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Abstract Automatic information extraction from optical re-
mote sensing images is still a challenge for large-scale remote
sensing applications. For instance, artificial sample collection
cannot achieve an automatic remote sensing imagery classifi-
cation. Based on this, this paper resorts to the technologies of
change detection and transfer learning, and further proposes a
prior knowledge-based automatic hierarchical classification
approach for detailed land cover updating. To establish this
method, an automatic sample collection scheme for object-
oriented classification is presented. Unchanged landmarks
are first located. Prior knowledge of these categories from
previously interpreted thematic maps is then transferred to
the new target task. The knowledge is utilized to rebuild the
relationship between landmark classes and their spatial-
spectral features for land cover updating. A series of high-
resolution remote sensing images are experimented for vali-
dating the effectiveness of the proposed approach in rapidly
updating detailed land cover. The results show that, with the
assistance of preliminary thematic maps, the approach can
automatically obtain reliable object samples for object-
oriented classification. Detailed land cover information can
be excellently updated with a competitive accuracy, which
demonstrates the practicability and effectiveness of our meth-
od. It creates a novel way for employing the technologies of
knowledge discovery into the field of information extraction
from optical remote sensing images.

Keywords Land cover update . Change detection . Transfer
learning . Automatic object-oriented hierarchical classifica-
tion . Object sample collection

Introduction

Land Use and Cover Change (LUCC) is the most prominent
symbol of the Earth surface. It forcefully affects the ecological
environment and climate change. As an important means to
monitor global change, optical remote sensing can simulta-
neously observe the change on the Earth surface within a short
period (Green et al. 1994). Remote sensing has played a huge
role in large-scale monitoring environmental change and
assessing the rational use of land resources. Many research
projects of LUCC were completed based on MODIS, AVHR
R, TM and other earth observing data (Franklin and Wulder
2002; Wardlow and Egbert 2003). The key issue of its appli-
cations is how to effectively translate observed data into valu-
able spatial and temporal information in a rapid way. Thus,
land cover information extraction of large areas from optical
images is one of the most fundamental problems for applying
remote sensing in the field of land resource surveillance
(Cihlar 2000).

With the development of computer science, especially ar-
tificial intelligence, remote sensing image classification has
gradually shifted from the visual interpretation to computer-
aided methods. The classification accuracies of the computer-
aided methods are also improved after years of research (Lu
and Weng 2007; Tso and Mather 2009; Richards and Jia
2012). However, it remains a challenge because of many fac-
tors, such as the complexity of the landscape, the uncertainty
of imaging and the reliability of classification approach (Lu
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and Weng 2007). Particularly, from the perspective of image
understanding, the land cover classification methods previ-
ously reported in the literatures have not yet reached a high
level of automation. Although there is an early exploration of
automatic classification method, they placed more emphasis
on theoretical formulations rather than practical applications.
Current classification methods still require some human inter-
vention and control (Lu and Weng 2007). For instance, in
majority of published work by various researchers so far, most
of the methods need manually mark the label of land cover
types. Few methods achieve satisfactory classified results
without human participant in selecting training samples. The
process of manually training samples collection makes the
automatic level of classification far from realistic require-
ments. Therefore, it is still challenging to quickly obtain land
cover information from massive remote sensing data.

Under these situations, on the one hand, people need to
further investigate the transmission mechanism of remote sen-
sors, geological laws, imaging principles. On the other hand,
theories and methods of artificial intelligence need to be fur-
ther developed to increase the prompt application capabilities
of remote sensing. Many limitations restricting the automation
of classification are urgent to be improved in technical prac-
tice, especially the process of training sample collection. Rap-
id collection of effective training samples has been the bottle-
neck of the classification with large-scale remote sensing im-
ages (Demir et al. 2014).

Actually, large-scale landscapes (e.g. the landscape
covered by 5–10 Landsat TM images) rarely change in a
short time (e.g. two months or one season, which is related
to the growth cycle of main vegetation), and the same land
cover types always have same features in regional areas
(e.g. the area with tens of square kilometers in size). This
continuity in time and space can assume that most of the
features of land cover types, such as the spectrum and
spatiality, can be learned from prior knowledge, and be
quantitatively expressed. Therefore, previously collected
samples or produced thematic maps can provide amounts
of prior knowledge to a new classification task. It is ad-
vantageous for automatically extracting information from
optical remote sensing imageries by mining historical aux-
iliary data. Most researches have used these data as some
types of classification features (Friedl et al. 2010; Homer
et al. 2004), others are used as constraints for post-pro-
cessing (Loveland et al. 2000). However, existing algo-
rithms could not well consider how to effectively utilize
this prior knowledge to find samples, and then improve
the automation of classification. This limits the breadth
and depth of optical remote sensing applications. Based
on these, this paper arm to break the traditional bottleneck
of manually collecting samples and presents a change de-
tection and transfer learning-based automatic sample col-
lection method. With this sample collection scheme, an

automatic object-oriented hierarchical classification
(AOHC) approach is further proposed for detailed land
cover updating. The experiment results with high-
resolution optical remote sensing images show the algo-
rithm can automatically obtain reliable object samples for
object-oriented classification. Performances of the method
are demonstrated for land cover updating in an automatic
manner.

Related Works and Background

Land Cover Classification

For accessing to land cover information, computer-aided
interpretation of remote sensing images has been greatly
developed in the joint effort of the experts in the fields of
pattern recognition and remote sensing. Numerous
methods were proposed in succession from the improve-
ments of automation, accuracy and effectiveness (Lu and
Weng 2007; Tso and Mather 2009; Richards and Jia
2012). Explicit research ideas can be roughly divided into
two ways. One is considering the classification algorithms
from the perspective of pattern recognition. That is, how
to effectively apply the methods of pattern recognition,
such as minimum distance method, maximum likelihood
(ML) method (Luo et al. 2002), support vector machine
(SVM) method (Foody and Mathur 2004), decision tree
method (Pal and Mather 2003; Barros and Basgalupp
2012), random forest method (Gislason et al. 2006), arti-
ficial neural network method (Foody et al. 1995), and
multi-classifier ensemble method (Briem et al. 2002), into
the field of optical remote sensing image classification.
Another is how to effectively use experts’ prior knowl-
edge, such as visual interpretation in the past, to enhance
the degree of automation and intelligence of classification
(Mennis and Guo 2009).

From the point of handling scale, current image classifica-
tion algorithms can be divided into two categories: pixel-
based and object-oriented. The former views the characteris-
tics of each pixel as a vector. They classify the pixels of entire
images by matching the feature vectors and pre-selected sam-
ples (Togi et al. 2013). Such methods use only spectral char-
acteristics of pixels and then relatively simple. With the rapid
development of spaceflight, sensors and computer technolo-
gies, the spatial resolution of optical remote sensing has im-
proved significantly. High spatial resolution optical remote
sensing imageries are obtained with voluminous data, more
ground details, and more serious spectral confusion. It makes
traditional pixel-based classification only relying on image
spectrum in applicable, as a host of additional kinds of charac-
teristics are ignored within pixel-based methods. While object-
oriented methods, through clustering pixels into objects via
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image segmentation, can take the spectral characteristics, tex-
ture, shape, and topology features into account. Multiple types
of information are utilized together (Mennis and Guo 2009),
which is more in line with the principles and process of human
visual interpretation. Hence, they gradually become the devel-
opment trend of classification of high-resolution images (Togi
et al. 2013). In this paper, we will employ the object-oriented
classification as a rudimentary framework.

Sample Collection

Among the fore-mentioned supervised classification methods,
the quantity and quality of training samples are of great impor-
tance. Existing land cover classificationmethods always require
adequate training samples to learn a predictive model. Most
previous work collected samples manually because of the im-
portance and complexity of samples. Many studies have shown
that the accuracy of a classification varies as a function of the
range of training set, like number of samples, space distribution
of samples (Fardanesh and Ersoy 1998; Tsai and Philpot 2002).
Moreover, the training samples of a classification typically need
the use of a lot of randomly selected pure pixels in order to
characterize the classes. However, human annotation is a time
consuming work, which makes labelled data costly to be ob-
tained in practice. Therefore, Maulik and Chakraborty (2011)
proposed a semi-supervised support vector machine that uses
self-training approach to decrease the number of samples. Tuia
et al. (2009) introduced an active learning framework for land
cover classification, permitting people to select samples as less
as possible. All these approaches can reduce the training set size
without significant influence on the classification accuracy.
However, they didn’t fundamentally change the human in-
volvement in the process of sample collection. It is still the main
contradiction in the land cover classification, since the type
labels are difficult or expensive to be obtained. This motivates
us to improve the process of sample collection.

Transfer Learning

At present, various optical remote sensing satellites are pro-
ducing images with high time resolution. A lot of time-series
new images are constantly received, which constitutes a time-
intensive spatial data. For classification tasks on these new
images, however, previously collected training samples in
the libraries often outdated. Then, generally speaking, the as-
sumption of traditional machine learning theory cannot be
achieved. That is, the training samples and test samples should
be identically distributed with a same probability distribution.
That is because the spectral data obtained from satellite sen-
sors often change over time due to the factors of atmospheric
absorption and scattering, sensor calibration, solar elevation
angle, azimuth, phenological phase, and data processing. The-
se factors make that the spectral values of “training samples

from pervious old images” and “test samples from current new
images” cannot obey a same statistical probability distribu-
tion. In this circumstance, traditional machine learning theory
cannot be carried out and a large number of new samples are
needed to be re-labeled. Then, the collection of new training
samples becomes a necessary step for an accurate classifica-
tion. While it is a time, manpower, material resource–consum-
ing process. However, the historical thematic land cover maps
are rich in amount of prior knowledge. It is economical to
discover beneficial knowledge from these data to assist cur-
rent classification tasks. Hence, collecting samples by trans-
ferring historical knowledge to current classification can be a
breakthrough point for automatic classification.

As a new kind of machine learning theory, transfer learning
(TL) was proposed to solve the problem of transferring existing
prior knowledge learned from an environment to help learning
in a new environment. It emphasizes to transfer of knowledge
across domains, tasks, and distributions that are similar but not
the same. Therefore, it relaxes the strict assumptions of tradi-
tional machine learning theory, namely the same statistical
probability distribution of training data and test data (Dai
et al. 2008; Pan and Yang 2010). In recent years, researches
in this area have been increasingly applied in real life, including
text processing, LAN positioning, emotional classification.
This theory is believed to be suitable for the classification tasks
of updating land cover with historical thematic maps. However,
its application in the classification of remote sensing images is
rare. This paper aims to use the idea of transfer learning to
partly solve the problem of manual sample collection.

In the field of transfer learning, the data set D is divided
into two parts: source date set Ds={(xs

i ,ls
i)}i=1

m and target data
set Dt={(xt

i,lt
i)}i= 1

n (x are the values of data and l are their
labels), i.e. D=Ds∪Dt. And the target data set is further divid-
ed into training set Dt−train={(xt

i,lt
i)}i=1

k and test set Dt−test=
{(xt

i,lt
i)}i= k+1

n , i.e. Dt=Dt−train∪Dt−test. Here all data in D are
in the same feature space, i.e., all the characteristics can be
described in the feature space, while the data in Ds and Dt are
generated from different but similar domains. On the one hand,
the data set Dt−train is generally obtained from the manual tag-
ging in practical applications. As a small amount of data in Dt−

train is often not sufficient to train a good classifier, the task of
manual tagging (i.e. human annotation) is tremendously huge
for the requirement of a high-performance classifier. On the
other hand, there are a large amount of labelled data in Ds.
However, they cannot be directly used to train Dt due to their
different distributions. Some schemes need to be completed on
Ds for feature subset selection. The goal of transfer learning is to
label the data inDt by transferring the existing priori knowledge
in source domain Ds to target domain Dt.

In the framework of transfer learning, there is no strict
assumptions on the same distribution of training data and test
data, and knowledge in source fields can be transferred
through different ways. Hence, three issues are researched in
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the theory, namely what to transfer, how to transfer and when
to transfer. Based on the issue of “what to transfer”, current
methods for solving knowledge transfer can be summarized
into four categories (Pan and Yang 2010), namely instance
transfer, feature transfer, parameter transfer, and relational
knowledge transfer. Within the framework of relational
knowledge transfer, this paper will propose a change
detection-based transfer method to incorporate ancillary data
for interpreting new remote sensing images.

Methodology

According to the characteristics of remote sensing images and
the demand of automatic land cover updating, an automatic
object-oriented hierarchical classification (AOHC) method is
designed in this section. The methodology is a cluster of a
series of algorithms and focuses on automatic object sample
collection under the guidance of prior knowledge. The flow
chart is illustrated in Fig. 1, including the following steps.

(1) First, pre-processing technologies, including automatic
registration and radiometric normalization, are carried
out on the multi-phase optical remote sensing images.
Then, segmentation based mean-shift technology is ap-
plied to the second-phase target image, which converts
the handing scale from pixels to objects. Features of ex-
tracted objects then can be calculated for pattern learning.

(2) Second, after change detection between the images from
different phases, object samples for rough land cover
classification are automatically selected with the assis-
tance of prior knowledge (i.e. the thematic maps in
first-phase and spectral library data). Then, rough land
cover classified map is updated utilizing a supervised
object-oriented classification algorithm. In the method-
ology, all the information achieved from the thematic
maps and spectral library data, including land cover
types and locations, is defined as prior knowledge.

(3) Finally, based on the results of step (2), object samples for
detailed land cover classification are further automatically
selected with the auxiliary data under a series of strict rules
described in subsection 3.2. Hierarchical object-oriented
classifications for detailed land cover are then carried out
for each rough land cover type. The second-phase classi-
fied map of detailed land cover is then updated.

According to above pre-set processes, the procedure of this
methodology can automatically complete except setting the
region of interest. Following subsections will give more de-
tails about the implementation of several key steps during the
procedure.

Segmentation and Feature Extraction

Segmentation Based on Mean-Shift

Given the robustness of segmentation, we resort a mean-shift
(MS)-based algorithm to extract objects from optical remote
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Fig. 1 Flow chart of the automatic object-oriented hierarchical classification for updating detailed land cover
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sensing images. As a kind of region-based segmentation
method, this algorithm completes non-parametric density
function estimation and automatic clustering through iterative-
ly shift means to the local maxima of density functions in the
feature space (Comaniciu and Meer 2002).

Given n points xi(i=1,…,n) in d-dimensional space, the
kernel density at point x can be written as

bf h;K xð Þ ¼ ck;d
nhd
Xn
i¼1

k
x−xi
h

��� ���2
� �

; ð1Þ

where ck,d is a normalization constant, h is the bandwidth, and
k(•) is the kernel profile for the estimation. The local maxima
of the density will be searched in feature space by locating
among the zeroes of the gradient ∇bf h;K xð Þ ¼ 0. The gradient
of density can be obtained by

∇bf h;K xð Þ ¼ 2

h2c
bf h;G xð Þ � mh;G xð Þ; ð2Þ

where the profile of kernelG is defined as g(x)=−k′(x), c=cg,d/
ck,d is the normalization constant with cg,d as its normalization
parameter. In Eq. (2), the first term is the density estimation at
x with the kernel G

bf h;G xð Þ ¼ ck;d
nhd
Xn
i¼1

g
x−xi
h

��� ���2
� �

; ð3Þ

and the second term is the MS

mh;G xð Þ ¼

Xn
i¼1

xi � g x−xi
h

�� ��2� �

Xn
i¼1

g x−xi
h

�� ��2� � −x: ð4Þ

From (4), it can be found that theMS is the difference between
the weighted mean, using the kernel G for weights, and x, the
center of the kernel. According to Eq. (2), the MS can be
written as

mh;G xð Þ ¼ 1

2
h2c

∇bf h;K xð Þ
bf h;G xð Þ

: ð5Þ

Equation (5) shows that theMS vector at point xwith kernelG
is proportional to the normalized density gradient estimate
obtained with kernel K, and it thus always points toward the
direction of maximum increase in the density. In other words,
the local mean is shifted toward the region in which the ma-
jority of the points reside (Comaniciu and Meer 2002).

Optical remote sensing images are typically represented as
a spatial range joint feature space. The dimensionality of the
joint domain is d=2+p (two for spatial domain and p for
spectral domain). That is, for a point x=(xs,xr), the spatial
domain xs=(lx,ly)

T denotes the coordinates and locations for
different pixels, and the range domain xr=(r1,…,rp)

T repre-
sents the spectral signals for different channels. Then, the
multivariate kernel is defined for joint density estimation

Khs;hr xð Þ ¼ C

h2s h
p
r

k
xs

hs

����
����
2

 !
k

xr

hr

����
����
2

 !
; ð6Þ

where C is a normalization parameter and hs and hr are the
kernel bandwidths for spatial and range sub-domains. After
determined kernel function and its bandwidths, image cluster-
ing can be achieved through mean filtering. Regions are then
merged according to the minimum merging parameter M. Fi-
nally, the technology of vectorization is employed to extract
the boundaries of objects. More detailed description of MS
algorithm can be found in Comaniciu and Meer (2002).

Feature Extraction

After segmentation, homogenous pixels are merged into ob-
jects. Multiple features of objects are then calculated to struc-
ture feature thematic layers. There are three kinds of spatial-
spectral features of objects, namely spectrum features, shape
features and texture features, to be extracted. The spectrum
features include objects’ spectral signals of each band (i.e.
average and standard deviation of spectral signals from all
the pixels located in the objects), objects’ brightness (i.e. av-
erage of spectral signals from all the bands), objects’ maxi-
mum differences (i.e. maximum variation between the spectral
signals of bands), objects’ indices (i.e. specific values of as-
sembling spectral signals of various bands, including normal-
ized difference water index (NDWI), normalized difference
vegetation index (NDVI)). The shape features consist of geo-
metric features of objects such as length-width ratio, main
direction and shape index (Lu and Weng 2007). The texture
features comprise the measures of Gray-Level Co-occurrence
Matrices (GLGM) (Marceau et al. 1990). As listed in Table 1,
by assembling these three kinds of features, 27 features are
extract to construct a high-dimensional feature space. Note
that the architecture of objects’ feature calculation is open
for object-oriented classification. Any other features can be
easily added to improve the performances of our method.

Object Sample Automatic Collection Based on Change
Detection and Transfer Learning

For supervised classification, influence training samples in
distinguishing land cover types should be selected for a clas-
sification system. The key problem in this step is how to
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automatically collect object samples on the target images. In
this subsection, a prior knowledge-based object sample auto-
matic selection scheme is proposed after 27-dimensional fea-
tures are extracted from the dataset.

Note that the interested land cover types of a regional area
change little in a short period. We suppose that most of the
types are unchanged. The positions and features of the un-
changed landmarks can be extracted as prior knowledge. Un-
der this assumption, an automatically collect object samples
scheme based on change detection and transfer learning is
designed with data mining technologies. Its main idea is to
view pre-interpreted thematic maps and outdated spectral li-
brary data as important references for sample collection. Un-
changed landmarks’ locations, land cover types, and features
are combined together to guide object sample collection on
target images.

The concrete implementation is described in Fig. 2. First,
change detection is carried out between the optical remote
sensing images of two phases, and a large number of un-
changed landmarks can be located. In this paper, change vec-
tor analysis (CVA) and Otsu’s thresholding methods (Lu et al.
2004) are jointly applied to automatically detect unchanged
pixels and their spatial locations. Locations of unchanged
pixels will be marked on the second-phase target image. Sec-
ond, prior interpretation knowledge of categories (i.e. labels)
from the first-phase interpreted map is transferred to the new
target image. Third, four rules with thresholds for filtering
objects are employed to select trustworthy samples. That is,
the sizes of objects, the percentages of pixels labeled in ob-
jects, the proportion of pixels marked by a same label, and the
matching degree of objects’ average spectrum must be larger
than given thresholds. Under these constraints, the pixel’s

Table 1 List of “spatial-spectral” features of objects

Spectrum features Shape features Texture features

No. Feature name No. Feature name No. Feature name

01 Mean of spectrum values in band 1 13 Length-width ratio 22 Homogeneity

02 Mean of spectrum values in band 1 14 Length of geometry 23 Contrast

03 Mean of spectrum values in band 3 15 Width of geometry 24 Dissimilarity

04 Mean of spectrum values in band 4 16 Compactness 25 Second moment

05 Standard deviation of spectrum values in band 1 17 Main direction of geometry 26 Entropy

06 Standard deviation of spectrum values in band 2 18 Number of points 27 Correlation

07 Standard deviation of spectrum values in band 3 19 Length of border – –

08 Standard deviation of spectrum values in band 4 20 Shape index – –

09 Brightness 21 Number of corner points – –

10 Maximum differences – – – –

11 NDVI (Normalized Difference Vegetation Index) – – – –

12 NDWI (Normalized Difference Water Index) – – – –
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Fig. 2 Diagram of automatic collection of object samples with the assistance of auxiliary data

658 J Indian Soc Remote Sens (December 2015) 43(4):653–669



label with the highest proportion in an object is employed as
this objects’ label.

Among these thresholding rules of filtering objects, spec-
tral matching algorithm is used to determine the degrees of
membership of auto-selected objects, which indicates the
probability of the objects to be distinguished as a specific land
cover type. To determine which land cover type a specific
object belongs to, a spectral matching algorithm called spec-
tral similarity is applied, as given below

d2 x; yð Þ ¼
X p

i¼1
xi−yið ÞTA xi−yið Þ þ 1−

X p

i¼1
xi−μxð Þ yi−μy

� �
p σxσy

0
@

1
A

2

; ð7Þ

Here x=(x1,…,xp)
T is the average spectrum vector of an ob-

ject whose type is unknown, and y=(y1,…,yp)
T is the average

spectrum vector of a known land cover type from the spectral
library. μx, μy are the mean values and σx, σy are the standard
deviations. The first term in the right part of Eq. (7) is
Mahalanobis distance rather than Euclidean distance. And A
denotes a positive semi-definite matrix which is learned from
prior knowledge such as relevance and neighborhood (Xing
et al. 2002). This distance metric decreases the distance be-
tween similar vectors and increases the distance between dis-
similar vectors. The second term is the correlation coefficient
by which the overall shape difference between the reflectance
curves can be exploited. As a result, the resulting distance
matches to the total difference between x and y. Both of these
two terms range in [0,1], and d∈ 0;

ffiffiffi
2

p� 	
. The smaller d is, the

larger matching degree of objects’ average spectrum is.
Additionally, note that, there are still incorrect labels

among these object samples satisfying mentioned
thresholding rules. The undesirable samples need to be further
eliminated for acquiring robust learning rules. Therefore, fi-
nally, the synthetic minority over-sampling technique
(SMOTE) and neighborhood cleaning rule (NCR) (Jerzy and
Szymon 2008) are employed to handle the imbalanced skew-
slash distribution of automatically collected object samples.
Thus, reliable objects with labels are filtered out as highly
credible training samples for pattern learning. Then, through
training these collected samples, the relationship between
landmark classes and their spatial-spectral features then can
be established to classify other unlabeled objects. Apparently,

the entire procedure of object sample collection is automati-
cally executed with the assistance of previous thematic maps
and spectral library data.

Object-Oriented Hierarchical Classification

To accurately obtain detailed land cover, a hierarchical classi-
fication is developed in this field. In this paper, a two-level tree-
structured hierarchy is employed to stratify land cover types,
namely rough land cover and detailed land cover. An example
of tree-based hierarchical class structure is shown in Fig. 3.

As shown in Fig. 3, classification will be performed in a
hierarchical two-level land cover types, one running with rough
land cover types and the other running with detailed land cover
types. After automatic acquisition of object samples for rough
land cover classification, supervised object-oriented classifica-
tion method is adopted to extract rough land cover information.
Taking into account the efficiency of learning, we employ C5.0
decision tree algorithm (Barros and Basgalupp 2012) to pro-
duce a rough land cover classified map. This procedure is re-
ferred as first-level rough land cover classification. Subsequent-
ly, for each type of rough land cover, object samples for de-
tailed land cover classification are automatically collected via
the scheme in Fig. 2. At this level, samples establish a link
between the rough and detailed land cover types, which can
be constructed as a pattern to further wipe out some unreliable
samples. That is, if the rough land cover types of some labeled
objects are different from their classified rough land cover type,
they will be automatically wiped out for training. Suitable dis-
crimination rules are then formatted via carrying out C5.0 deci-
sion tree on the selected object samples. Decision trees are then
constructed to complete the classification for each rough land
cover type. We call this procedure a second-level detailed land
cover classification. Through this two-level hierarchical classifi-
cation, detailed land cover information of the second-phase tar-
get map is finally updated. This automatic object-oriented clas-
sification with this two-level hierarchical classifier is referred to
automatic object-oriented hierarchical classification (AOHC)
method in this paper. By contrast, the term “automatic
object-oriented global classification (AOGC)” is used to define
the method directly using an ordinary global classifier on the
level of detailed land cover types. For a comprehensive

Global Land Cover Network

Cultivated Field Tree Field Grass Filed Water Filed Impervious Filed Unused Filed

Paddy Land Dry Land Garden Land Forest Land Grass Land River and Channel Lake and Pool Beach Building Road Bare Land

Rough Land Cover

Detailed Land Cover

First-level
Classification

Second-level
Classification

Fig. 3 An example of a tree-based hierarchical class structure for land cover types
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introduction to hierarchical classification theory, algorithms and
some of its applications, we refer to (Carlos and Alex 2011).

Experiments

Data Set Description

Data Set A

Two Systeme Probatoire d’Observation dela Tarre 5 (SPOT5)
images are first selected to evaluate the proposed method.
Figure 4 shows their true color compositions by fusing

panchromatic band and multi-spectral bands. They were ac-
quired over Dongguan City in South China, on April 13, 2006
and May 15, 2008, respectively. They are 2.5 m in spatial-
resolution and 4977×7369 pixels in size. The image in
2006 year (Fig. 4a) is referred as the first-phase auxiliary im-
age, while the image in 2008 year (Fig. 4b) as the second-
phase target image. They are certainly different in spectral
signals due to inconsistent phase and then physical radiation,
which inevitably makes the spectral signals of two images
subject to different statistical probability distributions. Thus,
the samples from Fig. 4a cannot be directly adopted as training
samples for the classification of Fig. 4b. But they can be
viewed as spectrum library data for spectral matching. To
match the inputs of our approach, a thematic map in

a bFig. 4 Previous auxiliary and
current target SPOT5 optical
remote sensing images for the
experiment with data set A: (a)
previous auxiliary image ((Hinton
et al. 2006)-04-13); (b) current
target image (2008-05-15)
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Fig. 5 Previous (first-phase) auxiliary thematic map for data set A (2006-04-13): a Auxiliary thematic map of rough land cover type; b auxiliary
thematic map of detailed land cover type
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accordance with Fig. 4a, is collected as an auxiliary data. As
shown in Fig. 5a, this region contains many typical land cover
categories. Each type of land cover has obvious visual features
and thus can be interpreted. Therefore, this selected data set is
suitable for experiment to analyze our proposed algorithm.

Data Set B

Demonstrate works on data set B are carried out as another
case. Figure 6 presents two Zi Yuan 3 (ZY3) satellite images
from Satellite Surveying and Mapping Application Center
(SBSM). They were obtained over Huainan in central China,
on Nov. 05, 2012 and Mar. 18, 2013, respectively. The size is
5035×6338 pixels and the spatial-resolution is 2.1 m.
Figure 6a is referred as the first-phase auxiliary image, while
Fig. 6b as the second-phase target image. Due to inconsistent
phase, the images also have different statistical probability
distributions in spectral signals. Auxiliary thematic maps are

shown in Fig. 7, including the maps of rough land cover type
and detailed land cover type extracted according to Fig. 6a.

Results

Data Set A

By comparing the features of Fig. 4a and b, the result of pixel-
based change detection is calculated through jointly using
CVA and Otsu’s thresholding methods. According to the char-
acteristics of this data set, the kernel bandwidths and mini-
mum merging parameter are set as hs=7, hr=6.5, M=150,
respectively, for MS-based segmentation. Figure 8 presents
the segmentation results of the marked area utilizing the red
rectangles in Fig. 4. In addition, with the assistance of Fig. 5
and pre-reserved spectral library data, a large number of object
samples are automatically collected under the scheme of
Fig. 2. The constraint rules in the scheme consist of: (1) the

Fig. 6 Previous auxiliary and
current target ZY3 optical remote
sensing images for the experiment
with data set B: a previous
auxiliary image (2012-11-05); b
current target image (2013-03-18)
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Fig. 7 Previous (first-phase) auxiliary thematic map for data set B (2012-11-05): a Auxiliary thematic map of rough land cover type; b auxiliary
thematic map of detailed land cover type
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sizes of objects must be larger than 50 pixels; (2) the percent-
ages of pixels labeled in objects must be larger than 90 %; (3)
the proportion of pixels marked by same labels must be larger
than 90 %; and (4) the matching degree of objects’ average
spectrum based Eq. (7) must be larger than 90 %. The distri-
butions of the selected training object samples are also partly
shown in Fig. 8. Figure 9 presents the updated thematic maps
for different land cover levels through learning decision trees
based on the collected object samples.

To quantitatively investigate the performance of the pro-
posed algorithm, validation points are collected to evaluate the
accuracy of these results. The procedure of accuracy assess-
ment is illustrated as follows. First, to ensure the uniformity of
the validation points’ distribution, 10×10 regular grids are
generated according to the size of the images. Ten randomly
generated points are then located in each grid to guarantee the
randomness of the points. Second, through the visual interpre-
tation, the land cover types of these points are recorded. Third,
to keep the validation points balance in quantity, 600 verifica-
tion points are picked out to verify the effectiveness of the

method. Four, classified types of each point are obtained from
Fig. 9. Finally, by comparison of the results of artificial inter-
pretation and automatic updating, accuracies of the proposed
algorithm can be calculated using confusion matrices.

The updating accuracies of rough land cover type using
AOHC method are summarized in Table 2 and 3. It can be
seen from these tables that major of rough land cover types
can update accurately by the AOHC method. Although the
updating accuracies of cultivated field and grass field are not
high (81.81 % and 77.59 %, respectively), the accuracies of
water field and impervious fields are relative high (92.63 %
and 87.50 %, respectively). Since there are no rough land
cover types with particularly low recognition rates, the overall
accuracy and kappa coefficient can reach to 84.50 % and
0.8179, respectively. In addition, accuracy evaluation of de-
tailed land cover updating using the AOHC method is subse-
quently presented in Table 4. As shown in this table, the pro-
posed method can automatically extract detailed land cover
information with an acceptable performance. Furthermore,
except the types of dry land and road, other land cover types
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Fig. 8 Results of MS-based segmentation and distributions of object samples for data set A using the AOHC approach: a distribution of object samples
for rough land cover; b distribution of object samples for detailed land cover
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Fig. 9 Results of land cover updating for data set A using the AOHC approach: a result of rough land cover updating; b result of detailed land cover updating
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can be updated accurately. Overall accuracy of detailed land
cover updating using the AOHC method can reach to
79.50 %, which suggests the updated results of detailed land
cover are highly consistent with their actual categories.

A key scheme of the proposed method is the use of hierar-
chical classification for updating. A comparative experiment
is conducted to investigate on the role of the two-level hierar-
chical classifier. Table 5 shows itemized accuracy of each
detailed land cover type for the AOGC approach. As shown
in the Table 6 and 7, each algorithm can achieve a high per-
formance on the validation data via automatic sample collec-
tion. However, by comparing with the two-level hierarchical
classifier, global classification in the AOGCmethod results in
a considerable drop in performance. The performance of our
proposed method can reach 79.50 % at level of detailed land
cover types while the AOGC only achieves 76.67 % at the
same level. That is, 2.83 % improvement in accuracy can be
produced for AOHCmethod with data set A, which illustrates
the hierarchical strategy in AOHC method outperforms the
one-level global strategy. This is due to hierarchical classifi-
cation in the AOHC method constructs a top-down classifica-
tion to make the types less as the level gets deeper. Another
factor for the marginal improvements is the use of global
information compensates for the local training sample collec-
tion within the second-level classification.

Data Set B

With the same parameter setup in the experiment of data set A,
the segmentation results of data set B are shown in Fig. 10.
The distributions of the selected training object samples are
also presented in Fig. 10. Figure 11 shows the updated the-
matic maps for data set B. It can be found that the changes
over polygons are obviously updated, which suggests our
method partly overcomes the limitation of small separability
between different detailed land cover types with similar spec-
trum signals.

Similar to the accuracy assessment in the experiment of
data set A, the results of data set B are also validated using
uniformly collected verification points. 600 verification points
are resorted to calculate the corresponding updating accuracy.
Table 6 and 7 summarize the updating accuracies of rough
land cover type. It can be seen from these tables, the updated
results of rough land cover are acceptable as the overall accu-
racy and kappa coefficient reach to 91.83 % and 0.8764, re-
spectively. As shown in Table 7, the classification accuracies
of tree fields, grass field, water field and impervious field are
also relatively high (93.8, 90.5, 98.0 and 92.7 %, respective-
ly). Furthermore, accuracy evaluation of detailed land cover
updating is presented in Table 8. We find that most of detailed
land cover types can be accurately updated via utilizing a two-

Table 2 Confusion matrix of rough land cover updating using the AOHC approach (data set A)

Rough land cover type Number of artificially interpreted samples Producer accuracy (%)

Cultivated field Tree field Grass field Water field Impervious field Unused field

Cultivated field 81 13 6 0 0 0 81.00

Tree field 7 89 4 0 0 0 89.00

Grass field 3 0 90 7 0 0 90.00

Water field 0 3 9 88 0 0 88.00

Impervious field 8 0 0 0 77 15 77.00

Unused field 0 0 7 0 11 82 82.00

User accuracy (%) 81.81 84.76 77.59 92.63 87.50 84.50 –

Overall measures Overall accuracy (%): 84.50 Kappa coefficient: 0.8179

Table 3 Statistical table of
itemized accuracy of each rough
land cover type for the AOHC
approach (data set A)

Rough land
cover type

Number of artificially
interpreted samples

Number of correctly
classified samples

Accuracy
(%)

Main misclassification

Cultivated field 99 81 81.81 Tree field; Impervious field

Tree field 105 89 84.76 Cultivated field

Grass field 116 90 77.59 Water field

Water field 95 88 92.63 Grass field

Impervious field 88 77 87.50 Unused field

Unused field 97 82 84.50 Impervious field

Total 600 507 84.50 –
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level hierarchical classification. For instance, the updating ac-
curacies of open woodland, grass land, river & channel, lake
& pool and building can reach to 91.67, 90.48, 96.55, 93.18
and 95.24 %, respectively. Updating errors of these detailed
land cover types are effectively prevented as spectrum, shape
and texture features are jointly considered during the process
of object-oriented classification. It suggests that the perfor-
mance of detailed land cover updating is acceptable in an
automatic manner.

In order to compare our method against the AOGC algo-
rithm, we then implement the two algorithms on date set B.
The overall performances for the AOGC algorithm are listed
in Table 9. Similarly, comparing the results in Table 8, the
AOHC algorithm can achieve consistent improvement over
the AOGC algorithm at the level of detailed land cover types.
As shown in Table 8 and 9, the performance of our proposed
algorithm can reach 86.33 % at level of detailed land cover
types while the AOGC only achieves 82.33 % at the same
level. That is, our top-down approach can get about 4 %

improvements over the global approach on data set B. The
performance of our two-level classification achieves higher
and that of one-level global classification is significantly re-
duced over the multiple level categories. As a result, with a
pruned two-stage hierarchy, the proposed algorithm can make
a more accurate updating performance. Its top-down structure
of the hierarchy can be effectively utilized to improve the
updating efficiency.

Discussions

Misclassification

Note that the accuracies of the experiments with data set A are
lower than those of the experiments with data set B. The
reasons is that error propagation exists in several procedures
of the proposed algorithm. It is a key issue for the designed
algorithm and generalized from the following aspects. First, as
shown in Fig. 1, the samples are selected from the unchanged

Table 4 Statistical table of
itemized accuracy of each
detailed land cover type for the
AOHC approach (data set A)

Detailed land
cover type

Number of artificially
interpreted samples

Number of correctly
classified samples

Accuracy (%) Main misclassification

Paddy land 66 52 78.79 Dry land

Dry land 33 22 66.67 Paddy land

Garden land 31 28 90.32 Grass land

Forest land 74 58 78.38 Grass land

Grass land 116 90 77.59 Garden land

River & channel 65 50 76.92 Grass field

Lake & pool 22 17 77.27 River & channel

Beach 8 6 75.00 Grass field

Building 56 48 85.71 Road

Road 32 21 65.63 Building; dry land

Bare land 97 85 87.63 Dry land

Total 600 477 79.50 –

Table 5 Statistical table of
itemized accuracy of each
detailed land cover type for the
AOGC approach (data set A)

Detailed land
cover type

Number of artificially
interpreted samples

Number of correctly
classified samples

Accuracy (%) Main misclassification

Paddy land 66 50 75.76 Dry land

Dry land 33 21 63.64 Paddy land; bare land

Garden land 31 26 83.87 Paddy land; grass land

Forest land 74 57 77.03 Grass land;

Grass land 116 85 73.28 Garden land

River & channel 65 49 75.38 Grass field

Lake & pool 22 16 72.73 River & channel

Beach 8 6 75.00 Grass field

Building 56 47 83.93 Road; dry land

Road 32 21 65.63 Building; dry land

Bare land 97 82 84.54 Dry land

Total 600 460 76.67 –
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positions, while the results of change detection may contain
errors. Second, diagram of automatic collection of object sam-
ples in Fig. 2 achieves the purposes of sample purification.
However, it cannot weed out all the undesirable objects from
the training samples. Third, as the labels of samples are direct-
ly transferred from the auxiliary data, the reliability of the
AOHC depends upon the accuracies of auxiliary thematic
data. While the auxiliary data is partly inaccuracy (i.e. the
thematic maps have been classified in advance may contain
a certain degree of errors). For instance, in the experiments,
the accuracies of the auxiliary thematic map in data set A
(Fig. 5) are lower than that in data set B (Fig. 7), which makes
the updating accuracies have the difference. From the factors
presented above, samples with incorrect labels will be collect-
ed to learn the classification rules. Then, errors will be
propagated to the final classification results. Finally, misclas-
sification of rough land cover types will be propagated down-
wards to all its descendant detailed classes. Consequently, the
accuracy of update results depend on the accuracy of change
detection, the first classified thematic map, automatic sample
collection and the robustness of classifiers. These essential
factors could be further improved. For example, error detec-
tion can be considered in sample collection strategy to obtain
“high purity” samples, and error tolerance in robust classifiers
can be carried out to obtain more reliable classification results.
In addition, by examining the misclassified sample points in

the experiments, we find that a part of misclassification can be
summarized as the following circumstances. (1) The verifica-
tion points are located on the boundary of two different clas-
ses. Therefore, we cannot determine their categories according
to visual interpretation. For instance, the different results of
classification and artificial interpretation usually occur for the
validation points on the fuzzy boundaries of water fields and
grass fields. (2) The verification points are located in the easily
confused classes, like cultivated fields and grass fields, garden
lands and forest lands, dry lands and bare lands. Hence, parts
of the occurrence of misclassification are produced by errone-
ous artificial interpretation. If the errors caused by artificial
interpretation can be completely excluded, the updating accu-
racies of the proposed AOFC should be theoretically larger
than the aforementioned accuracies.

It should be noted that the fundamental step of the proposed
AOHC is object sample automatic collection based on prior
knowledge. As described in subsection 3.2, this procedure
combines the processes of change detection and classification.
Through change detection, spatial location and spectrum
matching between historical data and current data, the accu-
mulated knowledge in the historical data is explored and fur-
ther transferred to the new tasks. Then, the problem of incon-
sistent distributions between images from different phases can
be solved by transferring this prior knowledge, which contrib-
utes to improve the effectiveness of land cover updating.

Table 6 Confusion matrix of rough land cover updating using the AOHC approach (data set B)

Rough land cover type Number of artificially interpreted samples Producer accuracy (%)

Cultivated field Tree field Grass field Water field Impervious field Unused field

Cultivated field 89 6 5 0 0 0 89.00

Tree field 9 91 0 0 0 0 91.00

Grass field 3 0 95 2 0 0 95.00

Water field 0 0 0 100 0 0 100.00

Impervious field 1 0 0 0 89 10 89.00

Unused field 1 0 5 0 7 87 87.00

User accuracy (%) 86.41 93.81 90.48 98.04 92.71 89.69 –

Overall measures Overall accuracy (%): 91.83 Kappa coefficient: 0.8764

Table 7 Statistical table of
itemized accuracy of each rough
land cover type for the AOHC
approach (data set B)

Rough land
cover type

Number of artificially
interpreted samples

Number of correctly
classified samples

Accuracy (%) Main misclassification

Cultivated field 103 89 86.41 Tree field; Grass field

Tree field 97 91 93.81 Cultivated field

Grass field 105 95 90.48 Cultivated field

Water field 102 100 98.04 Grass field

Impervious field 96 89 92.71 Unused field

Unused field 97 87 89.69 Impervious field

Total 600 551 91.83 –
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Another notable innovation of the AOHC is the two-level
tree-structured land cover updating. Traditional classification
algorithms typically predicate only classes at the leaf nodes of
the tree (Bishop 2006). As shown in Fig. 3, however, there is
an obvious class hierarchy between the types of rough and
detailed land cover. Traditional approaches have the serious
disadvantage of having to build a classifier to discriminate
among a large number of classes (all leaf classes), without
exploring information about parent–child class relationships
present in the class hierarchy (Carlos and Alex 2011). To
avoid ignoring this hierarchy information, this paper
employed the hierarchical classifier to seek a better separabil-
ity among the detailed land cover types. As shown in the
experiments, more efficient performances are achieved by ap-
plying the hierarchical scheme. The results prove that it is
necessary to perform the classification stage for deep classifi-
cation algorithm, which can lead tomore precise results for the

deep hierarchy. This suggests that local information in each
rough land cover is useful for detailed land cover updating.
However, as a representative top-down approach, the present-
ed AOHC has the disadvantage that an error at the level of
rough land cover classification is going to be propagated
downwards to the level of detailed land cover classification.
Misclassification of first-level nodes will be propagated
downwards to all its descendant classes. This confirms the
initial conjecture that selecting the right branch of the tree at
the highest level plays an essential role in determining the
class of land cover. Therefore, in the near future, some proce-
dures for the problems of structuring a reasonable hierarchical
tree and avoiding error propagation need to be further
developed.

Furthermore, through change detection and transfer learn-
ing, prior knowledge is certified to be effective for automati-
cally collecting samples in current updating tasks. However,
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Fig. 10 Results ofMS-based segmentation and distributions of object samples for data set B using the AOHC approach: a distribution of object samples
for rough land cover; b distribution of object samples for detailed land cover
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Fig. 11 Results of land cover updating for data set B using the AOHC approach: a result of rough land cover updating; b result of detailed land cover updating
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other steps in the AOHC are finished using simple methods to
illustrate the effectiveness of the approach. More effective
theories and methods can be employed to further improve its
performance. For instance, multiple analysis detection (MAD)
has been validated as a more effective technology to detect
changes (Nielsen 2007). Multi-instance learning is expected
as a new framework for object-oriented classification (Zhou
et al. 2012). Deep learning recently attracts increasing atten-
tion in the field of feature self-learning (Hinton et al. 2006).
Semi-supervised learning is devoted to effectively making use
of unlabeled samples or unreliable labeled samples (Zhu
2008). Active learning focuses on solving informative sam-
ples selection (Burr 2009). Distance metric learning may be
helpful in integrating all kinds of features extracted from prior
knowledge (Liu and Metaxas 2008). These innovative ma-
chine learning theories are worthy of further applying in the

field of land cover updating. Besides, by integrating more
domain knowledge of optical remote sensing, the rules of
filtering objects in Fig. 2 can be optimized to further improve
the reliability of object samples.

Conclusions

To meet the urgent needs of automatic information extraction
for optical remote sensing images with high spatial resolution,
this paper presents a prior knowledge-based AOHC to rapidly
update detailed land cover maps. In the proposed method,
MS-based segmentation technology is firstly employed to ex-
tract objects. Multiple features, including spectrum, shape and
texture features, are then extracted together for supervised

Table 8 Statistical table of
itemized accuracy of each
detailed land cover type for the
AOHC approach (data set B)

Detailed land
cover type

Number of artificially
interpreted samples

Number of correctly
classified samples

Accuracy (%) Main misclassification

Paddy land 73 62 84.93 Dry land

Dry land 30 25 83.33 Paddy land

Spinney 44 31 70.45 Forest land

Open woodland 36 33 91.67 Forest land

Forest land 17 13 76.47 Paddy land

Grass land 105 95 90.48 Paddy land

River & channel 58 56 96.55 Lake & pool

Lake & pool 44 41 93.18 River & channel

Building 42 40 95.24 Road

Road 54 43 79.63 Building; Bare land

Bare land 69 57 82.61 Building

Others 28 22 78.57 Lake & pool

Total 600 518 86.33 –

Table 9 Statistical table of
itemized accuracy of each
detailed land cover type for the
AOGC approach (data set B)

Detailed land
cover type

Number of artificially
interpreted samples

Number of correctly
classified samples

Accuracy (%) Main misclassification

Paddy land 73 60 82.19 Dry land

Dry land 30 25 83.33 Paddy land; bare land

Spinney 44 28 63.64 Forest land

Open woodland 36 31 86.11 Forest land; paddy land

Forest land 17 12 70.59 Paddy land

Grass land 105 91 86.67 Paddy land

River & channel 58 56 96.55 Lake & pool

Lake & pool 44 40 90.91 River & channel

Building 42 37 88.10 Road; bare land

Road 54 42 77.78 Building; bare land

Bare land 69 53 76.81 Building

Others 28 19 67.86 Lake & pool

Total 600 494 82.33 –
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pattern classification. With the assistance of historical auxilia-
ry data, a novel adaptive method for object sample automatic
collection scheme is designed by combining change detection
with transfer learning. In this scheme, prior knowledge from
previous interpreted thematic map is transferred to the new
target images and then used to rebuild the relationship be-
tween landmark classes and their multiple features. Based on
the automatic collected samples, a two-level AOHC is carried
out on different levels of rough land cover types and detailed
land cover types. From the whole process of the methodology,
land cover updating tasks can be automatically solved under a
supervised learning framework. Based on prior knowledge, all
the steps are automatically achieved after extracting and fus-
ing the information from the steps forward.

The results of the experiments show that the approach can
automatically obtain reliable object samples with the assis-
tance of auxiliary data. The performance of AOHC in accura-
cies of rough and detailed land cover classification were also
validated. Furthermore, the method did not require any artifi-
cial intervention, thereby increasing the degree of automation
and applicability of land cover updating. Consequently, the
approach creates a novel way for employing the technologies
of knowledge discovery into the field of remote sensing infor-
mation extraction without manual intervention. It is a techni-
cal reference for the image automatically understanding using
prior knowledge.
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