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Abstract Advancement in Polarimetric synthetic aperture
radar technology (PolSAR) and its ability to capture images
in different polarizations, facilitate accessing large volumes of
information from a scene. These images as well as conven-
tional SAR images are degraded by speckle noise. Processing
and reducing the speckle of all the images separately is time
consuming. So applying methods to simultaneously process
different channels information can be very helpful. Several
methods have been proposed for speckle reduction and each
has advantages and disadvantages. In this paper, a despeckling
approach based on fast independent component analysis (Fast
ICA) algorithm is proposed for improving of the results when
polarimetric channels are added. The results show the more
input images to Fast ICA algorithm leads to better separation
between signal components and the speckle. Analysis of the
results for the ALOS (Advanced Land Observing Satellite)
PALSAR polarimetric images showed that combination of

polarimetric channels improved 37 % the ENL value in com-
parison with only using the HH (horizontal-horizontal)-, HV
(horizontal-vertical)-, and VV (vertical-vertical)- polarized
channels.

Keywords Independent component analysis . PolSAR .
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Introduction

Synthetic Aperture Radar (SAR) is an active remote sensing
system typically mounted on a moving platform such as an
aircraft or spacecraft. This system scores significantly com-
pared to the other optical and infrared sensors because of some
features such as ability to work in unfavorable weather con-
ditions and in the night (Li et al. 2010). SAR polarimetry
(PolSAR) has demonstrated, particularly during the last de-
cade, its significance for the analysis and the characterization
of the earth surface, as well as for the quantitative retrieval of
biophysical and geophysical parameters. The capability to
explore the complete space of polarization states represents
one of the most important properties of PolSAR data, as
optimization procedures may be foreseen. The second impor-
tant property of PolSAR data is its inherent multidimensional
nature that allows a more precise characterization of the scat-
tering process at the resolution cell than single polarization
data and, eventually, a better characterization of the scatter or
scatters within that resolution cell (Gonzalez et al. 2012).

Regarding the interaction between incident electromagnet-
ic waves and the target in both single and multi-polarization
systems, the scattered power is determined by means of the
scattering coefficient. Nevertheless, a polarimetric SAR has to
be considered as a multi channel system. The images obtained
from these systems are affected by an intrinsic factor called the
speckle. This noise caused by the coherent interference of
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recursive waves from several scatterings (Lee and Pottuier
2009; Li et al. 2010). The noise destroys texture and radio-
metric characterizations of SAR images and makes their in-
terpretation difficult. Therefore, speckle filtering is a
key preprocessing step for PolSAR images applications
such as ship detection (Xinga et al. 2013), classification
(Cheng et al. 2013; Dabboora et al. 2013), target decomposi-
tion (Zhanga et al. 2011), feature extraction (Kharbouchea and
Claveta 2013), and biomass estimation (Amini and Sumantyo
2009).

Different methods have proposed to reduce speckles on
single polarized SAR images that also can be suitable for
filtering polarimetric images provided that they could be
applied to the polarimetric covariance matrix elements. In
general, SAR image filtering techniques can be divided to
multi-look processing and post-processing filtering algo-
rithms. In multi-look processing method, the synthetic aper-
ture is divided into N parts and each part will create an image
separately. The final image is obtained from the average
images. This method decreases speckles variance, proportion-
al with looks (N) but this is equal to proportionally loss of
spatial resolution toward azimuth (Lee et al. 1991). Two of the
early post-processing filters are mean and median filters.
These filters are easily applied and remove a considerable
amount of speckles, but they have two major drawbacks:
The first, not considering the multiplicative property of speck-
le noise and the second, not being adaptive and applied
equally to all parts of the image (Lee and Pottuier 2009).
Therefore the tendency to use methods well adapted to the
image is increased.

Adaptive filters are built based on the theory of Min-
imum Mean Square Error (MMSE). Such as Lee filter
(Lee 1980), Kuan filter (Kuan et al. 1985), Frost filter
(Frost et al. 1982), Gamma-MAP (Kuan et al. 1987),
Enhanced-Lee and Enhanced-Frost (Lopes et al. 1990).
Generally, these filters reduce the image speckle with local
statistics and adjusting filter window. If the window size is
large, the noise will be smooth and greatly reduced, but
edges and point targets will have opacity of blurring, or
conversely, if the window size is small and some of the
edge information is maintained the speckle will not fit in
properly. In recent years many methods have been developed
to optimize the speckle reduction ratio with preserving edge
detail and texture; two of these techniques are using wavelet
transformation (Solbo and Eltoft 2002; Achim et al. 2003)
and speckle reducing anisotropic diffusion (SRAD) (Yu and
Acton 2002).

Methods exclusively exist for reducing noise of PolSAR
images can be classified into two categories: The first set
of methods filter all elements of the covariance matrix.
These methods are very good for the physical and textural
studies of ground targets in post-processing tasks and
when the computation time is not important. But most of

these methods are powerless in simultaneous polarimetric
processing of multiple channels and considering probable
correlation between them. If using multiple channels, each
channel should be processed independently and computa-
tion volume rises sharply. The second sets of methods
only process the elements on main diameter of the covari-
ance matrix. These methods apply for processing intensity
images but in these methods polarimetric information will
be lost. Among the latter, most methods only process one
frequency band.

In recent years, independent component analysis (ICA)
has been considered for reducing speckle and feature
extraction in SAR images because of its good ability in
separating blind sources (Lee and Hoppel 1992; Lopez-
Martinez and Fabregas 2003; Ballatorea 2011; Chenab
et al. 2011; Anticoa 2012). ICA separated statistical inde-
pendent signals from linearly mixed signals. In this way,
mixing model is detected with independent sources at the
same time. Principal Component Analysis (PCA), as the
basis and the infrastructure of ICA algorithm, was used
much earlier than ICA in SAR images. Lee and Hoppel
(1992) offered a PCA algorithm to reduce the speckle of
PolSAR images that maximized signal-to-noise ratio. The
high speed and accuracy of the ICA algorithm can be
useful for many applications of PolSAR images such as
biomass estimation, target detection and change detection.

Materials and Methods

Study Area

The study area is located in the north of Iran and south of
Caspian Sea between 36°–36.5°N and 52° –52.5°E (Fig. 1).
The natural vegetation of Sisangan forest is temperate decid-
uous broadleaved forest that is considered as one of the
rainiest areas in Iran which is a suitable habitat for the broad-
leaf species. Figure 1 shows the coordinates of this area in the
ETM-Landsat image that acquired in 4 December 2002 and
related ALOS PALSAR data in three polarization channels
that acquired in 22 May 2009.

Speckle Statistical Model in PolSAR Data

In this study, ALOS PALSAR data are analyzed which
it was acquired during the dry season (to minimize any
influence of varying rainfall and soil moisture) in 22
May 2009. The incidence angle and pixel spacing of
this image are 30 m and 23.1°, respectively. Multi-
polarization SAR images are composed of four types
of polarimetric images represented by scattering matri-
ces. For each polarimetric channel, the statistics is like a
single polarized image (Gao 2010). Therefore, studying
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statistical model of single polarized SAR can be extend-
ed to describe more polarized channel. To define statis-
tical models of a SAR image, different levels (in term
of scattering) are divided into homogeneous, heteroge-
neous and highly homogeneous groups. Homogeneous
group refers to an environment with moderate or poor
backscattering. For example, smooth surfaces, slack water,
and road have poor backscattering. Also, crops and rough
surfaces have medium backscattering. Heterogeneous envi-
ronment refers to targets like forests. Highly heterogeneous
environment is known with strong backscattering as man-
made objects, urban areas and steep slopes of the terrain.

Synthetic aperture radar acquires the backscatters from the
target as amplitude and phase. Full polarimetric SAR data has
scattering matrix for each sample as follow (Lopez-Martinez
and Fabregas 2003):

S ¼ SHH SHV

SVH SVV

� �
ð1Þ

Where SHH represents the scattering of transmitted wave
with horizontal polarization and receiving it with the same
polarization. The other three elements of the matrix are de-
fined the same and the difference is only V, the symbol of
vertical polarization. For the bilateral scattering and adjusted
radar SHV is equal to SVH.

This format is suitable for single-look complex (SLC) data,
but for multi-look complex (MLC) data it is better to use the
covariance matrix to show the backscattering signal. In order
to obtain the covariance matrix, polarimetric scattering data
can be expressed by a complex vector:

k l ¼ SHH

ffiffiffi
2

p
SHV SVV

h iT
ð2Þ

Where T is the transpose sign and
ffiffiffi
2

p
has been used to

maintain stability in the calculation of total power or Span:

Span Sð Þ ¼ SHHj j2 þ 2 SHVj j2 þ SVVj j2 ð3Þ

The covariance matrix can be written as follows:

C ¼ kl:kl
T

� � ¼
SHHj j2

D E ffiffiffi
2

p
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� �
SHHSVV
� �

ffiffiffi
2
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p
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� �

SVVSHH

� � ffiffiffi
2

p
SVVSHV

� �
SVVj j2

D E

2
6664

3
7775

ð4Þ

Where asterisk (*) indicates the complex conjugate. As it
can be seen, the sum of the main diagonal elements constitutes
the total power and each main diagonal element is singly the
intensity image of related polarimetric channel.

In the intensity images, speckle is multiplicative with orig-
inal signal (Lee and Pottuier 2009). Assuming that the speckle
has unique mean and is independent from signal, the multi-
plicative model can be rewritten as follows (Chitroub and
Hachemi 2007):

xi ¼ si þ si ni−1ð Þ ð5Þ

Where xi is the content of the pixel in the ith SAR image, si
is noise-free signal response of target, and ni is the speckle.

Some studies have used the logarithmic function to convert
the multiplicative model to additive model and using the
desired algorithm (Yusheng et al. 2005; Wang et al. 2008).
The main drawback in applying this technique is that the
dynamic range of the original image is compressed by the
logarithm operation (Lee and Hoppel 1992).

L-HH L-HV L-VV 

Fig. 1 ETM-Landsat image of
study area acquired in 4
December 2002 (upper panel),
and ALOS PALSAR Intensity
images in HH-, HV, and VV-
polarized channels that acquired
in 22 May 2009 (lower panel)
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Independent Component Analysis (ICA)

ICA is a statistical method for transporting observed multi-
dimensional random vector to the mutually independent com-
ponents. Compared with other methods based on second-
order statistics, ICA not only can eliminate the first and second
order correlation, but also can remove the high-order correla-
tion data to obtain the independent components (Wang et al.
2008). ICA is a linear model as follows:

x ¼ As ¼
X n

i¼1
siai ð6Þ

Where x is the observed signal, A is mixer matrix, s is the
independent component signal, and ai is the ICA basis vec-
tors. This model shows how the source signals provide ob-
served signals. For estimating the A and s from the x, separator
function is required (Eq. 7) to apply to the linear transforma-
tion, x, and source independent components, s.

y ¼ Wx ¼ WAs ¼ W
X n

i¼1
siai ð7Þ

Where W is separator function, and y is an estimation of s.
In order to use this model, there are a number of constraints
and assumptions: The first, initiatives of sources should be
statistically independent. The second, at most one component
should have a Gaussian distribution. For cases where more than
one component is Gaussian, ICA can only separate non-
Gaussian components but not Gaussian components. The third,
the number of observed signal should be greater than or equal to
the number of independent sources. If this condition is not met,
the A matrix will not be reversible and s cannot be estimated
(Yusheng et al. 2005; Wang et al. 2008; Wang 2009).

The Proposed Algorithm

In this study, the Fast ICA algorithm is used for despeckling of
PolSAR images. Its advantage over other algorithms is in
convergence speed and independency of user defined param-
eters. The steps of this algorithm are as follows (Wang 2009):

1. Pre-processing function, which is consists of centralizing,
and whitening the observed signal and initializing W as a
random vector.

2. Using the following replication equation to optimize W:

Wkþ1 ¼ E zg WT
k z

� �	 

−E g

0
WT

k z
� �n o

Wk ð8Þ

Where z is the whitened signal, g is nonlinear function
and the g′ is the derivative of the g function. Here we use
g=t3 as function.

3. Orthogonalization of W by symmetric orthogonal method.
4. Normalization of W: W

Wk k→W .

5. Make decisions based on whether or not W is convergent.
If convergence is not created then it returns to step two.

In (Arsenault and April 1976) has shown that if the look is
big enough (L> 3), the speckle remains independent of scene
properties after additive logarithmic transformation. The goal is
to prove the point that with increasing the number of input
images, the noise of all the speckles are going to be Gaussian
and we can use the ICA algorithm for better separating of signal
from speckle. Concerning the proposed properties of ICA, this
algorithm is capable of separating a Gaussian component from
the other non-Gaussian components. Theoretically, increasing
the number of inputs of an ICA algorithm, on one hand, the
characteristics of the target signal rises and further details the
target are available and on the other hand, the number of
speckle samples increase. Since the noise samples are randomly
distributed, according to central limit theorem, by increasing
samples their distribution goes to Gaussian form. According to
this theorem, the sums of random variables than any of them are
more willing to go to the Gaussian distribution. So we can say
that increasing the input data batch, the total noise signals are
more likely to be Gaussian. In this way, the ability of ICA to
separate the speckle set from target signal will increase.

If the noise random variable is n and the equivalent look is
L, the probability density function will be as follows:

P nð Þ ¼ nL−1LL

Γ Lð Þ exp −nLð Þ ð9Þ

Where L is the shape parameter of the gamma distribution.
If the image was single look (L=1), the equation becomes the
exponential distribution with unit mean.

Kurtosis is a criterion for understanding of distribution type:

Kurt xð Þ ¼
E x−μð Þ4
h i

E x−μð Þ2
h i� �2 ¼ μ4

σ4
ð10Þ

Where μ and σ are mean and standard deviation of the
random variable x, respectively. If the distribution of x is
Gaussian, its kurtosis value will be three. If kurtosis is greater
than three, the Gaussian probability density function of x is
called the supper-Gaussian and if smaller than three it is called
sub-Gaussian. Kurtosis of gamma function is as follow:

Kurt gammað Þ ¼ 3þ 6

L
ð11Þ

Since the kurtosis of Gaussian function is 3, it is deter-
mined that the probability density function of speckle is
supper Gaussian. The gamma distribution for large values of
shape parameter (L) will converge to the Gaussian distribu-
tion. If the number of equivalent looks (L) increases, we can
say that kurtosis value is approaching 3 (it goes to be
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Gaussian). In this case, regarding the second characteristics
arises from the ICA, a better separation occurs between image
signal and speckle. Since a Gaussian component is separated
from the other non-Gaussian components.

Independent Validation of Method

In order to assess the performance of filters, equivalent num-
ber of looks (ENL) and peak signal to noise ratio (PSNR) were
used. ENL is a measure to assess the ability of smoothing

speckle in an image and expresses a filter quality to reduce the
speckle. Higher ENL values indicate better speckle reduction
(Huang et al. 2009). The ENL value is calculated with the
following equation:

ENL ¼ μ
σ

ð12Þ

Where μ and σ represent the mean and variance of intensity
image, respectively.

Fig. 2 Results of Fast ICA algorithms, and related eigenvalues for (1) one input (HV), (2) two inputs (HVand HH), and (3) three inputs (HV, HH, and
VV), respectively

A

B

(1) (2) (3)

Fig. 3 The results of Fast ICA algorithms for the forest region in steep slopes of the terrain (a), and the forest region in the coast (b) for (1) one input
(HV), (2) two inputs (HVand HH), and (3) three inputs (HV, HH, and VV). The first column is the original image
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The PSNR equation is as follows:

PSNR ¼ 10 log10
max Ið Þð Þ2

1

NM

X N

i¼1

XM

j¼1
y i; jð Þ−x i; jð Þð Þ2

ð13Þ

Wheremax (I) is Maximum intensity of unfiltered image,M
and N are the numbers of image rows and columns, and y(i, j)
and x(i, j) are the DN value of filtered image and the original
image, respectively. Here, the difference should be measured
with a reference image, which has the least value of speckle.
Bigger PSNR values indicate better speckle reduction (Yu and
Acton 2002).

Results and Discussion

In this section, the results of the speckle reduction using Fast
ICA algorithm are presented. For this purpose, a part of the
Fig. 1 with the dimensions of 300×300 pixels was used. In
order to use the ICA algorithm a pre-processing is required
and matrix must be converted to vector. In this case, we have a
vector with the dimension of 90,000×1 for each image. A
90,000×3 matrix is generated and used as input of the ICA
algorithm assuming three input images. In addition, the data
matrix should be normalized in some cases. As mentioned in
the previous section of the paper, the Fast ICA algorithm was
used for simulation.

Figure 2 depicts ICA images with one input (HV), two
input (HV and HH) and three inputs (HV, HH and VV)
respectively. Speckle in the span image is somewhat better,

however texture of the image is affected. According to the
calculated kurtosis, the ICA algorithm separates independent
components based on the sorting of eigenvalues and orthog-
onalizing of the components. The speckle components have a
random nature and contain small eigenvalues in the covari-
ance matrix. On the other hand, signal components exist in
several input images, as a consequence they are stronger and
take larger eigenvalues.

As shown in Fig. 2, the eigenvalues of the target will be
larger and the output image will represent more details when
more input images are considered. As the number of inputs
increased, fewer eigenvalues become larger and will have
greater impact on the output image. Here, the first output of
the ICA has been selected for display which is particularly
caused by the largest amount of data set and most information
is concentrated there. The other outputs of the algorithm have
good information as well. The output of the smallest eigen-
values contains very little information and is considered as the
output of the speckle. In order to have better evaluation, two
forest types were selected from the Fig. 1. The first was a
forest region in steep slopes of the terrain (A), and the second
was a forest region in the coast (B) which is shown in Fig. 3
with the results of the filters.

The results of the ENL criteria in Table 1 show the im-
provement in ICA performance commensurate with increas-
ing input numbers for both A and B regions. As can be seen,
the ENL values in region A are 3.48, 2.83, and 1.7 for three,
two, and one input images, respectively. The results in the
region B are similar to region A but ENL values are lower than
it. It should be noted that the original ENL has reached the
maximum value in the input images. For example, in the
region B, the maximum ENL value dedicated to HV channel.

In order to evaluate the performance of ICA algorithms, the
number of inputs has increased in the next approach and some
speckles with different variances has been added to polarimet-
ric image in Fig. 2. For this purpose, the ICA output image
with three inputs is considered as a reference image because of
highest ENL and the PSNR is measured compared to this
image. Full results of the PSNR and ENL for different number
of inputs to ICA algorithm is presented in Table 2. The PSNR
and ENL values for different speckle variances rise with
increasing the number of inputs.

Table 1 ENL values for the forest region in steep slopes of the terrain
(A), and the forest region in the coast (B)

Region
type

Original
image

One input
(HV)

Two inputs
(HV, HH)

ICA_HV,
HH, VV

A 1.7 2.54 2.83 3.48

B 1.34 2.11 2.65 3.07

Table 2 The results of ENL and PSNR after adding virtual speckles with different variances

No. of inputs σ=0.001 σ=0.01 σ=0.1 σ=0.5 σ=1 σ=2

ENL PSNR ENL PSNR ENL PSNR ENL PSNR ENL PSNR ENL PSNR

One input (HV) 1.12 18.43 1.13 18.47 1.10 18.22 0.94 16.94 0.89 16.10 0.88 15.32

Two inputs (HV, HH) 1.63 25.41 1.46 25.42 1.46 24.43 1.50 21.33 1.46 19.97 1.50 18.79

Three inputs (HV, HH, VV) 1.83 50.82 1.85 40.49 1.85 30.59 1.74 23.81 1.73 22.08 1.80 20.87
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Conclusion

Fast ICA method is not only efficient in reducing the speckle
and keeping the details, but also it is very fast. ICA can
process all of channels together that it could be helpful in
avoiding from correlation between them. Removing the small
eigenvalues in the calculation of ICA can reduce the informa-
tion volume and on the other hand can significantly increase
the processing speed. ICA algorithm has a great ability to
separate signal from speckle. In order to increase the efficien-
cy of ICA algorithm for separating signal from speckle the
input data set to the algorithm can be increased. Various
regions in ALOS PALSAR data was used in order to simulate
the algorithms. This study has demonstrated that the topogra-
phy of the area and forest density were also effective in this
circumstance. In such a way that the kurtosis of the area’s with
forest coverage that are placed in areas with extreme topogra-
phy such as mountains, are becoming close to ENL value
equal to three earlier than those forest that are located in the
flat areas such as beach hence the low power of the scatterer in
the forests located in flat areas in compare to forests which are
placed in mountains can be mentioned as the main reason.
Using Fast ICA with large inputs number, in addition to
processing speed and good separation of signal from noise,
decrease the volume by removing the images with low
eigenvalues.
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