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Abstract In this paper a new approach for fractal
based dimensionality reduction of hyperspectral data
has been proposed. The features have been generated
by multiplying variogram fractal dimension value with
spectral energy. Fractal dimension bears the informa-
tion related to the shape or characteristic of the spec-
tral response curves and the spectral energy bears the
information related to class separation. It has been
observed that, the features provide accuracy better
than 90 % in distinguishing different land cover clas-
ses in an urban area, different vegetation types belong-
ing to an agricultural area as well as various types of
minerals belonging to the same parent class. Statistical
comparison with some conventional dimensionality
reduction methods validates the fact that the proposed
method, having less computational burden than the
conventional methods, is able to produce classification
statistically equivalent to those of the conventional
methods.
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Introduction

Spectral imaging of the earth using hyperspectral sensors
designed on the principle of charged coupled devices
(CCD) is a recent advancement of remote sensing. These
CCDs are able to detect the energy reflected from mov-
ing earth objects in very narrow wavelength bands be-
cause of their high signal to noise ratio and very small
discharge time. One image is obtained at each band of
wavelengths and the total number of images in each
scene is equal to the number of bands the sensors are
designed with (generally within 10 and 1000). Thus, for
each plot on the ground surface that is represented by the
spatial resolution of the sensor, intensity values equal to
the number of bands, determined by the spectral resolu-
tion of the sensor, can be obtained. The detailed spectral
response of a pixel assists in providing accurate and
precise information of the ground cover under measure-
ment. This makes hyperspectral data useful to study
subtly different classes and deal with applications like
target recognition, anomaly detection and background
characterization. Due to the huge data volume associated
with each scene of hyperspectral data, this data type
requires more specific attention to the complexity of data
receiving, storing, transforming and processing. In par-
ticular, due to the high dimensionality of this data the
analysis of the images becomes a complex problem.
Some researchers studied the characteristics of the high
dimensional space and their implications for
hyperspectral-data analysis. Kendall (1961) proved that
the volume in a hypercube has a tendency to concentrate
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in the corners and in a heperellipsoid in an outside shell.
Consequently, the high-dimensional space is mostly
empty. Furthermore, Hughes (1968) showed that with
limited number of training samples, classifier perfor-
mance improves with dimensionality initially and then
declines. Moreover, Fukunaga (1989) proved that in
given circumstances, the required number of training
samples is linearly related to the dimensionality for a
linear classifier and to the square of the dimensionality
for a quadratic classifier; also this situation for nonpara-
metric classifier like neural network gets worse. Under
these circumstances and difficulties, a large number of
classes of interest and a large number of available spec-
tral bands need a large number of training samples,
which unfortunately are expensive or tedious to acquire.
As a result, either the class statistics must be estimated
from the limited training sample set or otherwise differ-
ent feature selection/ extraction based dimensionality
reduction methods are required in order to get good
classification accuracy. Some novel methods of classifi-
cation of hyperspectral data have also been developed by
various authors. Support vector machine (SVM) is one
such tool to classify hyperspectral data much more effi-
ciently even with a limited number of training samples
and thus overcoming Hughes phenomenon (Hughes
1968). This is basically a linear learning machine based
on the principle of optimal separation of classes. How-
ever, the high algorithmic complexity and extensive
memory requirements are some serious limitations asso-
ciated with SVMs (Horvath, 2003).

Feature selection based approaches reduce the dimen-
sionality of the data by selecting a representative subset
of the original features. Since only few of the all available
bands are chosen, this approach always suffers from loss
of original information. Feature extraction methods, on
the other hand, preserve most of the desired original
information (Pu and Gong 2004). However, many of
the feature extraction algorithms project the data to a
new coordinate system and the physical meaning of the
original hyperspectral data, after transforming to the new
coordinate system gets lost. Spectral space based feature
extraction methods are another alternative, which operate
on the spectral response curves of each pixel of hyper-
spectral data. The physical meaning of the data, i.e., the
pattern of the spectral response curve (SRC) is taken into
consideration in such dimensionality reduction algo-
rithms and at the same time, no information from the
original data is ignored or unattended since the features
are generated using the whole of the SRC. Because of

these advantages of spectral space based dimensionality
reduction methods, this research work has also been
concentrated on developing a new methodology for di-
mensionality reduction using fractal mathematics and
applied on each SRC of the hyperspectral data.

The fractal dimension computation method used
in this dimensionality reduction approach is known
as variogram method. Fractal dimension was first
used to reduce the dimensionality of hyperspectral
data by Ghosh and Somvanshi (2008) and there
after applied by Ghosh et al. (2008), Ghosh et al.
(2009) and Ghosh and Mukherjee (2009). They
reduced the high dimensional hyperspectral data
to a single dimension. This paper is a modification
of the fractal based method and based on generat-
ing more than one fractal based features from the
hyper spectral data, which are able to distinguish
subtly different land cover classes.

Theory of Fractal Dimension

An object on the earth surface has a characteristic di-
mension associated with it. According to Mandelbrot
(1977), if the object is having an irregular shape like a
curved line, or like the coast of Britain, its dimension is
not an integer, but a fraction. Formally, a fractal is
defined as a set for which the Hausdorff-Besicovitch
(or fractal) dimension strictly exceeds the topological
dimension (Mandelbrot 1977). In short, fractal dimen-
sion measures the geometric complexity of an object by
determining how completely the fractals embed them-
selves in normal Euclidean space (Mandelbrot, 1982).
Hence fractal is used as a tool for spatial and contextual
information extraction from remote sensing images.
While a straight line has a dimension of exactly one, a
fractal curve will have a dimension between one and
two, depending on how much space it takes up as it
curves and twists. However, a straight line and a crook-
ed coast line both have same topological dimension 1
and a smooth surface and a rugged topographic surface
both have a dimension 2. In other words, part of the
information about the irregular objects is lost necessarily
in topo as follows.

YMXN ¼
Y1;1 Y2;1 :: YM ;1

Y1;2 Y2;2 :: YM ;2

:: :: Yi;k ::
Y1;N Y2;N :: YM ;N

2
664

3
775
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For any pixel, yi, the spectral response curve
(SRC) can be expressed as the vector, yi ¼
yi;1; yi;2; :::::; yi;k ; :::::; yi;N

� �T
and the bands can be

expressed as another vector, x ¼ 1; 2; :::::; k; :::::Nf gT ,
where T represents vector transpose operation. When
the vector yi is plotted across vector x by joining each
successive points (k,yi,k) by straight lines, the curve
obtained is called the SRC of the pixel at the IFOV of
the hyper spectral sensor. SRC thus obtained very close-
ly represents the actual ground response pattern. The
SRCs of hyperspectral data, being irregular, also have
unique fractal dimension associated to them character-
ising their shape or degree of irregularity.

Variogram Fractal Dimension

The fractal dimension using variogram method is
computed by taking a large number of pairs of points
of different band gaps along the SRC and computing
the differences in their radiance/relectance values.
Then the fractal dimension is obtained from the log-
log plot of (expected differences in radiance)2 vs.
distance in terms of number of bands between the
point pairs (Klinkenberg 1994).

The variogram is actually a graph of the semi-
variance (γh) (Davis 1973) of values given for
points separated by a certain distance, given by
Eq. 1 below.

gh ¼
1

2
½EðZðxÞ � Zðxþ hÞÞ2 ð1Þ

Where, Z(x) and Z(x+h) are the spectral response
values along the SRC at band number ‘x’ and ‘x+h’
respectively, where ‘h’ is the difference between the
two bands. If all pairs of points along the curve lying
at distance ±h are picked, the semivariance for all such
‘N’ number of points is given by

gh ¼
1

2N

XN
i¼1

½ZðxiÞ � ZðxiþhÞ�2 ð2Þ

The plot of γh vs h is known as the semivariogram
of the given curve. Thus, for computing fractal dimen-
sion using variogram approach, first step is to compute
the semivariance γh for different band gaps ‘h’. Then
log(γh) vs. log(h) is plotted and regression method is
used to calculate the slope of the line, which is given

by 4-2D, where D is the fractal dimension of the
curve.

Preprocessing of the Hyperspectral Data

This step comprises of smoothing and interpolation of
the hyperspectral data. Smoothing step is important to
get a uniform fractal dimension for SRCs of the same
class, but corresponding to different pixels. Since the
hyper-spectral data is in general noise prone, often
there are sharp transitions of spectral response values
from one band to the next. These sharp transitions are
generally due to noise present in the data. As a result,
the SRCs of different pixels of the same class may be
affected by noise differently and give wrong informa-
tion about the class characteristics. The difference in
SRCs of different pixels belonging to the same class
would produce different fractal dimension values and
the results would be highly erroneous. Therefore, it is
very important to reduce the noise from the SRCs, in
order to maintain uniformity of class response from
different pixels and smooth out the response. To
achieve this, a low pass filtering has been carried out
on the data. In the first step, the mean spectral re-
sponse over all the pixel response values of the hyper-
spectral data is computed and then the resultant SRC is
transformed to its frequency domain by performing N
point fast Fourier transform (FFT) on the SRC
(Oppenheim et al. 2005). The frequency at which the
cumulative power contributed just exceeds a user de-
fined threshold percentage is selected as a range R for
application of inverse Fourier transform. In the next
step, FFT is again applied followed by inverse FFT
over range R for all the SRCs of the hyperspectral
data. Within range R the power contributed in the
transformed domain are passed with no attenuation
and all frequencies outside the range R are completely
attenuated. Thus the smoothed version of the original
SRC has been obtained.

Now, from the fractal dimension computation algo-
rithm discussed in section 2.1, it is obvious that more
number of data points help in defining the regression
line more accurately. Keeping this in mind, the
smoothed SRC has been interpolated by using cubic
spline interpolation technique to increase the number
of data points available in the SRC y to say, L (Ahlberg
et al. 1967). The new signal so obtained is expressed as z
in the following section.
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Proposed Methodology for Dimensionality
Reduction

Computation of Fractal Dimension

A moving window of length say ‘a’ (where a is integer
part of L/n, and n is the number of reduced dimension)
has been defined. The mth window Wm is given by

Wm ¼ u p� m� 1ð Þa½ � � u p�ma½ �; form
¼ 1; 2; :::::::; n ð3Þ

Where, u[p] is the conventional discrete time unit
step function. The window has been moved along the
interpolated SRC. Then, the mth portion (zm) of the
spline interpolated SRC on which D computation is
performed is given by

zm ¼ z�Wm; form ¼ 1; 2; :::::; n: ð4Þ
Thus each zm is a vector having ‘a’ data points.

Variogram method for fractal dimension computation
has then been applied on each zm for m01,2,....,n and
n fractal dimensions have been computed, each of
them represen ted by Dm (for m 01 ,2 ,…n) ,
corresponding to n parts of the smoothed SRC.

Feature Generation

Each Dm obtained in section 4.1 has been multiplied
by the energy associated with corresponding portion
of the SRC. Since each SRC and therefore each part of
the SRC is equivalent to a discrete time uniformly
sampled signal, therefore the energy associated (E) with
the signal in each window is given by (Oppenheim
et al. 2005)

Em ¼
Xa
j¼1

zm;j
2 for;m ¼ 1; 2; . . . ; n ð5Þ

where zm,j is the j’th data point value in m’th window of
the spline interpolated SRC. Thus, m’th feature Fm in an
SRC is given by

Fm ¼ Dm � Em; for;m ¼ 1; 2; . . . ; n ð6Þ
Thus, n new features have been generated

corresponding to n sections of the SRC reducing N
dimensions of hyper spectral data to n dimensions.

The flow diagram of the methodology starting from
smoothing is as shown in Fig. 1.

Optimum Reduced Dimensional Set Selection

The n fractal energy features generated by the pro-
posed methodology have then been used for classifi-
cation using Maximum likelihood classifier using the
training pixels and the accuracy of classification has
been obtained using the testing pixels. This procedure
is followed by varying the number of features from 5
to 20 and the number of dimensions giving maximum
overall accuracy has been defined as optimum reduced
dimensional set.

Study Area and Data

Three study areas having increasing number of classes
to be distinguished have been investigated.

Study Area I

The data for first study area is of an urban area avail-
able at website http://www.agc.army.mil/Hypercube/.
This data has been captured by HYDICE (Hyperspec-
tral Digital Imagery Collection Experiment) sensor
and is a 16 bit data having 307 pixels, 307 lines and
210 bands. HYDICE collects data of 210 bands over
the range 0.413–2.504 microns. From the 210 bands,
the water absorption bands and noisy bands have been
removed resulting in 188 final bands for analysis.
There are five land use/land cover classes in this image
which are two types of road (represented as R1 (208
training and 213 testing samples used) and R2 (344
training and 369 testing samples used)), concrete (C)
(449 training and 457 testing samples used), barren
land (B) (330 training and 388 testing samples used)
and trees (T) (203 training and 223 testing samples
used). The first three classes, road 1, road 2 and
concrete belong to the third level of Anderson’s clas-
sification scheme (Anderson 1976), trees belong to the
second level and barren land belongs to the first level.

Study Area II

The second study area of medium complexity is located
in America and known as Indian Pines. The data is
actually a portion of an AVIRIS (Airborne Visible In-
fraRed Imaging Spectrometer) image readily available
online from the website http://dynamo.ecn.purdue.edu/
~biehl/Multispec/documentation.html. The image had
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been collected over NW Indiana’s Indian Pines test site
in June 1992 and has 16 classes. AVIRIS hyperspectral
data consists of 224 bands over the range 0.38–2.5
microns. The spectral resolution of the data is about
10 nm and the spatial resolution is 20 m. 4 among all
the available bands contain no data and therefore have
been removed, keeping the remaining 220 bands for
analysis. The water absorption bands and noisy bands
(104–108, 150–163, 220) have also been removed from
the original data resulting in a total of 200 bands finally.
The image is actually a subset of the original AVIRIS
image and has 145 lines and 145 samples in each line.
Among all the 16 classes, the number of labelled sam-
ples available for some of the classes is very less and has
not been used in this study. 9 among the 16 classes have
been chosen for classification and accuracy assessment.
There are basically two types of classes of level I, i.e.,
agriculture and rangeland available in this image
(Anderson 1976). All five crop types, two of corn type

(Corn notill (CN) and Corn Min (CM)) and three of
soybean type (Soybeans-notill (SN), Soybeans min
(SM) and Soybean clean (SC)) fall in level IV under
row crops of cropland that belong to agricultural area.
The number of training/testing samples used for the
classes CN, CM, SN, SM and SC are respectively 231,
213, 266, 477 and 200 respectively. The crops in this
image are in the early growth stage and therefore have
only about 5 % crop cover. Remaining field area is soil
covered with residue from previous year’s crop. The no-
till, min and clean labels indicate the amount of crop
residue remaining from previous year. No-till corre-
sponds to a large amount of residue, min-till has a
moderate amount and clean-till have the least amount
of residue from the previous year. The other four classes,
Grass/Pastures (GP), Grass/Trees (GT), Hay Wind-
rowed (HW) and Woods (W) are the level III classes
that fall under grassland which belong to the range land.
The numbers of training/testing samples used for these

Start with the first pixel, i.e., i = 1 

Construct SRC 

Apply low pass filter to the SRC

Interpolate using cubic spline to increase the data points to L in the 
interpolated SRC

Divide the interpolated SRC into n parts using the moving window Wm

Initialise with first part, m = 1

Compute Dm

Compute spectral energy Em

Calculate Fm

Is m = n?

Yes

No

i = i +1

Is i=M ?

Yes

No

Stop 

m = m + 1

Input the original hyper spectral data Y of M pixels and N
bands

Fig. 1 Methodology to gen-
erate fractal based features
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classes are 118, 210, 189 and 217 for GP, GT, HW and
W respectively.

Study Area III

The third study area of highest complexity is a mining
area which is also a portion of an AVIRIS image freely
available online at http://aviris.jpl.nasa.gov/html/
aviris.freedata.html. This is also a 16 bit data hav-
ing 533 pixels, 477 lines and 224 bands. The
image had been collected over Cuprite, Nevada
in June 1997 and is a mining area in southern
Nevada with mineral and little vegetation. The
site, located approximately 200 km northwest of
Las Vegas is a relatively undisturbed acid-sulphate
hydrothermal system exhibiting well exposed alter-
ation mineralogy consisting principally of kaolin-
ite, alunite, and hydrothermal silica. The noisy and
water absorption bands are removed to give 197
final bands for analysis. 14 different classes have
been chosen from this study area for further anal-
ysis which are K-Alunite (KA) (202 training and
216 testing samples identified), Na-Alunite (25
training and 32 testing samples identified),
Kaolinite-wxl (KW) (205 training and 208 testing
samples identified), Kaolinite-pxl (KP) (200 train-
ing and 199 testing samples identified), Kaolinite+
Smectite or Muscovite (KSM) (205 training and
202 testing samples identified), Hallyosite (H)
(182 training and 181 testing samples identified),
Alunite+Kaolinite and/or Muscovite (AKM) (214
training and 213 testing samples identified), Cal-
cite (C) (237 training and 225 testing samples
identified), Calcite+Montmorillonite+Kaolinite
(CMK) (201 training and 204 testing samples
identified), Na-Montmorillonite (Na-M) (227 train-
ing and 237 testing samples identified), Low/med-
Al Muscovite (LM) (210 training and 209 testing
samples identified), High Al Muscovite (HM) (228
training and 213 testing samples identified), Chal-
cedony (Ch) (207 training and 219 testing samples
identified) and Nontronite (N) (200 training and
200 testing samples identified). All the classes,
being minerals of various types belong to level
IV of Anderosn’s classification scheme.

The data used in this study are the radiance data, in
their original format, since any type of preprocessing
may actually distort the shape of the class distribution
in the data (Landgrebe 2003). If the training samples

are collected from the data itself, many of the obser-
vation variables are accounted for and there is a much
reduced need for complex preprocessing. The number
of training samples was chosen in such a way so that a
minimum of 5 samples for each class are available
after dimensionality reduction.

Results

The smoothed SRCs obtained by applying the pre-
processing step mentioned in section 3 have been
interpolated to generate SRCs having M0600 data
points so that a minimum of 30 data points are avail-
able for each segment of the SRC when the number of
reduced dimension chosen by the user is maximum,
e.g., 20. Now, starting with reduced dimension as n0
5, the number of data points ‘a’, for computing D
within the moving window Wm, have been found to
be 120 a ¼ 600 5=b c½ �. Fm is then computed for m0

1,2,…, 5, i.e., at each position of Wm. Thus, five
features from each SRC have been computed resulting
original N dimensions reduced to n05 dimensions. A
maximum likelihood classifier (MLC) is then used to
classify land cover classes using these five features.
The same steps mentioned in section 5 are again
followed for n06,7,....20 and classification accuracies
have been computed for each data set. The optimum
number of reduced dimension was found as 10 for
study area I giving a classification accuracy of
94.24 %, 18 for study area II giving classification
accuracy of 94.20 % and 14 for study area III giving
classification accuracy of 96.23 %.

The number of features of the optimum feature sets
were again varied from 2 (since MLC classifier requires
at least 2 features for classification) to the maximum
number of features available in the optimum reduced
dimensional set with an increase of 1 feature in each step
for each data set. The plots of overall accuracy vs.
number of features for each study area using the opti-
mum reduced dimensional set are shown in Fig. 2. It is
observed from Fig. 2 that maximum accuracy of
94.42 % has been achieved using the first 7 features of
the optimum reduced dimensional set for study area I,
using all the 18 features for study area II and all the 14
features for study area III. Thus it can be concluded that
for simple data, where the number of classes to be
distinguished is low and the class spectra are also widely
different from each other, such as study area I, the
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number of required features is less. However, when the
data is more complex, i.e., the number of classes is more
and they are spectrally very similar to each other, then
more number of informative features is necessary for
producing accurate classification.

Next, to validate the proposed method based di-
mensionality reduction, the results of classification
using the proposed method have been compared with
those of some other conventional methods of dimen-
sionality reduction, such as principal component anal-
ysis or PCA (Davis 1973), minimum noise fraction or
MNF (Green et al. 1988) and Independent Component
Analysis or ICA (Robila 2004). In each case the num-
ber of features chosen for comparison was the same as
the number of features producing maximum overall
accuracy using the proposed method. The overall ac-
curacy results obtained by using the proposed and
conventional dimensionality reduction methods on
all three study areas are given in Table 1.

Further, a statistical test to check the equivalence
between the proposed method and the conventional
methods mentioned above has been performed. The

test is based on the number of correctly and incorrectly
classified pixels from both classification results under
comparison (Foody, 2004). A two by two matrix is
formed for comparing each two classification results
as shown in Table 2.

In the next step, the statistical significance of the
difference between two classification results is com-
puted using the following equation.

Confidence interval ¼ p1 � p0 � za=2 SEð Þ ð7Þ
where, p1 is the proportion of correctly classified
samples of proposed method based classification and
p0 is the same for the classification using the conven-
tional method. If α00.05 be chosen as the zone of
indifference, zα/201.96 from statistical table. SE is the
standard error of the estimate and is given by (refer
Table 2)

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
12
þ f

21
� ð f

12
� f

21
Þ2=n

q

n
ð8Þ

If the confidence interval lies within the zone of
indifference then the two classification results un-
der comparison are not significantly different from
each other at 95 % significance level and vice
versa (Foody 2009).

The results using the above method are shown in
Table 3 for study area I, II and III. It can be observed
from Table 3 that for study area I, the match in the
number of correctly classified pixels is maximum with
PCA (1552) followed by ICA (1534) and MNF
(1506). The number of correctly classified pixels com-
mon for both classifications under comparison for
study area II shows that here MNF and proposed
method produced maximum number of common cor-
rectly classified pixels (1948) followed by PCA
(1929) and ICA (1890). Similarly for study area III,
the number of common correctly classified pixels of
the proposed method based result is maximum with
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Fig. 2 Variation of overall accuracy with number of features of
the optimum reduced dimensional set for Study Area I, II and III

Table 1 Overall accuracy val-
ues using the proposed and con-
ventional methods of
dimensionality reduction

Method Overall Accuracy (%)

Study area I (9 features) Study area II (18 features) Study area III (14 features)

Proposed 94.42 94.20 96.23

PCA 95.21 94.20 96.45

MNF 94.67 95.71 97.61

ICA 96.30 92.46 96.51
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MNF (2634), followed by ICA (2611) and PCA
(2607).

Next, based on the values of Table 3, Fig. 3 has been
produced. It has been found that all the confidence
intervals lie within the zone of indifference in Fig. 3.
Thus, differences between the proposed method and the
conventional methods are actually insignificant statisti-
cally. It is also established that classification based on
proposed method and those from conventional methods
are equivalent.

Another important fact is that the conventional
methods of dimensionality reduction mentioned above
are based on matrix operations. The aim of PCA is to
compute the eigen values and eigen vectors of the
covariance matrix of the N dimensional hyperspectral
data to extract the transformed components. The com-
plexity involved in the whole process is given by O
(MN2+N3) (Moigne et al 2002). MNF is noise adjust-
ed PCA where the first step is to determine the noise
covariance matrix (ΣN) and then the noise to signal

covariance matrix is obtained (ΣNΣ
-1). Finally eigen

values and eigen vectors of this matrix are computed
to find the new components. Thus clearly the compu-
tation involved in MNF is more than PCA. One matrix
inverse operation involves complexity of the order of
O(N3) (Cormen et al 2001) leading to total complexity
of O(2 N3+MN2) i.e., twice as complex as PCA. In
ICA, the aim is find the independent source signals (S)
from observed spectral response (X) by the use of an
unmixing matrix (W). It starts from an initial unmix-
ing matrix and iteratively goes on computing S till it
fulfils certain criteria. The complexity of ICA varies
from O(N4) to O(N5) where N is the dimension
(Comon 1994). Whereas, the proposed fractal dimen-
sion based method of dimensionality reduction are
applied on each pixel response and based on three
simple steps. In the first step the whole SRC is seg-
mented into Q sections. On each section the fractal
dimension computation algorithm is applied. Finally
the fractal dimension of each section is multiplied by

Table 2 Assessment of the sig-
nificance of difference between
two classifications using
McNemar test

Proposed method (C1)

Conventional
method (C2)

Correct Incorrect Total

Correct f11 f12 f 11 þ f 12 ¼
Pk
i¼1

nii

of C2

Incorrect f21 f22 f 21 þ f 22 ¼ n�Pk
i¼1

nii

of C2

Total
f 11 þ f 21 ¼

Pk
i¼1

nii

of C1

f12 þ f 22 ¼ n�Pk
i¼1

nii

of C1

n

Table 3 Comparison of VF based proposed and other conventional methods of dimensionality reduction

Study area I Study area II Study area III

Conventional methods VFD

PCA C IC T C IC T C IC T

C 1552 22 1574 1929 69 1998 2607 53 2660

IC 13 63 76 69 54 123 47 51 98

MNF C 1506 49 1555 1948 82 2030 2634 58 2692

IC 59 36 95 50 41 91 20 46 66

ICA C 1534 19 1553 1890 71 1961 2611 51 2662

IC 31 66 97 108 52 160 43 53 96

T 1565 85 1650 1998 123 2121 2654 104 2758
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corresponding spectral energy associated with the sec-
tion. Variogram method is based on computation of
variance followed by least square linear regression,
both of which are functions of the number of data
points P and involve complexity of O(P2). The same
computation is performed for each of the Q segments
and the complexity of the proposed method for each
pixel is O(QP2), and for M pixels the complexity is
given by O(MQP2). It is therefore evident that the
complexity associated with the proposed method is
much less than those of the conventional methods of
dimensionality reduction mentioned above, since both
Q and P are less than N. Table 4 shows the complexity
of the conventional and proposed methods.

Conclusion

In this paper, a new approach for dimensionality reduc-
tion method for hyperspectral data has been proposed
based on varigram fractal dimension based features. The
approach is unsupervised in the sense that the user need
not have any prior knowledge regarding the training
samples or number of classes present in the data for
application of the steps for dimensionality reduction. It
is only required to provide the number of features in the
reduced dimension as input. However, to choose the
optimum feature set, knowledge of reference ground
truth data is required since the choice is based on clas-
sification accuracy achieved with each set of features. It

Zone of indifference 
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Fig. 3 Confidence interval
of proposed and conven-
tional dimensionality reduc-
tion methods for study area
I, II and III

Table 4 Computational Com-
plexity of Conventional and
Proposed Method of Dimen-
sionality Reduction

Method Algorithm used Complexity

PCA
P

PC ¼ WPC
P

WPC
T O(MN2+N3) (Moigne et al 2002)

Where Σ is the covariance matrix of
the N dimensional hyperspectral data.

Where, M is the number of pixels
and N is the number of bands in
the original hyperspectral data.

By using equation

ðP�lk IÞ e!
k
¼ 0 , Where, λk0

k’th eigen value, e
!
k
0

k’th eigen value
MNF

P
MNF ¼ WMNF

P
N

P�1WMNF
T

Where, ΣN is the noise
covariance matrix.

O(2 N3+MN2)

ICA X0AS+n, Where, X is the
pixel vector (known),
A is the mixing matrix (unknown),
S is source (Unknown). Finds
Unmixing matrix W iteratively
such that S0WX and each
S is independent

O(N4) to O(N5) (Comon, 1992)

VFD Computed the semivariance γh for
different distances ‘h’.

O(MQP2)

Plotted log(γh) vs. log(h) to obtain
variogram fractal dimension
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has been observed that the features obtained by multi-
plying the Variogram fractal dimension values with the
energy of the corresponding signal are able to provide
very good classification accuracy at a reduced cost of
computational complexity. Therefore, it may be con-
cluded that proposed variogram fractal energy feature
based method is a viable alternative for reduction of
dimensionality of hyperspectral data.
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