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Abstract In the present study, parameters derived from Ice,

Cloud, and land Elevation Satellite/Geoscience Laser

Altimeter System (GLAS) full waveform were used for land

cover classification in western part of Doon valley, Uttar-

akhand, India. Three parameters, viz, height, front slope

angle (afslope) and canopy return ratio (rCanopy) were

extracted from the returned full waveform signals. k-means

(KM), partitioning around medoids (PAM), and fuzzy

c-means (FCM) with different cluster sizes were used for

classifying the land cover types with the help of GLAS-

derived parameters. Among the clustering methods, KM

performed the best. The overall accuracy (89.41 %) of all

methods were quite significant with cluster size three i.e.

with three classes forest, mango orchard and other class

including agriculture, barren/fallow land, settlement, dry

river bed, etc. The accuracy of the PAM (60 %) and the FCM

(68.4 %) decreased drastically at four clusters with the

separation of agriculture from barren/fallow land. The

accuracy of the PAM and the FCM further decreased with

increase in the number of clusters whereas KM showed

reliable results for all clusters.KMwith five clusterswas able

to distinguish five different land covers, viz, forest, mango

orchard, agriculture and barren/fallow land and other class

including settlement, dry river bed, etc. with an overall

classification accuracy of 72.93 %. The study presents a

method for classifying land cover types using GLAS full

waveform data.
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Introduction

Land cover classification is widely used for land manage-

ment and decision support system (Bartholome and Bel-

ward 2005; Nandy and Kushwaha 2011). Land cover is

influenced and altered by anthropogenic activities and/or

climatic factors. A variety of remotely sensed data sources

(including multispectral, hyperspectral, microwave, and

light detection and ranging (LiDAR) data) and methods

have been employed to derive land-cover information.

Both multispectral and hyperspectral data can provide only

spectral information of an object and may fail to separate

objects that are spectrally similar but structurally different

(Buddenbaum et al. 2013), whereas LiDAR can provide

structural information of the object (Duong 2010).

The Geoscience Laser Altimeter System (GLAS) on-

board Ice, Cloud, and land Elevation Satellite (ICESat)

provided full waveform data from 2003 to 2009 with near

global coverage between ± 86� latitude (Rosette et al.

2008). The elliptical footprint diameter of the ICESat/

GLAS data varies between 51 and 102 m equivalent to an

average circular diameter of approximately 70 m and are

spaced 172 m apart along tracks (Abshire et al. 2005). The

GLAS systematically samples the energy returned from the

surface of the ground (Harding and Carabajal 2005). The

returned energy (counts or volts) from the earth surface is

recorded against time (time/bins). This energy profile is

known as full waveform which gathers vital information of

the intercepted surfaces using time delay technique. The

full waveform data gives the structural information on the
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vertical distribution of the surface (Duong 2010). However,

the shapes of the returned GLAS waveforms depend on

terrain characteristics (roughness and slope) of the surface

reflectance at 1064 nm wavelength, cloud cover, size,

shape and orientation of the footprint, canopy thickness,

vegetation height, etc. (Neuenschwander 2008).

ICESat/GLAS data products are mainly used for ice

sheet elevation estimation, canopy structure analysis, and

study of cloud and atmospheric properties (Zwally et al.

2002; Lefsky et al. 2005; Andersen et al. 2015). The full

waveform data of GLAS provides new opportunities for

land cover classification. Few studies on land cover clas-

sification have been carried out in the past decade. These

studies used decision tree approach (Duong et al. 2006),

curve matching method (Zhou et al. 2015) and machine

learning techniques (Liu et al. 2015) to classify land cover

types with an overall accuracy of around 73–87 %. Liu

et al. (2015) also used multi-sensor (ICESat/GLAS and

Landsat Thematic Mapper (TM)/Enhanced TM Plus

(ETM?)) integration approach for land cover classification

and achieved 91 % overall accuracy.

The present study aims to classify different land cover

types using ICESat/GLAS full waveform data. Different

land cover types were identified based on three waveform

derived parameters, viz, height, front slope angle (afslope)

and canopy return ratio (rCanopy) using k-means (KM),

partitioning around medoids (PAM), and fuzzy c-means

(FCM).

Materials and Methods

Study Area

The area selected for the present study lies in the western

part of Doon valley (29.7–30.7�N and 77.4–78.2�E),
Uttarakhand, India (Fig. 1.). The forest of the area can be

broadly classified as Tropical Moist Deciduous Forest

(Champion and Seth 1968) dominated by Shorea robusta

and its associates. Major forest tree species are S. robusta,

Mallotus philippensis, Terminalia tomentosa, Ehretia lae-

vis, Lagerstroemia parviflora and Tectona grandis planta-

tions. The area has a predominantly sub-tropical monsoonal

climate with temperature ranging from 2 to 40 �C. The
average annual rainfall is about 2000 mm. The abundance

of different land covers, accessibility, and data availability

acted as the guiding factors for the choice of the study area.

Data and Methodology

ICESat/GLAS full waveform datasets were used in this

study. The GLA01 and GLA14 of version 33 datasets were

procured from National Snow and Ice Data Centre

(NSIDC, http://nsidc.org/data/icesat) (Zwally et al. 2011).

GLA01 is global altimetry data containing transmitted and

received waveforms and corresponding sensor gains,

whereas GLA14 contains precise geo-location of the

footprint centre. GLA01 and GLA14 products are linked by

Coordinated Universal Time and shot number. In the pre-

sent study, eighty-five footprints covering different land

cover types were selected. The footprints which have less

than ten degree ground slope were considered, as the

ground slope is a crucial factor for GLAS data processing.

Shuttle Radar Topography Mission (SRTM) digital eleva-

tion model was used for determining the ground slope.

The GLAS full waveform (from GLA01) is assumed to

be a sum of Gaussian components. Gaussian decomposi-

tion method was used to process the data as it assumes that

both transmitted and received waveforms are Gaussian in

nature and can be fitted reasonably well using Gaussian

peaks (Brenner et al. 2003). The transmitted waveform

Wx(t) is assumed to have a bell shape and modelled as a

Gaussian function (Eq. 1):

Wx tð Þ ¼ Axe
�ðt�xÞ2

2r2x ð1Þ

where, Ax is the amplitude of transmitted pulse; x is the

mean value representing the peak location and rx repre-

sents width of transmitted pulse at half power. The

received waveform is modelled as a sum of Gaussian

components (Duong 2010). The returned waveform energy

was normalized and decomposed into different Gaussian

components. Next, the parameters extracted from the

waveforms by Gaussian decomposition were used to cat-

egorise land cover types. Three parameters, viz, height,

front slope angle (afslope) and canopy return ratio (rCa-

nopy) (Table 1) were extracted from the waveforms for

clustering of eighty-five ICESat/GLAS footprints over the

study area. The height, afslope and rCanopy parameters

were chosen because these three parameters have enough

potentiality to distinguish the characteristics of land cover

types. Height of major land cover types in the study area,

viz. forest, mango orchard, agricultural crop and bar-

ren/fallow land may vary. But when waveform returns

from heterogeneous or rough terrain, vegetation informa-

tion gets mixed with the ground return which may lead to

erroneous height estimation. So, height parameter may fail

to distinguish the land cover types accurately. Hence, afs-

lope and rCanopy were also considered along with height

in land cover classification. The afslope is angle from

vertical to vector from waveform begin to peak of the

canopy return energy. This provides the information about

vertical variability of the upper canopy and canopy density

(Boudreau et al. 2008). Whereas rCanopy is the canopy

return ratio meaning canopy return energy to total return

waveform energy i.e. nadir-projected vegetation cover area
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versus total area. So, rCanopy represents total canopy

cover in the GLAS footprints (Harding and Carabajal

2005). The canopy height, canopy cover, and upper canopy

variability with structural information of the canopy can be

derived using these three parameters. Combining these

three parameters, different land cover types were identified

for eighty-five footprints using KM, PAM and FCM clus-

tering methods based on Euclidean distance. Cluster sizes

of three, four and five were considered for each method. For

each cluster the major land cover types were assigned based

on field knowledge (Table 2). Clustering, a primitive unsu-

pervised classification technique, is basically partitioning of

dataset into different groups, where the data in same cluster

are considered as similar type.

The KM is one of the simplest unsupervised algorithms

which is known to solve well-known clustering problems

easily (MacQueen 1967). The procedure follows easy and

simple way to classify a given set of data through a fixed

number of clusters (k). The k centroids are defined for each

cluster. These centroids should be placed in a cunning way

because different location causes different results. Better

choice, therefore, is to place them as far away as possible

from each other. The objective of KM algorithm is to

minimize the squared error objective function (Eq. 2).

Fig. 1 Location of study area
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J ¼
Xk

j¼1

Xn

i¼1

x
jð Þ

i � cj

���
���
2

ð2Þ

where, J is objective function, k is the number of clusters, n

is number of cases, xi is for each case i of data set x, cj is

the centroid for cluster j and x
jð Þ

i � cj

���
��� is the distance

function.

Kauffman and Rousseeuw (1990) proposed a clustering

algorithm PAM which maps a distance matrix into a

specified number of clusters. The medoids are generally a

robust representations of the cluster centres, which is par-

ticularly important in the common context that many ele-

ments do not belong well to any cluster. The PAM is the

algorithm to find a local minimum for the k-medoids

problem which may not be the optimum, but it is faster

than exhaustive search. Instead of taking the mean value of

the objects in a cluster as a reference point, a medoid,

which is the most centrally located object in a cluster can

be used. Thus the partitioning method can still be per-

formed based on the principle of minimizing the sum of the

dissimilarities between each object and its corresponding

Table 1 GLAS waveform parameters (Duong 2010)

Sl.

No

Parameters Definition Visualization

1. Height Height at which 100 % of the return energy occurs

2. eEcho It is the received energy that means the area below the waveform between waveform begin and

waveform end

3. eGround eGround is the total intensity of the last Gaussian mode i.e. the ground return energy

4. eCanopy eCanopy is the difference between return waveform energy (eEcho) and ground return energy

(eGround) eCanopy = eEcho - eGround

5. afslope Angle from vertical to vector from waveform begin to peak of the canopy return energy

6. rCanopy It is the canopy return ratio means the canopy return energy (eCanopy) divided by return waveform

energy (eEcho)

Table 2 Land cover types for different cluster sizes

Sl. No Land cover types in cluster size

3 4 5

1. Forest Forest Forest

2. Orchard Orchard Orchard

3. Others Agriculture Agriculture

4. – Others Barren/fallow land

5. – – Others
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reference point. It minimizes the sum of pair-wise dis-

similarities instead of sum of squared euclidean distances.

This forms the basis of the k-medoids method (Kauffman

and Rousseeuw 1990).

The FCM method allows one piece of data to belong to

two or more groups and is frequently used in pattern

recognition (Bezdek et al. 1981). In the FCM, the following

objective function (Eq. 3) is minimized:

Jm ¼
XN

i¼1

XC

j¼1

umij xi � cj
�� ��2; 1�m\1 ð3Þ

where, m is any real number [1, uij is the degree of

membership of xi in the cluster j, xi is the ith of d-di-

mensional measured data, cj is the d-dimension centre of

the cluster. An iterative optimization of the above men-

tioned objective function is carried out in fuzzy partitioning

method, with the update of membership uij (Eq. 4) and the

cluster centres cj (Eq. 5):

uij ¼
1

Pc
k¼1

xi�cjk k
xi�ckk k

� � 2
m�1

ð4Þ

cj ¼
PN

i¼1 u
m
ij � xi

PN
i¼1 u

m
ij

ð5Þ

This iteration will stop when, maxij u
kþ1ð Þ
ij � u

kð Þ
ij

���
���

n o
\e

where, e is a termination criterion between 0 and 1; and k is

the number of iteration steps. This procedure converges to

a local minimum or a saddle point of Jm.

After performing different clustering algorithms with

different cluster sizes, the datasets were verified with

field observations and GoogleEarth imagery. The overall

classification accuracy was evaluated for each method

and their corresponding clusters. Also, clustering vali-

dation techniques were applied to evaluate the goodness

of clustering results. There are two types of clustering

validation technique: external validation and internal

validation. External validation is based on prior knowl-

edge about database whereas internal validation tech-

nique relies on the intrinsic information of the data

alone. In the present study, external information about

the land cover classes is available. Therefore, in the

current situation external validation measures are chosen

for comparing the clustering methods. Entropy, and

coefficient of variation and F-Measure were considered

to validate the classification techniques for different

cluster sizes (Rendón et al. 2011).

Entropy measures the purity of the clusters with respect

to a given cluster label (Wu 2012). The value of entropy

ranges from zero to any real number based on the variety of

the objects in the clusters. So, the class distribution of the

objects in each cluster is needed to understand for

computing the entropy of a dataset. The entropy of the

dataset is computed as follows (Eqs. 6, 7):

Ej ¼ �
X

pij log pij
� �

ð6Þ

E ¼
Xm

j¼1

nj

n
Ej ð7Þ

where, nj = size of cluster j, m = number of cluster,

n = total number of objects and pij is the probability of

assigning an object of class i to cluster j.

Also, the coefficient of variance of the objects of each

cluster was calculated to examine the dispersion of the

resulting dataset. This is a dimensionless quantity (ratio of

standard deviation to mean) for comparing the variance of

the population. A higher value of the coefficient of vari-

ance implies larger variation in the dataset. The F-Measure

is about clustering quality. It ranges from zero to one, the

value near to one indicates higher clustering quality. The F-

Measure of cluster j and class i is calculated as follows

(Eq. 8):

F i; jð Þ ¼
2
nij
ni

nij
nj

nij
ni
þ nij

nj

ð8Þ

where, nij is the number of objects of class i that are in

cluster j, nj is the number of objects in cluster j, and ni is

the number of objects in class i.

Results and Discussion

The KM, PAM, and FCM clustering methods were applied

with different clusters to extract land cover information

from GLAS full waveform (Figs. 2, 3). Proper selection of

features used for classifier training is very important as it

increases classification accuracy. Initially forest and mango

orchard were considered as major classes and agriculture,

barren/fallow land, settlement, dry river bed, etc. were

grouped as other class. The KM, PAM, and FCM with

three clusters were examined considering these three

classes. By comparing classified footprints with actual field

scenario, around 89 % accuracy was achieved for all

clustering methods (Table 3). This enforced to do the same

exercise with more land cover classes. So cluster size was

increased to four: forest, mango orchard and agriculture

were taken as key classes and barren/fallow land, settle-

ment, dry river bed etc. were grouped into other class.

When clustering size became four the accuracy for all

clustering methods decreased drastically (Table 3). Out of

three clustering methods, the KM showed considerably

better accuracy. The land cover classes were further clas-

sified into five classes to see how the clustering methods

behave with increase in cluster size. Forest, mango orchard,
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Fig. 2 Classified GLAS footprint over Landsat 7 (ETM) imagery of 14 October 2008
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agriculture and barren/fallow land were selected as four

distinct classes, while remaining classes were clumped

together as other class (Table 2). Accuracy of PAM

decreased rapidly to 42.35 % (Table 3). The FCM also

showed a decreasing trend in accuracy. Interestingly,

accuracy of KM did not fall further. Accuracy of each class

corresponding to each method with respective cluster size

was also computed (Table 3). PAM was unable to separate

agricultural field from settlement and dry river bed. FCM

identified agricultural class considerably well after

excluding barren/fallow land class. For all cases, the KM

gave significantly good result.

Accuracy of KM, PAM and FCM classification varies

with cluster sizes. To investigate the reason, external clus-

tering validation techniques were adopted. The entropy and

coefficient of variation of resulting clustering sizes of dif-

ferent clustering techniques were computed. Then differ-

ence between coefficient of variation (DCV) of true and

resulting clustering sizes were calculated. DCV and entropy

of different resulting clustering sizes were plotted (Fig. 4a).

It is observed that entropy value of the PAM for cluster size

4 is smallest minimum (0.1271), but, DCV is largest

(0.4042) for cluster size 4. Entropy values of cluster size 4

of KM (0.1631) and FCM (0.1649) are more or less similar,

but DCV is less for KM (0.0088). Clustering result of KM is

much closer to true cluster distribution. In cluster size 4, it

was found that KM performed better than PAM and FCM

(Table 3). So, it is observed that DCV plays a vital role in

clustering quality than entropy. This is due to biased effect

of entropy, especially when data have highly imbalanced

true clusters. It is observed that if the entropy measure is

only used to validate the clustering methods, the validation

results could be misleading (Wu 2012). For cluster size 5

(Fig. 4a), similar kind of situation was arisen for PAM as it

was for cluster size 4. Entropy and DCV values of KM

(0.3031, 0.2064) and FCM (0.3214, 0.1455) are almost

similar. However, classification accuracy (Tables 3, 4) of

KM for cluster size 5 is higher than FCM in the same cluster

size. So, entropy and DCV were unable to justify the higher

classification accuracy of KM than FCM for cluster size 5.

In this context, F-Measure test was performed. F-Measure

combines precision and recall concepts from information

retrieval (Rendón et al. 2011). Precision can be a measure of

a classifiers exactness whereas recall can be a measure of a

classifiers completeness. Combining these F-Measure gives

the quality of the clustering. It was found that (Fig. 4b, c),

Fig. 3 Clustering results. KM with a 3 clusters b 4 clusters c 5 clusters; PAM with d 3 clusters e 4 clusters f 5 clusters and FCM with g 3 clusters
h 4 clusters i 5 clusters

Table 3 Overall land cover classification accuracy of different

clustering methods

Methods Accuracy (%) in cluster size

3 4 5

KM 89.41 72.94 72.94

PAM 89.41 60.00 42.35

FCM 89.41 68.24 60.00
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KM performed better than PAM and FCM for both the

cluster sizes 4 and 5 by F-Measure values. The entropy and

DCV could not justify the accuracy because of large class

imbalance in the data set. When large class imbalance exists

in the input dataset clustering method can predict the value

of the majority class for all predictions and achieve a high

classification accuracy (Wu 2012). So, the entropy fails to

determine accuracy correctly in the present study. The KM

gave best result because the parameters height, afslope and

rCanopy are well separated from each other. The com-

plexity of the KM, PAM and FCM are O(nk), O(k(n-k)2),

and O(nk2) respectively. Due to this the overhead needed

for computing and managing the proximity vector explains

why the PAM and FCM are quite slower than KM. Hence,

KM clustering was found comparatively fast, robust and

efficient than other two methods in the present study

(Table 4).

Conclusions

In the present study, three partition-based clustering algo-

rithms, viz, KM, PAM and FCM were applied to ICESat/

GLAS derived parameters, viz, height, afslope and rCa-

nopy for classifying land cover types. The results showed

that among the three clustering algorithms, the KM clus-

tering algorithm performed the best (with cluster size 4 and

5) with 72.94 % accuracy. The KM algorithm was able to

distinguish the different land cover types more efficiently

than the other two methods. However, the classification

method could be improved to get better discrimination

between the agriculture and barren land. This research

suggests a new and promising way to derive land cover

information from ICESat/GLAS full waveform data.

GLAS data is freely available with near global coverage

and can potentially be used for large-scale land cover

Fig. 4 Clustering validation results: a DCV and entropy values

with cluster size 4 and 5 b F-Measure value for cluster size 4 and,

c F-Measure value for cluster size 5

Table 4 Accuracy of land

cover classification using

different clustering methods

Methods Accuracy (%)

Cluster size Forest Mango orchard Agriculture Barren/fallow land Others Over all

KM 3 85.71 80.00 – – 94.74 89.41

4 85.71 60.00 7.69 – 88.00 72.94

5 85.71 60.00 84.62 43.75 55.56 72.94

PAM 3 85.71 80.00 – – 94.74 89.41

4 59.52 80.00 0.00 – 88.00 60.00

5 50.00 60.00 0.00 43.75 55.56 42.35

FCM 3 85.71 80.00 – – 94.74 89.41

4 78.57 60.00 0.00 – 88.00 68.24

5 88.10 60.00 23.08 25.00 44.44 60.00
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classifications. Moreover, the results derived from the

GLAS waveform analysis is also useful for comparison,

validation or updation of land cover classification data

obtained by other methods.
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