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Abstract Forest precision classification products were the
basic data for surveying of forest resource, updating forest
subplot information, logging and management of forest.
However, due to the diversity of stand structure, complexity
of the forest growth environment, it is difficult to discriminate
forest tree species using multi-spectral image. The airborne
hyper-spectral images can obtain high spatial and spectral
resolution imagery of forest canopy, so it may be useful for
tree species level classification. The aim of this paper was to
test the effective of combining spatial and spectral features in
airborne hyper-spectral image classification. The CASI hyper
spectral image data were acquired from Liangshui natural
reserves area. First the MNF (minimum noise fraction) trans-
form method for to reduce the hyperspectral image dimen-
sionality and highlighting variation. Second, the grey level co-
occurrence matrix (GLCM) is used to extract the texture
features of forest tree canopy. Thirdly the texture and the
spectral features of forest canopy were fused to classify the
trees species using support vector machine (SVM) with dif-
ferent kernel functions. The results showed that when using
the SVM classifier, MNF and texture-based features com-
bined with linear kernel function can achieve the best overall
accuracy which was 85.92 %. It also confirmed the belief that
combined the spatial and spectral information can improve the
accuracy of tree species classification.
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Introduction

Forest has significant implication on the environment such as
protection of biological diversity and climate change. The
forest species map is useful information to drive ecosystem’s
model, preserve vegetation andmanagement forest (Liang and
Zeng 2009; Wang et al. 2010) It is well reported that the
biomass and net productivity are quite different for different
tree species (Ustin et al. 2010). However, it is difficult and
time-consuming to accurately map the distribution of vegeta-
tion species based on ground investigation. Remote sensing
techniques provide powerful and efficient tools to solve such
problems. Several studies have been carried out in this field,
analysing the potential of different remote sensing sensors in
vegetation classification. Multispectral sensors (like TM of
Landsat Satellites) have been widely used for forest classifi-
cation and analysis (Lu 2005; Lu et al. 2008; Zaw Htun et al.
2011). Regarding classification, due to the different spectral
and spatial resolution of multispectral sensors, it is possible to
distinguish vegetation with different levels of geometrical
detail. Regarding low-resolution multispectral data such as
MODIS, the analysis is generally limited to discrimination
between forested and non-forested area (Sedano et al. 2005).
With medium resolution sensors such as TM, the level of
geometrical detail increases, and the analysis on vegetation
type classification can be achieved. With high geometrical
resolution sensors such as IKONOS, SPOT 5, a more detailed
analysis is possible. Especially the very high resolution imag-
ery such asWorldView-2, GeoEye could get more detail about
context information (such as textural information or object-
based information) about canopy which was used to distin-
guish the tree species (Immitzer et al. 2012; Leempoel et al.
2013). However, due to the poor spectral information
acquired by these multispectral sensors, they do not
permit a detailed analysis to distinguish trees at species
level (Jose and David 1996; Gong et al. 1998; Chen
et al. 2007).
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Recently, hyperspectral remote sensing sensors which pro-
vide a significant enhancement of spectral measurement ca-
pabilities over conventional multi-spectral data have been
widely used for detecting vegetation characteristics.
Compared to the multispectral data, the hyperspectral data
has much higher spectral resolution and shows great potential
in vegetation stress (Smith et al. 2004), measuring chlorophyll
content and leaf area index (LAI) of vegetation (Zhao et al.
2007), classifying and mapping vegetation species (Clark
et al. 2005; Zhao et al. 2007; Hestir et al. 2008; Huang and
Asner 2009; Kozoderov and Dmitriev 2011). Concerning
classification problems, hyperspectral images have been used
in a variety of forest applications, ranging from discrimination
between forest and other land covers, to a more detailed
analysis dealing with the distinction of different tree species.
All the results confirmed that, with hyperspectral data, it is
possible to obtain much higher classification accuracies than
with multispectral images.

However, it must be noted that analysis of hyperspectral
images are much more complex than multispectral data to clas-
sify vegetation species. The first task in for processing
hyperspectral images for vegetation species classification is to
select the suitable features to distinguish the different species.
Feature extraction and feature selection methods were used to
solve these problems by selecting optimal bands or optimal
subset from the hyperspectral data, such as genetic search algo-
rithms (Vaiphasa et al. 2007), principal component analysis
(Bajorski 2011), and minimum noise fraction (Jouan 2007).
The classification methods such as the maximum likelihood,
decision trees, and random forests classifiers are becoming com-
monly used in tree species classification. The Support Vector
Machines (SVM) which were suggested by Vapnik (1998), are
one of the latest effectiveness classifiers which can manage
classification problems in hyperdimensional features spaces and
have been widely applied in tree species classification. But, these
methods consider per-pixel spectral information and do not
considering the neighbourhoods of a pixel. Because of the large
variation in growing conditions caused by difference in geology,
lithology, soil, elevation, historic background, local climatic fac-
tors and the land abandonment process itself, a large variety in
heterogeneous vegetation communities is found in the area. The
heterogeneous vegetation communities are challenging to classi-
fy using spectral classifiers because the different vegetation may
have a very similar spectral response. And the neighbourhood
information may useful for classification species especially in
high spatial resolution images.

In this paper, wewere used the context and spectral features
to classification tree species with airborne hyperspectral image
using the SVM classifier. The objects of this paper are to: (1)
test whether the spectral and context information can promote
the accuracy in tree species classification; (2) compare the
effectiveness of different kernel function in SVM classifier in
tree species classification.

Data Set Description

The study site is located in natural reserve area in liangshui,
HeiLongJiang province, Northeast China. The forest species
are dominated by larch, red pine, birch, conifer and poplar.
The hyperspectral image of liangshui was acquired by the
Compact Airborne Spectrographic Image (CASI) 1500
hyperspectral sensor August 23, 2009. The CASI imagery
provides 144 bands at a 2.3 nm spectral resolution and
1.5 m spatial resolution covering the visible and near-
infrared range from 350 to 1,050 nm. A natural colour com-
posite image of the study area is given in Fig. 1. The image
was then georeferenced by the position and orientation system
(POS) data which including inertial measurement unit (IMU)
and global position system (GPS).

Five tree species types, fir, red pine, larch, birch, willow
and three other non-forest types, water, built-up areas, cloud
were located and marked during ground truth. The tree species
classification scheme is shown in Table 1. The sampling unit
used in this paper was a pixel and the samples were selected
from the CASI Hyperspectral image based on the field survey.
There are 18,540 ground truth sample pixels were selected
from the CASI hyperspectral image. And 10-fold cross-
validation method was used in accuracy estimating. Average
overall accuracy was then computed from the confusion ma-
trix with 10th classification.

Methodology

The overall method used in this study is shown as flowchart in
Fig. 2. First the minimum noise fraction (MNF) transforma-
tion to reduce the dimension of the CASI image and then the
grey level co-occurrence matrix (GLCM) is used to extract the
textural information. The MNF features are combined with
textural features and are used for classification of tree species
by SVM with different kernel.

Fig. 1 Combined image of the research area (R:680 nm, G:550 nm and
B:450 nm)
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Minimum Noise Fraction Transform

MNF analysis first suggested with Green et al. (1988). MNF
transformswere used to determine the inherent dimensionality of
image data, to segregate noise in the data, and to reduce the
computational requirements for subsequent processing. The
MNF transform is essentially two cascaded principal compo-
nent’s transformations. The first transformation, based on an
estimated noise covariance matrix, decorrelates and rescales the
noise in the data. This first step results in transformed data in
which the noise has unit variance and no band-to-band correla-
tions. The second step is a standard principal components trans-
formation of the noise-whitened data. For the purposes of further
spectral processing, the inherent dimensionality of the data is
determined by examination of the eigenvalues and the associated
images. The data space can be divided into two parts: one part
associated with large eigenvalues and corresponding
eigenimages, and a complementary part with near zero eigen-
values and noise-dominated images (Jouan 2007; Nielsen 2011).
By using only the coherent portions, the noise is separated from
the data, thus improving spectral processing results. Based on
MNF results, the first 20 eigenvectors which had the cumulative
contribution rate up to 95%were selected and then used as input
for the classifiers.

Texture-Based Features

The texture-based features extracted from the grey-level co-
occurrence matrix (GLCM). The GLCM represents the dis-
tance and angular spatial relationship over an image sub
region of the specified size. The GLCM quantifies texture
by measuring the spatial frequency of co-occurrence of pixel
grey levels in a user-defined moving kernel and forms a co-
occurrence of pixel of kernel. During the computation

of the GLCM texture measure, consideration should be
given to the window size that would best capture the
target classes. The optimal window size could be deter-
mined through the image spatial resolution and the tree
canopy size. In this paper the semi-variograms method
was used to determine the optimal windows size
(Onojeghuo and Blackburn 2011). The optimal window size
for calculating the GLCM measures is 7. A series of GLCM
texture measures were calculated according to the following
(Onojeghuo and Blackburn 2011):
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Where CON is the contrast, i,j are row and col of value in
the grey level co-occurrence matrix, DIS is the dissimilarity
value, HOM is the homogeneity, ENT is the entropy, ASM is
the angular second moment of grey level co-occurrence ma-
trix, COR is the correlation value of grey level co-occurrence
matrix.

Classification Method and Accuracy Assessment

The support vector machine (SVM) was used for tree species
classification in this paper. SVM classifiers have undergone
great development in the last 10 years and have been success-
fully applied to several remote sensing problems. Let us
consider a binary classification problem. And assume that
the training set consists of Q vectors xp∈Rq with the corre-
sponding target yp ∈ {−1; +1}, where “+1” and “-1” denote the
labels of the considered classes.

Table 1 Distribution of ground truth samples among investigated classes

No. Class name Ground truth
samples/pixel

1 fir 3,520

2 red pine 2,776

3 larch 2,729

4 birch 3,213

5 willow 1,356

6 water 1,678

7 building areas 2,145

8 cloud 1,123

CASI
Hyperspect
ral Image

MNF
Transformation

Texture Feature
Extraction

Feature Selection
Classification with

Different Classifiers

Tree
Species

Map

Fig. 2 Flowchart of the tree species classification with hyperspectral imagery
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The linear SVM approach consists of mapping the data into
a higher dimensional feature space to separate the two classes
by means of an optimal hyperplane defined by a weight vector
w and a bias b. The optimal hyperplane is the one that
minimizes a cost function, which expresses a combination of
two criteria: margin maximization and error minimization. It is
defined as (7) and (8)

Ψ w; ξð Þ ¼ 1

2
wk k2 þ C

X

p¼1

Q

ξp ð7Þ

yp⋅ w⋅xp þ b
� �

≥1−ξpp ¼ 1;⋯;m ð8Þ

Where ξp are the so-called slack variables and ξp≥0.
The constant C which called cost parameter represents a

regularization parameter that controls the shape of the dis-
criminant function, and consequently, the decision boundary
when data are nonseparable. The above optimization problem
can be reformulated through a Lagrange functional for which
the Lagrange multipliers can be found by means of a dual
optimization leading to a quadratic programming solu-
tion. According to the nonlinear case, the SVM uses the
kernel functions to generalize the non-linear decision
boundaries. Commonly use SVM kernels include poly-
nomial, radial basis function (RBF) and sigmoid ker-
nels. The SVM classifier was also easily extended to
multiclass problems with One-Against-One and One-
Against-All methods (Vapnik 1998).

Several SVM programs have been developed and made
publicly available. In this study, we used the LIBSVM pro-
gram developed by Hsu et al. (Hsu et al. 2001). We choose the
linear, quadratic polynomial, cubic polynomial, sigmoid
and RBF kernel to test the effect of different kernels in
tree species discrimination. The parameters that are
needed in the LIBSVM program were predefined as
suggested in Hsu et al. (2001). The SVM need two
type of parameters: 1) the kernel function type and its
parameters; 2) the cost parameter C. For each kernel
function, the kernel parameters are not the same. The
Table 2 list the parameters for each kernel function. The
appropriate values for these parameters were determined
with the guidance of Hsu et al. (2001). Specifically, the
values for γ,r,d and C was systematically change from
low to high. For each combination of γ,r,d and C, the
prediction accuracy of the trained SVM model was
estimated through cross-validation. The combination
giving the highest prediction accuracy was used to tree
species classification.

In order to evaluate the effectiveness of the proposed tree
species classification strategy and achieve the goal of this
paper, there are three level experiments were defined: 1) tree
species classification with SVM using MNF features; 2) tree
species classification with SVM using MNF and texture-

based features; 3) SVM classifier with 5 different kernels such
as linear, quadratic polynomial, cubic polynomial, sigmoid
and RBF kernel.

Results

The overall accuracies of SVM classification method with
different kernels and features are given in Table 3. From the
table, it can be see that the best classification result of all
combinations is the linear kernel function with MNF and
texture-based features. The Fig. 3 shows the classification
results using SVM with linear kernel function and MNF and
texture-based features.

The classification accuracy with SVM is different when
kernel function changes. On average, the linear kernel func-
tion gives the best classification results, followed by RBF and
sigmoid kernel. Polynomial kernel functions give the worst
classification results. This indicates that the polynomial ker-
nels are not good for MNF and texture-based features in tree
species classification in this case.

Considering the features in SVM algorithm, we can find
that the over accuracy in MNF combined with texture-based
features is higher than that only with MNF features, but the
overall accuracy increase is low with all kernel functions in
SVM.

The SVM method with linear, RBF and sigmoid kernel
functions all perform well in tree species classification
with MNF and MNF combined texture-based features
when using CASI hyperspectral image. However, the
kernel function also influences the classification results.
How to select the kernel function maybe has the rela-
tionship with the feature types. In this paper, we find
that when we use the MNF and textures based features,
the linear kernel function has the best the result. The
features types may also influence the hyperspectral im-
ages classification results. The spectral feature combined
with the context feature extracted from hyperspectral
images can promote the classification. In this paper, it
is found that MNF features combined with texture based
features increase the accuracy of the classification though the
increase is low.

Table 2 The kernel parameters with different kernel function

Kernel function Equation Kernel parameters

RBF k(xi,xj) = exp(−γ(xi−xj)2) γ

linear k(xi,xj) = xi
Txj –

polynomial k(xi,xj) = (γxi
Txj+r)

d γ,r,d

sigmoid k(xi,xj) = tanh(γxi
Txj+r) γ,r
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Discussion

The tree species classification at crown level in forests with high
tree species diversity is a big problem with only spectral or
textural information. Airborne hyperspectral sensor provides data
with both high spatial and spectral resolution imagery which has
the huge advantages in tree species classification. The research
results in this paper showed that the hyperspectral information
combined with textural information can promote the accuracy in
tree species classification. And the results are consistent with
other researcher’s reports (Immitzer et al. 2012). Overall classi-
fication accuracies of 75–90% are achieved by several groups of
researchers in tree species classification. The accuracy in this
paper (85.92 %) is in line with the accuracies reported in com-
parable studies (Clark et al. 2005; Hestir et al. 2008; Zhang et al.
2006; White et al. 2010).

However, classification with MNF features combined the
texture features didn’t give much improvement in overall
accuracy. The result is not same with the result of

Onojeghuo and Blackburn (2011) which indicate that the
texture information highly increases the overall accuracy.
The mainly reason is that tree species type in these two
studies are not similarity. In our experiments, fir, red pine,
larch are all coniferous trees, and the appearance is almost the
same. And also the same condition in the birch and willow
which are broadleaved trees. However, in Onojeghuo and
Blackburn (2011) paper, the textural information was used to
distinguish the broadleaved, coniferous, grassland and
reedbeds, and these four types had the significant difference
appearance. Whether textural features increase a little or big
accuracy in tree classification may depend on the type of
vegetation. If the species are in the same type, the textural
features may not give much improvement and if the species
are in different type, the textural features may improve much.

SVM is an advanced machine learning algorithms for
classification, but the classification accuracy with SVM is
different when kernel function changes. How to select the
suitable kernel function is depend on the number of features,

Table 3 The overall accuracy of
SVM classifier with different
kernel and features

Classifier Kernel function Features input for classifier Overall accuracy

SVM RBF MNF 83.24 %

MNF and texture based features 83.40 %

SVM linear MNF 85.20 %

MNF and texture based features 85.92 %

SVM quadratic polynomial MNF 75.91 %

MNF and texture based features 76.08 %

SVM cubic polynomial MNF 60.45 %

MNF and texture based features 65.24 %

SVM sigmoid MNF 82.10 %

MNF and texture based features 83.29 %

Fig. 3 The classification results
in SVM with MNF and texture-
based features and linear kernel
function
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number of samples and the distribution of the feature (Keerthi
and Lin 2003). According to the Keerthi and Lin (2003), if the
feature distribution didn’t known, the RBF kernel is a reason-
able first choice and this kernel nonlinearly maps samples into
a higher dimensional space, so it can handle the case when the
relation between class labels and attributes is nonlinear.
Furthermore, the linear kernel is special case of RBF; in
addition, the sigmoid kernel behaves like RBF for certain
parameters (Lin and Lin 2003). Compared with the RBF
kernel, the polynomial kernel has more hyper-parameters
which will influence the complexity of computation in
SVM. The difference of kernel parameters with each kernel
function can be seen in Table 2. So, in this paper the accuracy
of RBF kernel, linear kernel and sigmoid kernel is almost the
same and higher than the polynomial kernel. Another possible
reason for different accuracy with different kernel function is
the input features. In this paper, the feature number is 26 and
the sample number is 18,540. The sample number is much
larger than the feature number, so in hyper-plane the linear
kernel may classify the 8 class types.

Conclusion

The results indicate that hyperspectral images provide the
ability for effective forest species recognition. The spectral
and context features were used as input for SVM classifier and
compared the effective of different kernel function in SVM
classifier for forest tree species classification. The classifica-
tion results indicate that the SVM method with linear, RBF
and sigmoid kernel functions all perform well in tree species
classification when using CASI hyperspectral image and the
linear kernel function has the best result. MNF features com-
bined with texture based features increase the accuracy of the
classification.
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