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Abstract Land cover (LC) changes play a major role in
global as well as at regional scale patterns of the climate
and biogeochemistry of the Earth system. LC informa-
tion presents critical insights in understanding of Earth
surface phenomena, particularly useful when obtained
synoptically from remote sensing data. However, for
developing countries and those with large geographical
extent, regular LC mapping is prohibitive with data from
commercial sensors (high cost factor) of limited spatial
coverage (low temporal resolution and band swath). In

this context, free MODIS data with good spectro-
temporal resolution meet the purpose. LC mapping from
these data has continuously evolved with advances in
classification algorithms. This paper presents a compar-
ative study of two robust data mining techniques, the
multilayer perceptron (MLP) and decision tree (DT) on
different products of MODIS data corresponding to
Kolar district, Karnataka, India. The MODIS classified
images when compared at three different spatial scales (at
district level, taluk level and pixel level) shows that MLP
based classification on minimum noise fraction compo-
nents on MODIS 36 bands provide the most accurate LC
mapping with 86% accuracy, while DT on MODIS 36
bands principal components leads to less accurate
classification (69%).
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Introduction

Land cover (LC) changes induced by human and natural
processes are linked to climate and weather in many
complex ways. These linkages between LC dynamics
and climate include the exchange of greenhouse gases
(water vapor, carbon dioxide, methane, etc.) between the
land surface and the atmosphere, the radiation balance of
the land surface, the exchange of sensible heat in the
atmosphere, and the roughness of the land surface.
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Because of these linkages between LC and climate,
changes in LC are important for climate studies and its
variability. This has fuelled the research in LC mapping,
with more recent technical developments in object
oriented analysis and ontology (Camara et al. 2000;
Benz et al. 2004; Sun et al. 2005). Recently, there have
been attempts of LC mapping in many parts of the
world including China, the European Union, and India
(EEA & ETC/LC, Corine LC Technical Guide 1999;
Torma and Harma 2004; Natural Resources Census
2005), etc. based on monotemporal remote sensing (RS)
data with the analysis being done on an annual basis.
However, monitoring LC dynamics with time series
data would not be economical for regional or national
level mapping with commercial data. Also, RS data
such as ASTER are inexpensive and have a better
spatial resolution, but are not regularly available for all
geographical regions. Relatively, temporal MODIS data
with more spectral bands (7 bands composite-data every
8 days availability with Level 3 processing and MODIS
36 bands product every 1–2 day availability with Level
1B processing) with spatial resolution ranging from
250 m to 1 km can be downloaded freely and are
suitable for many applications, especially for countries
with large area ground coverage. Their frequent
availability is useful to account for seasonal variations
and changes in LC pattern.

In order to obtain these LC types, remotely sensed
data are classified by identifying the pixels according
to user-specified categories, by allocating a pixel to
the spectrally maximally “similar” class, which is
expected to be the class of maximum occupancy
within the pixel. LC mapping can be performed using
various algorithms by processing the RS data into
different themes or classes. The principle and the
purpose behind each of these techniques may be
different and each of these algorithms may also result
in different output maps.

Many methods have been proposed to obtain the
classified image. This study comparatively analyses the
performance of neural network (NN) based multilayer
perceptron (MLP) classifier and decision tree (DT) that
have been proposed for classification of superspectral
MODIS data. The motivation for using MLP and DT in
this study came from the poor result obtained by
experimenting with the conventional classification
techniques such as Maximum Likelihood Classifier
(MLC) and Spectral Angle Mapper (SAM) that gave
lesser overall accuracies (76%, 30%, 42% with MLC

and 69%, 35%, 49%with SAM) for three different types
of MODIS based inputs (as explained in the “Results—
MODIS data classification” in Section 4). On the other
hand, the results obtained from neural based classifier
and DT (which are non-parametric classifiers) gave
quite motivating results for regional LC mapping using
the coarse spatial resolution data.

Data and Study Area

The MOD 09 Surface Reflectance 8-day (19-26th Dec
02) L3G product at 250 m (band 1 and 2) and bands 3
to 7 at 500 m spatial resolution (http://edcimswww.cr.
usgs.gov/pub/imswelcome/), and MOD 02 Level-1B
Calibrated Geolocation (georeferenced) data at 1 km
(bands 1 to 36, acquired on 21st Dec 02 described at
http://modis.gsfc.nasa.gov/data/dataprod/) were used.
They are atmospherically and radiometrically corrected,
fully calibrated and geolocated radiances at-aperture
for all spectral bands and are processed to Level 3G
(http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.
php?MOD_NUMBER=09) and Level 1B (http://daac.
gsfc.nasa.gov/MODIS/Aqua/product_descriptions_
modis.shtml#rad_geo) respectively. IRS (Indian Re-
mote Sensing Satellite) LISS (Linear Imaging Self
Scanner)-III MSS data in Green, Red and NIR bands
with a spatial resolution of 23.5 m (acquired on 22nd
and 25th Dec 02) were purchased from National
Remote Sensing Agency, Hyderabad, India.

The Kolar district in Karnataka State, India,
extending over an area of 8,238 km2 between 77°
21′ to 78°21 E and 12°46′ to 13°58′ N, was chosen
for this study. Kolar (Fig. 1) is divided into 11 sub-
regions for administration purposes (Ramachandra
and Rao 2005). The study area is mainly dominated
by 6 broad LC classes: agricultural land, built up,
forest, plantations, waste land and water bodies.
There are a few other LC classes (barren/rock/stone/
others) that have very less ground area proportions
and are unevenly scattered among the major six
classes, and were grouped under the waste land
category.

Methodology

LISS-III data were geo-corrected, mosaiced, cropped
pertaining to study area boundary and resampled to
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250 m, (for pixel level comparison with MODIS
classified data). Supervised classification was per-
formed using a Maximum Likelihood classifier fol-
lowed by accuracy assessment. It is to be noted that the
same technique did not perform well on coarse
resolution data (MODIS) and therefore, we evaluated
NN and DT for MODIS data classification. The
MODIS data were geo-corrected with an error of 7 m
with respect to LISS-III images. The 500 m resolution
bands 3 to 7 and 1 km MODIS 36 bands were
resampled to 250 m using nearest neighbour (with
Polyconic projection and Evrst 1956 as the datum).
Principal components (PC) and minimum noise frac-
tion (MNF) components were derived from the 36
bands to reduce noise and computational requirements
for subsequent processing. The methodology is
depicted in Fig. 2. The spectral characteristics of the
training data were analysed using spectral plots and a
Transformed Divergence matrix. MODIS data were
classified using MLP and DT. The MLP based NN
classifier and DT is briefly discussed below.

MLP Based NN Classifier

NN classification overcomes the difficulties in conven-
tional digital classification algorithms that use the
spectral characteristics of the pixel in deciding to which
class a pixel belongs. The bulk of MLP based
classification in RS has used multiple layer feed-
forward networks that are trained using the back-
propagation algorithm based on a recursive learning
procedure with a gradient descent search. A detailed
introduction can be found in literatures (Atkinson and
Tatnall 1997; Haykin 1999; Kavzoglu and Mather
1999; Duda et al. 2000; Kavzoglu and Mather 2003;
Mas 2003) and case studies (Bischof et al. 1992;
Heermann and Khazenie 1992; Chang and Islam 2000;
Venkatesh and KumarRaja 2003).

The MLP in this work is trained using the error
backpropagation algorithm (Rumelhart et al. 1986).
The main aspects here are: (1) the order of presenta-
tion of training samples should be randomised from
epoch to epoch; and (2) the momentum and learning

Fig. 1 Study area—Kolar district, Karnataka State, India
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rate parameters are typically adjusted (and usually
decreased) as the number of training iterations
increase. Back propagation algorithm for training the
MLP is briefly stated below:

1.) Initialize network parameters: Set all the weights
and biases of the network to small random values.

2.) Present input and desired outputs: Present a
continuous valued input vector, x0, x1,…, xn-1, and
specify the desired output d0, d1,…dn-1. If the
network is used as a classifier, then all the desired
outputs are typically set to zero except for that
corresponding to the class of the input. That
desired output is 1.

3.) Forward computation: Let a training example in
the epoch be denoted by [x(n), d(n)], with the input
vector x(n) applied to the input layer of sensory
nodes and the desired response vector d(n)
presented to the output layer of computation nodes.
The net internal activity vj

(l)(n) for the neuron j in
layer l is given by Eq. 1

vðlÞj ¼
Xp

i¼0

wðlÞ
ji ðnÞyðl�1Þ

i ðnÞ ð1Þ

where yðl�1Þ
i ðnÞ is the function signal of neuron i in the

previous layer (l-1) at iteration n, and wðlÞ
ji ðnÞ is the

synaptic weight of neuron j in the layer l that is fed
from neuron i in layer (l-1). Assuming the use of
sigmoid function as the nonlinearity, the function
(output) signal of neuron j in layer l is given by Eq. 2

yðlÞj ¼ 1

1þ expð�vðlÞj ðnÞÞ
ð2Þ

If neuron j is in the first hidden layer (i.e., l = 1), set
yj
(0) = xj(n), where xj(n) is the jth element of the input

vector x(n). If neuron j is in the output layer (i.e., l = L),
set yðLÞj ðnÞ ¼ ojðnÞ. Hence, compute the error
signal ejðnÞ ¼ djðnÞ � ojðnÞ, where dj(n) is the jth

element of the desired response vector d(n).

4.) Backward computation: Compute the δ’s (i.e.,
the local gradients) of the network by proceeding
backward, layer by layer:

dðlÞj ðnÞ ¼ eðlÞj ðnÞojðnÞ½1� ojðnÞ�, for neuron j in output
layer L,

dðlÞj ðnÞ ¼ yðlÞj ðnÞ½1� yðlÞj ðnÞ�

Fig. 2 Steps involved in methodology for obtaining LC maps
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P
k
dðlþ1Þ
k ðnÞwðlþ1Þ

kj ðnÞ, for neuron j in the hidden layer l.

Hence adjust the synaptic weights of the network in
layer l according to the generalised delta rule (Eq. 3):

wðlÞ
ji ðnÞ ¼ wðlÞ

ji þ a½wðlÞ
ji ðn� 1Þ�

þ hdðlÞj ðnÞyðl�1Þ
i ðnÞ ð3Þ

where η is the learning-rate parameter and α is the
momentum constant.

5.) Iteration: Iterate the forward and backward
computations under steps 3 and 4 by presenting
new epochs of training examples to the network
until stopping criterion is met.

Decision Tree

Decision tree (DT) is a machine learning algorithm
and a non-parametric classifier involving a recursive
partitioning of the feature space, based on a set of
rules learned by an analysis of the training set. A tree
structure is developed; a specific decision rule is
implemented at each branch, which may involve one
or more combinations of the attribute inputs. A new
input vector then travels from the root node down
through successive branches until it is placed in a
specific class (Piramuthu 2006) as shown in Fig. 3.
The thresholds used for each class decision are chosen

using minimum entropy or minimum error measures.
It is based on using the minimum number of bits to
describe each decision at a node in the tree based on
the frequency of each class at the node. With
minimum entropy, the stopping criterion is based on
the amount of information gained by a rule (the gain
ratio). DT algorithm is stated briefly:

1.) If there are k classes denoted {C1, C2,….Ck}, and
a training set, T, then

2.) If T contains one or more objects which all
belong to a single class Cj, then the decision tree
is a leaf identifying class Cj.

3.) If T contains no objects, the decision tree is a leaf
determined from information other than T.

4.) If T contains objects that belong to a mixture of
classes, then a test is chosen, based on a single
attribute that has one or more mutually exclusive
outcomes {O1, O2,…On}. T is portioned into
subsets T1, T2,…Tn, where Ti contains all the
objects in T that have outcome Oi of the chosen test.

The same method is applied recursively to each
subset of training objects to build DT. Successful
applications of DT using MODIS data have been
reported in Chang et al. (2007) and Wardlow and
Egbert (2008). Accuracy assessment was done for the
classified maps with ground truth data. LC percentages
were compared at sub-regional level (taluk level) and at
pixel level with a LISS-III classified map.

Results

Classification of LISS-III

The class spectral characteristics for 6 LC categories
using LISS-III MSS band 2, 3 and 4 were obtained
from the training pixels spectra to assess their inter-
class separability and the images were classified as
shown in Fig. 4a with training data collected using
pre-calibrated GPS, uniformly distributed over the
study area. This was validated with the representative
field data and the LC statistics are given in Table 1.
Producer’s, User’s, and Overall accuracy computed
are listed in Table 2. A kappa (k) value of 0.95 was
obtained, indicating that the classified outputs are in
good agreement with the ground conditions to the
extent of 95%. The possible source of errors inFig. 3 General structure of a data mining decision tree
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classification was mainly due to the temporal difference
in training data collection (December, 2005) and image
acquisition (December, 2002).

The same data was also classified in 1,000
iterations using NN where the training threshold

contribution was set to 0.1, training rate was 0.2,
training RMSE was 0.09, number of hidden layers
was 1 and the output activation threshold was 0.001.
The overall accuracy was 95.1% with producer’s and
user’s accuracy in the range of 85–96% and 85–95%
respectively, and a kappa (k) value of 0.94.

Even though the outputs obtained from MLC and
NN were very close to each other in terms of overall
accuracy (95.63% for MLC and 95.1% for NN), MLC
output was marginally superior and was used as a
reference to validate the output of the MODIS
products. Choice of MLC was more justified, as the
time complexity involved in training the neurons in
NN was very high compared to MLC and NN
classification became more complex with the large
image size of LISS-III MSS (5,997 rows × 6,142
columns). This conventional per-pixel spectral-based
classifier (MLC) constitutes a historically dominant

Fig. 4 Classified images of LISS-III (a), MLP on MODIS 7
bands (b), MLP on PCs of MODIS 36 bands (c), MLP on MNF
components of MODIS 36 bands (d), DT on MODIS 7 bands

(e), DT on PCs of MODIS 36 bands (f), DT on MNF
components of MODIS 36 bands (g)

Table 1 Land cover details from LISS-III MSS and MODIS

Classes % LISSIII 7 Bands PCs MNF

NN DT NN DT NN DT

Agriculture 19.0 21.9 18.0 21.5 22.1 19.4 21.7

Built up 17.1 26.4 16.4 15.8 16.0 17.6 17.6

Forest 11.4 07.7 13.1 12.0 09.6 11.3 10.2

Plantation 11.0 19.3 11.5 09.5 11.4 10.8 09.4

Waste land 40.4 24.4 40.2 40.3 38.3 40.0 40.4

Water 01.1 00.3 00.7 00.9 02.6 00.9 00.8
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approach to RS-based automated land-use/land-cover
(LULC) derivation (Gao et al. 2004; Hester et al. 2008)
and in fact, this aids as “benchmark” for evaluating the
performance of novel classification algorithms (Song et
al. 2005). The dimension of MODIS data was very less
(532 rows × 546 columns) and hence it is reasonable to
rigorously apply and choose appropriate classification
algorithm. In this context, we applied MLC, NN and
DT on different products of MODIS, but used MLC
based LISS-III MS classified map for evaluating the
MODIS outputs.

Classification of MODIS

The MODIS data (bands 1 to 7), the first five PC’s
and the first five MNF components of the MODIS 36
bands (based on their higher eigen values) were
classified using MLP (Fig. 4b, c, d). The order of
presentation of training samples was randomized from
epoch to epoch and the momentum and learning rate

parameters were adjusted as the number of training
iterations increased. The process for training the
neurons converged at 1,000 iterations. The number
of hidden layer was kept at 1, the output activation
function and momentum were kept low and increased
in steps to see the variations in the classification
result. The RMS error at the completion of the
process was 0.09, 0.39 and 0.29 for the three different
inputs, respectively. Figure 5 shows the training
iterations on the three different data sets. DT-See5
was used to classify the same three datasets. For each
training site, a level of confidence in characterization
of the site was recorded as described below:

(1) The scaled reflectance values for LC classes
were extracted for all the ground points.

(2) All the data were converted into See5 compatible
format and was submitted for extraction of rules.

(3) Since the boosting option changes the exact
confidence of the rule, the rules were extracted

Table 2 Accuracy of LC classification using ground truth

Land use Agriculture Built up Forest Plantation Waste land Water bodies Overall Accuracy

Accuracy U* P* U P U P U P U P U P
Algorithm

MLC (LISSIII) 94 85 97 83 95 96 92 92 98 90 96 98 95.63

NN (B1 to B7) 98 70 95 93 89 73 59 97 71 77 48 69 71.89

NN (PCA) 64 41 79 81 75 82 69 83 63 72 63 74 70.10

NN (MNF) 94 58 81 99 95 87 86 99 74 95 89 57 86.11

DT (B1 to B7) 74 57 98 93 81 94 63 45 94 90 59 37 71.02

DT (PCA) 63 52 62 80 68 86 61 36 66 53 46 23 68.88

DT (MNF) 74 50 95 92 89 91 95 93 74 93 55 37 74.66

*U—User’s accuracy, P—Producer’s accuracy. Highest figures are marked in bold

Fig. 5 Training RMS vs. iterations for (a) MODIS 7 bands, (b) PCs of MODIS 36 bands and (c) MNF components of MODIS 36 bands
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without boosting option. A 10% cut off was
allowed for pruning the wrong observations.

(4) Once the rules were framed by the See5, these
rules were ported into Knowledge engineer to
make a knowledge based classification schema.
It was ensured that 90% confidence level is
maintained for all the classes defined.

(5) Subsequently the decision tree schema was
applied over the data set to produce the colour
coded land cover output (Fig. 4e, f, g).

Table 3 shows the total number of rules generated,
the maximum and the minimum confidence level for
each class and the number of rules used for
classification at a confidence level of 0.600 for
MODIS 7 band data. For MODIS derived PCs, the
rules were generated at a confidence level of 0.920
(Table 4). Here the image was classified into more
number of classes (16) and these classes were
ultimately merged into six categories. For the MNF
bands, the threshold factor was maintained at 0.7 at a
confidence level 0.700 (Table 5). Table 1 shows the
LC statistics for the classification results.

Accuracy Assessment

Ground Truth/Field Data

User’s, Producer’s and Overall accuracy assessment of
the MODIS classified maps was performed with the
ground truth data that were collected using handheld
GPS in the same month (December, 2005) as that of the
RS data acquisition representing the entire study area.
Thirty test samples were used for validating agriculture,
builtup, forest, plantation and waste land classes each

and 10 test samples were used for validating water
bodies. Survey of India Topographical sheets (1:50000)
were also used to validate the results (Table 2). The
table highlights that some of the LC classes have been
classified with higher accuracy using NN while DT has
outperformed in classifying the other remaining LC
classes. This is explained in detail in the discussion
section (Discussion).

Sub-regional Level

At the sub-regional (taluk) level, MODIS based LC class
percentages were compared with LISS-III MSS based
LC class percentages. The assessment showed that NN
analysis of MODIS band 1 to 7 is best for mapping
agriculture (with −5% differences between values from
LISS-III mapped agriculture), while it fails for plantation
and water bodies. DT on MODIS 7 bands is superior for
mapping built up (−2.4%), waste land (+1%) and also
good for mapping plantation (+2%) with MNF compo-
nents of 36 bands. While NN on MNF could map forest
properly with −3.5% difference and water bodies with
+1% difference on sub-region wise distribution. Hence,
further analysis was carried out at pixel level to
understand the sources of these differences.

Pixel Level

A pixel of MODIS (250 m) corresponds to a kernel of
10×10 pixels of LISS-III spatially (Fig. 6). Classified
maps using MODIS data were validated pixel by
pixel with the classified LISS-III image. A kernel of
10×10 in LISS-III for a particular category was
considered as homogeneous when the presence of
that class was ≥90%. User’s, Producer’s and Overall
accuracy is listed in Table 6.

Table 3 Knowledge based LC classification of MODIS Bans 1 to 7

Class Rules generated Confidence level Number of Rules

Maximum Minimum Confidence level—0.600

Agriculture 87 0.982 0.563 60

Built up (Urban/Rural) 27 0.988 0.551 21

Evergreen/Semi-Evergreen Forest 9 0.958 0.667 6

Plantation/orchards 85 0.981 0.648 53

Waste land/Barren Rock/Stony waste 43 0.929 0.253 35

Water bodies 17 0.955 0.625 11
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Discussion

Two data mining techniques—MLP and DT were
compared based on three different input data sets
obtained from MODIS. The first input was the
MODIS 7 bands product, the second was the PCs
derived from MODIS 36 bands and third was the
MNF components derived from the same MODIS 36
bands. The six different outputs at 250 m spatial
resolution (3 obtained from MLP implementation and
3 obtained from DT algorithm) were compared with
the high spatial resolution LISS-III classified image.

In general, hard classification techniques such asMLP,
DT and MLC perform well with high spatial resolution
data (such as IRS LISS-III or Landsat ETM+) compared

to moderate or low spatial resolution (such as MODIS).
MODIS classified images had many pixels misclassified
as is clear from the accuracy assessment (Tables 2 and 6).
However, some errors may have occurred since the
signal of the pixel is ambiguous, perhaps as a result of
spectral mixing. As an additional argument, it can be
said that as the pixel size increases (in this case 250 m),
the chance of high accuracies being product of random
assignment of values also declines.

Classification accuracy using ground truth and pixel
to pixel mapping revealed that MLP on MODIS MNF
components is overall superior to all other techniques,
followed by DT on MNF, and the same technique
performed worst on PC’s. At the pixel level lower
accuracies were reported—since only 10×10 pixels

Class Rules generated Confidence level Number of Rules

Maximum Minimum Confidence level—0.920

Class 1 49 0.989 0.737 36

Class 2 29 0.997 0.944 20

Class 3 3 0.944 0.833 2

Class 4 2 0.354 0.315 1

Class 5 25 0.985 0.591 11

Class 6 31 0.989 0.800 18

Class 7 31 0.993 0.688 13

Class 8 4 0.875 0.667 1

Class 9 6 0.929 0.800 1

Class 10 2 0.833 0.833 1

Class 11 2 0.929 0.889 1

Class 12 4 0.917 0.875 1

Class 13 2 0.938 0.875 1

Class 14 3 0.963 0.875 1

Class 15 2 0.944 0.833 1

Class 16 3 0.889 0.722 1

Table 4 Knowledge based
LC classification of PCA
bands

Table 5 Knowledge based LC classification from MNF bands

Class Rules generated Confidence level Number of Rules

Maximum Minimum Confidence level—0.700

Agriculture 59 0.989 0.500 58

Built up (Urban/Rural) 24 0.996 0.875 25

Evergreen/Semi-Evergreen Forest 64 0.995 0.971 63

Plantation/orchards 43 0.970 0.667 44

Waste land/Barren Rock/Stony waste 36 0.993 0.500 36

Water bodies 5 0.929 0.750 5
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with ≥90% homogeneity in LISS-III were considered
for comparison (65% of the pixels were homogeneous
in the study area) since the LC is very fragmented.
However, at the sub-regional level the algorithms
performed in a different way for various classes,
revealing that a certain algorithm may be good for
mapping a particular class, but at the same time may not
be equally good for mapping all other classes.

Pre-processing techniques such as PCA and MNF
had varied effects on the accuracy. Both techniques
performed better on MNF components and worst on
PC’s compared to MODIS 7 bands data. Figure 5
illustrates that the training of the neurons was smooth
in the case of MNF components, a reason to
substantiate is that the noise component and the
redundancy are removed from the data compared to
PCs, where only redundancy is removed. The result
also gives an insight as to which technique is better
for mapping heterogeneous LC classes. The pixels in
the PC’s were not very distinct and were clustered
into sub groups comprising of two or three pixels,

leading to inaccurate results. However, classifying
each pixel based on signature for PC’s and MNF
components was difficult, since the image was
slightly pixilated, although the class separability was
very good. The same trend was observed at the pixel
level; the two techniques performed moderately better
on MNF but relatively poor on PC’s and maintained
the same position in the rankings for MODIS 7 bands
data in the range of 62% (see Tables 2 and 3). This
reveals that highly preprocessed MOD 09 data (Level
3) take care of all the atmospheric disturbances,
whereas the 36 band data, MOD 02 at Level 1B
requires further preprocessing to actually represent a
good estimate of the surface spectral reflectance as it
would have been measured at ground level without
atmospheric scattering or absorption. In other words,
MOD 09 is 8-day composite product acquired on
8 continuous days while MOD 02 product was gained
by processing of only 1 day image, thereby it was
possibly still affected by atmospheric and angular
effects. MLP classifiers have proven superior to
conventional classifiers, often recording Overall
accuracy improvements in the range of 10%. Similar
results have also been reported by Kim (2006) while
empirically comparing the performance of NN and
DT. It was observed that the performance of NN
improved faster than DT as the number of classes of
categorical variable increased while varying the
number of independent variables, the types of
independent variables, the number of classes of the
independent variables, and the sample size. As the
number of successful applications of MLP increases,
it is increasingly clear that the technique can produce
more accurate results for RS applications.

Fig. 6 10×10 pixels of LISS-III equals to 1×1 pixel of
MODIS spatially

Table 6 Accuracy of LC classification at pixel level

Land use Agriculture Built up Forest Plantation Waste land Water bodies Overall Accuracy

Accuracy U* P* U P U P U P U P U P
Algorithm

NN (B1 to B7) 43 59 45 65 61 38 34 59 81 71 37 45 62.38

NN (PCA) 20 61 17 29 49 38 69 69 81 60 56 45 61.40

NN (MNF) 37 46 29 41 64 55 61 69 87 83 65 65 69.87

DT (B1 to B7) 41 51 55 44 59 53 67 67 88 65 55 58 62.22

DT (PCA) 34 41 27 44 49 19 44 41 81 61 29 42 51.34

DT (MNF) 31 31 41 56 61 53 75 76 82 78 48 43 63.69

*U—User’s accuracy, P—Producer’s accuracy. Highest figures are marked in bold
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However, the back propagation NN is not guaran-
teed to find the ideal solution to a particular problem
since the network may get caught in a local minimum
in the output error field, rather than reaching the
absolute minimum error. Alternatively, the network
may begin to oscillate between two slightly different
states, each of which results in approximately equal
error. DT are less appropriate for estimation tasks,
where the goal is to predict the value of a continuous
variable, unless a lot of effort is put into presenting
the data in such a way that trends and sequential
patterns are made visible. The process of growing a
DT is also computationally expensive since at each
node each candidate splitting field must be sorted
before its best split can be found. Pruning algorithms
can also be computationally expensive since many
candidate sub-trees must be formed and compared.

Conclusions

The utility of MLP and DT in classifying MODIS data is
compared in this communication. The results showed
thatMLP onMNF components was best for LCmapping
(86% accuracy) at regional scale. This technique was
able to map agriculture, forest and water bodies properly,
whereas DT is good in classifying built up areas,
plantation and waste land. The results from this study
can lead to better mapping of various LC features from
MODIS data with the help of ancillary data (secondary
data) in the absence of high resolution imagery. One
potential limitation of the study is that the MODIS pixels
could as well be softly classified using unmixing
techniques (such as Linear unmixing, or NN based
unmixing) rather than using hard classification that
assigns a single class to each pixel. The utility of these
unmixing techniques then would have been studied on
different MODIS products. The unmixing techniques
give a better estimate of the percentage area of different
LC classes since most landscapes are heterogeneous in
nature and are a mixture of various LC classes. This
could be the future work of the current study.
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