0.05–0.05), and (iii) convex ([0.05)

5 Plan curvature (i) 1 [(-334.189)–(-69.843)], (ii) 2 [(-69.843)–(-13.507)], (iii) 3 [(-13.507)–(-2.673)], (iv) 4 [(-2.673)–

3.827], and (v) 5 [3.827–218.338]

6 Profile curvature (i) 1 [(-255.398)–(-52.003)], (ii) 2 [(-52.003)–(-9.183)], (iii) 3 [(-9.183)–5.804], (iv) 4 [5.804–48.624], and

(v) 5 [48.624–290.557]

7 Lithology (i) acid-neutral igneous magmatic rocks and their tuff, (ii) acid-neutral intrusive magmatic rocks, (iii)

terrigenous sedimentary rocks with rich aluminosilicate components, (iv) mafic–ultramafic magma rocks,

(v) carbonate rocks, and (vi) quaternary deposits

8 Land use (i) barren land, (ii) cultivated land, (iii) forest land, (iv) residential area, (v) scrub land, and (vi) water bodies

9 Rainfall (mm) (i)\4000, (ii) 4000–4250, (iii) 4250–4500, (iv) 4500–4750, (v) 4750–5000, (vi) 5000–5250, and (vii)[5250

10 Distance to faults (m) (i) 0–100, (ii) 100–200, (iii) 200–300, (iv) 300–400, (v) 400–500, (vi) 500–600, (vii) 600–700, and (viii)[700

11 Distance to roads (m) (i) 0–50, (ii) 50–100, (iii) 100–150, (iv) 150–200, (v) 200–250, and (vi)[250

12 Distance to rivers (m) (i) 0–50, (ii) 50–100, (iii) 100–150, (iv) 150–200, (v) 200–250, and (vi)[250

13 Fault density (km/km2) (i) very low (0–0.319), (ii) low (0.319–0.861), (iii) moderate (0.861–1.436), (iv) high (1.436–2.169), and

(v) very high (2.169–4.068)

14 Road density (km/km2) (i) very low (0–0.319), (ii) low (0.319–0.861), (iii) moderate (0.861–1.435), (iv) high (1.435–2.169), and

(v) very high (2.169–4.0676)

15 River density (km/km2) (i) very low (0–0.186), (ii) low (0.186–0.428), (iii) moderate (0.428–0.703), (iv) high (0.703–1.164), and

(v) very high (1.1642–2.061)
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been utilized for comparison with the RSSCE model. More

specifically, SVM is known as one of the most efficient

machine learning methods for landslide prediction, it is

based on the statistical approach of finding an optimal

hyper-plane for separating two classes (landslide and non-

landslide) (Pourghasemi et al. 2013). Meanwhile, MLPN

Nets is one of artificial neural networks which are known

as a branch of artificial intelligence has been applied effi-

ciently in landslide problems (Pham et al. 2015). LR is

known as a more accurate machine learning method com-

pared to conventional methods (Akgun 2012; Choi et al.

2012).

Results of the performance of the RSSCE model and

other benchmark landslide models are shown in Fig. 3 and

Table 2. It can be observed that the RSSCE model has the

highest predictive capability of spatial prediction of

landslides compared to other benchmark landslide models

including the LR model, the SVM model, and the MLPN

Nets model. It proves that the RSSCE model is the best

choice for spatial prediction of landslides in the present

study. Therefore, the results of spatial prediction of land-

slides from the RSSCE model have been used for landslide

hazard assessment.

Temporal Prediction of Landslide Hazards

Rainfall Data Analysis

In the present study, rainfall data have taken into account

as a time related factor to analyze temporally landslide

occurrences. Rainfall data have been collected from the

Fig. 2 Thematic maps in the study area: a slope map, b distance to roads map, c lithology map, and d land use map
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rainfall gauge located in the Mu Cang Chai district, Yen

Bai province (Viet Nam). Avialabe Rainfall data for the

period 2008–2013 obtained from Global Weather data for

SWAT (NCEP 2014) has been analysed. The daily rainfall,

in the study area, is shown in Fig. 4a. It can be observed

that most intense rainfall usually occurs for short period

that is within few days (Fig. 4a). Analysis also shows that

the highest annual rainfall occurred in the year 2008

(4362 mm), followed by 2009 (3522 mm), 2010

(3493 mm), 2012 (2160 mm), and 2013 (1950 mm) 2011

(1748 mm), respectively. Out of 248 landslide locations, at

42 locations intense rainfall (more than 100 mm) occurred

in a single day (Table 3).

Determination of Rainfall Threshold

In general, determination of rainfall threshold is required for

the temporal prediction of landslide (Tien Bui et al. 2013).

Rainfall threshold is the minimum rainfall at which a

landslide might happen in a certain region (Guzzetti et al.

2007). In recent decades, many methods have been devel-

oped to calculate the rainfall threshold for landslide study,

these methods can be grouped into five approaches namely

(1) physical-based approach, (2) empirical based approach,

(3) intensity–duration based approach, (4) normalized

intensity–duration based approach, and (5) antecedent rain-

fall based approach (Guzzetti et al. 2008). Out of these

approaches, the intensity–duration based approach is known

as the most widely used method (Larsen and Simon 1993;

Aleotti 2004). This approach requires the data of intensity of

rainfall during the day on which landslide occurred (Larsen

and Simon 1993). This data is generally not available in

most of the cases. The antecedent rainfall plays important

role in the initiation of landslides as it increases the pore-

water pressure in the slope formed materials (Tien Bui et al.

2013). Therefore, the antecedent rainfall based approach has

been utilized to determine the rainfall threshold for temporal

prediction of landslides in the present study.

Rainfall threshold in the study area has been determined

based on the experience of other adjacent areas even
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Fig. 3 Analysis of the ROC curve of different landslide models

Table 2 Statistical index values of different landslide models

No. Statistical indexes RSSCE LR SVM MLPN nets

1 ACC (%) 0.758 0.756 0.723 0.750

2 k 0.5135 0.5130 0.4459 0.500

3 RMSE 0.4159 0.4192 0.4261 0.4644

Fig. 4 Rainfall analysis at Mu Cang Chai district: a daily rainfall for

the period of 2008–2013, b the rainfall threshold, c validation of the

rainfall threshold (the red mark indicates threshold exceeded rainfall)

(color figure online)
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though correlation between the numbers of days for the

antecedent rainfall and the triggering of a landslide is rel-

atively complex (Guzzetti et al. 2007). Aleotti (2004)

considered rainfall of 10 and 15 days. In general, no

agreement has been reached to select the exact number of

days for the antecedent rainfall in determining the rainfall

threshold. Therefore, the selection of the number of days is

often based on the analysis of the rainfall data at the time

landslide occurred for different number of days (Tien Bui

et al. 2013). In the present study, using the results from the

study carried out in the Hoa Binh province which is an

adjacent region of the study area (the Mu Cang Chai dis-

trict), the number of days has been utilized as 15 for ana-

lyzing the rainfall threshold (Tien Bui et al. 2013). Data of

the rainfall-induced landslides of 5 years (2008, 2010,

2011, 2012, and 2013) has been utilized to determine the

rainfall threshold whereas the rainfall-induced landslides of

2009 have been utilized for the validation of the rainfall

threshold. Finally, the envelope line for landslide occur-

rences (Fig. 4b) has been determined using two lowest

points in the scattered graph (Tien Bui et al. 2013) which is

expressed as following mathematical equation:

RTH ¼ 117:52� 0:024R15d ð2Þ

where RTH is defined as the rainfall threshold; R15d is

inferred as the antecedent rainfall of 15 days.

Evaluation of the Rainfall Threshold

Evaluation of the performance of landslide models is to be

done by dividing them into two subsets for training and

validation of the models (Chung and Fabbri 2003).

Therefore, the recorded rainfall induced landslide events,

in the present study, have been divided into two parts. One

part includes induced landslide events of the years of 2008,

2010, 2011, 2012, and 2013 which have been utilized to

determine the rainfall threshold. Another part includes

landslide events occurred in the year 2009 which have been

used for of the validation of rainfall threshold.

Analysis of results shows that there is only one day

rainfall exceeded the threshold value that is on July 5, 2015

(Fig. 4c). This result can be correlated with the landslide

events recorded during the year 2009 (Table 3). Thus

rainfall threshold obtained from the present study can be

used to analyze the temporal prediction of landslides for

landslide hazard assessment in this area.

Temporal Probability of Landslide Occurrences

for Landslide Hazard Assessment

The temporal probability of landslide occurrences is

determined based on the assumption that the past landslide

events could be considered as independent random point-

events in time (Guzzetti et al. 2005). Therefore, the

exceeded probability of landslide occurrences during time

‘‘t’’ is expressed as below (Guzzetti et al. 2005):

PL ¼ P½L tð Þ� 1� ð3Þ

where L tð Þ is the number of landslide events that occur

during time ‘‘t’’ in the study region.

In order to determine the exceeded probability of land-

slide occurrences during time ‘‘t’’, there are two common

methods utilized namely poisson and binomial methods

(Crovelli 2000). Out of these methods, poisson is a con-

tinuous time method that is based on the independent

relationship between the occurrences of random-point

events and time (Coe et al. 2000) whereas binomial is a

discrete-time method that consists of the occurrence of

random-point events in certain time (Coe et al. 2000). In

comparison of these two methods, Crovelli (2000) stated

that these are quite different in the case of short periods (t

is short), but quite coincided in case of long periods (t is

long). Moreover, Poisson method is more commonly used

for landslide hazard assessment (Guzzetti et al. 2005; Coe

Table 3 Temporal occurrence of rainfall triggered landslides in the Mu Cang Chai district from 2008 to 2013

No. Date of

landslides

Number of

landslides

Daily

rainfall

(mm)

3 days

rainfall

(mm)

5 days

rainfall

(mm)

7 days

rainfall

(mm)

10 days

rainfall (mm)

15 days

rainfall (mm)

30 days

rainfall (mm)

1 9/8/2008 2 150.5985 157.364 207.085 251.075 286.034 430.219 769.220

2 5/7/2009 3 124.235 37.55092 60.82649 80.2637 141.0215 268.2655 611.5101

3 01/7/2010 4 195.168 80.313 112.174 152.779 205.144 258.936 509.060

4 25/06/2011 2 112.098 47.904 96.105 135.415 147.881 227.402 317.381

5 08/07/2011 3 225.117 13.843 23.785 43.698 56.154 257.768 482.405

6 15/06/2012 7 115.098 30.981 32.695 53.668 90.871 101.658 331.705

7 28/06/2012 5 234.054 0.915 13.364 21.267 49.241 192.038 282.914

8 15/07/2013 8 286.035 114.310 117.788 126.568 129.192 180.137 277.123

9 24/08/2013 8 278.235 46.96312 63.26751 115.8869 125.8879 161.487 497.6292
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et al. 2000). Thus in the present study the poisson method

has been adopted to analyze the temporal probability of

landslide occurrences.

In the Poisson method (Guzzetti et al. 2005), the prob-

ability of ‘‘m’’ landslides during time ‘‘t’’ can be estimated

as below:

P½LðtÞ ¼ m� ¼ expð�btÞ ðbtÞ
n

m!
; m ¼ 1; 2; 3; . . . ð4Þ

where b is the estimated rate of occurrence of landslides, it

could be obtained from the catalogue of historical landslide

events (Guzzetti et al. 2005).

Based on the Eq. (4), the exceeded probability (the

probability of one or more landslides happened during time

‘‘t’’) can be estimated as following equation:

P½LðtÞ� 1� ¼ 1� exp
t

g

� �

ð5Þ

where g is the future average recurrence interval, t is a

period of time in the future at which the exceeded proba-

bility is calculated.

Using the poisson method, the temporal probability of

landslide hazards for the Mu Cang Chai district have been

calculated for the return period of 1, 3, and 5 years. The

results show that the number of times at which rainfall

exceeded the rainfall threshold is 10, and the probability of

landslide hazards increases with the return period that is

0.865 in 1 year, 0.998 in 3 years, and 1.000 in 5 years.

Landslide Hazard Assessment

Landslide hazard assessment has been carried out in

consideration of both the spatial prediction and temporal

prediction of landslides in the study area. Based on this,

landslide hazard maps have been constructed in three

main steps such as (1) generating landslide susceptibility

indexes, (2) calculating landslide hazard indexes by

multiplying landslide susceptibility indexes with temporal

probability of landslides for different periods, and (3)

reclassifying landslide hazard indexes. In the first step,

using the spatial prediction results by applying the

RSSCE model, landslide susceptibility indexes have been

generated for all pixels of whole study area. In the next

step, the temporal probability in different return periods

(1, 3, 5 years) obtained from the temporal prediction have

been multiplied individually with landslide susceptibility

indexes for obtaining landslide hazard indexes for all

pixels of entire study area. In the final step, landslide

hazard indexes have been reclassified into five intervals

using natural breaks method which is widely applied in

landslide studies (Pham et al. 2015). Based on the hazard

index intervals, hazard has been classified from very high,

high, low and very low hazards. In the development of

landslide hazard map highest temporal probability

observed in the 5 years period has been used for the study

area (Fig. 5).

Fig. 5 Landslide hazard map of

the study area for the return

period of 5 years
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Discussions

Landslide hazard assessment has been carried out in the

present study using Random SubSpace fuzzy rules based

Classifier Ensemble (RSSCE) method and probability

analysis of rainfall data. Out of these, RSSCE is novel

hybrid approach of Fuzzy Unordered Rules Induction

Algorithm (FURIA) classifier and Random SubSpace

(RSS) ensemble which has been proposed to predict spa-

tially landslide occurrences. Probability analysis of rainfall

data has been utilized to predict temporally landslide

occurrences for the Mu Cang Chai district, Yen Bai pro-

vince (Viet Nam) which is highly landslide prone area.

It has been observed that for the spatial prediction of

landslides occurrences, the RSSCE model performed well

in the present study (AUC = 0.840) in comparison to other

models such as LR model (AUC = 0.810), SVM model

(AUC = 0.804) and the MLPN Nets model

(AUC = 0.804). This result is expected as the classifier

ensemble method of RSSCE uses the RSS ensemble which

has capability in improvement of the performance of

individual classifiers (Onan 2015). Moreover, RSSCE uses

learning dataset which are optimized during training pro-

cess for classification thus significantly improving its pre-

dictive capability in comparison to other landslide models.

For temporal probability of landslide occurrences, time

factors such as rainfall and landslide frequency usually take

into account (Tien Bui et al. 2013). In the present study,

landslide frequency data is not available in landslide

inventory. Therefore, rainfall has been utilized to analyze

the temporal prediction of landslides for the study area.

Based on the analysis of temporal relationship between the

rainfall data and the historical landslide events during the

period 2008–2013, temporal probability of landslide

occurrences has been analyzed for different periods (1, 3,

5 years). The temporal prediction of landslide occurrences

has been done in four main steps (1) determining the

rainfall threshold by analysis the temporal relationship

between the antecedent rainfall of 15 days and past land-

slide events, (2) evaluating the rainfall threshold and (3)

calculating the temporal probability of landslide occur-

rences using poison method. This methodology can be

applied in other areas also where multi-temporal landslide

inventory is not properly available.

Landslide hazard assessment has been accomplished in

the study area by the consideration of both spatial and

temporal prediction of landslide occurrences. Past and

present landslide events and geoenvironmental conditions

have been considered in the study. In general, geoinflu-

encing factors for short period of 5 years may not be of

significance. However, it is desirable to consider some

dynamic factors such as changes in the slope due to road

cutting, and change in the land use pattern for development

even for short period analysis.

Conclusions

Landslide is a common geo-environmental hazard in hilly

and mountainous areas in Viet Nam especially during rainy

season. Therefore, rainfall is considered as main triggering

factors to landslide occurrences in the study area. Landslide

hazard assessment for the Mu Cang Chai district, Vietnam

has been carried out in consideration of both spatial and

temporal prediction of landslide occurrences. In the present

study, a novel classifier ensemble method called Random

SubSpace fuzzy rules based Classifier Ensemble (RSSCE)

has been applied to predict spatially landslide occurrences,

and probability analysis of rainfall data for the period

2008–2013 has been considered to predict temporally

occurrences of landslides in the area.

Result of present study show that a hybrid approach of

RSSCE method and the probability analysis of rainfall data

is a promising approach for landslide hazard assessment

which can be applied in other landslide prone areas where

multi-temporal landslide inventory is not adequately

available. Landslide hazard map developed for the study

area would be of use for land use planning and proper

landslide hazard management.
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