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Abstract Assisted reproductive technology (ART) has

been applied in various procedures as an effective breeding

method in experimental, domestic, and wild animals, and

for the treatment of human infertility. Micro-insemination

techniques such as intracytoplasmic injection of sperma-

tozoa and spermatids are now routinely used ART tools.

With these techniques, even immotile and immature sperm

cells can be employed as donors for producing the next

generation. Gamete preservation, another ART tool, has

contributed to reproductive regulation, worldwide trans-

portation, and disease protection of animal strains, and the

preserved gametes have been effectively used for the pro-

duction of offspring. ART is now an indispensable tool in

mammalian reproduction. This review covers the latest

ART tools, with a particular emphasis on micro-insemi-

nation and gamete preservation, and discusses the future

direction of mammalian artificial reproductive technology.
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Introduction

In 1978, the birth of the first human baby developed from

an oocyte fertilized with spermatozoa in vitro was reported

by Steptoe and Edwards [1]. Thereafter established as

‘‘in vitro fertilization (IVF),’’ this technique is now

routinely used in assisted reproductive technology (ART)

for infertile couples who wish to have a child. In 1951,

Chang [2] and Austin [3] independently reported the

occurrence of ‘‘capacitation,’’ in which spermatozoa

acquired the ability to fertilize oocytes only after incuba-

tion in the female reproductive tract for several hours.

Subsequently, offspring have been obtained from rabbit

oocytes fertilized in vitro with spermatozoa capacitated in

the female reproductive tract [4]. Studies have also shown

that capacitation could be induced artificially in vitro in

defined media for hamsters [5], mice [6], rats [7, 8], and

humans [1]. These reports have contributed to our under-

standing of fertilization events and subsequent embryonic

development, and have enabled further development of

ART for mammals. Various ART tools have been cre-

ated, improved upon, and applied to mammalian repro-

duction. This review introduces the latest ART tools,

focusing particularly on micro-insemination and gamete

preservation.

Fertilization in vitro

IVF has been used as an effective ART tool in various

mammals. The advantage of IVF is that a sufficient number

of embryos can be produced using low volumes of sper-

matozoa, and this technique has contributed favorably to

genetic resource conservation and production of offspring.

IVF protocols have been established for each animal.

Importantly, successful IVF requires sperm with high

motility and in a suitable concentration. In the mouse,

differences in motility and concentration of sperm and rates

of IVF vary among individuals and strains, depending on

the age of the animals [9]. Success in IVF procedures is

contingent upon adequate technical skill and practical
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experience. Although IVF is one of the standard ART tools

for mammalian reproduction, its success is not guaranteed

for all animals.

In routine IVF, oocytes can be fertilized using both fresh

and temporarily stored spermatozoa. Sperm preservation

has been developed and applied to genetic resource bank-

ing for various animals [10]. Although sperm suspensions

are generally cryopreserved in liquid nitrogen until their

use in IVF, their tolerance to freezing varies among indi-

vidual animals and strains [11–13]. Furthermore, poor

technical skills in the preparation and freezing of sperm

and physical stress during cryopreservation often result in

impaired sperm motility [14]. While the combination of

IVF and sperm preservation has been demonstrated as a

suitable technique for genetic resource banking, it is only

applicable for healthy animal colonies. Genetic resource

banks have also been used to store sperm of animal strains

showing low fertility. IVF using partial dissection of the

zona pellucida with a sharp glass pipette [15–17] or laser

beam [18–20] has been developed for fertilizing oocytes

with spermatozoa showing low motility. However, it is not

applicable to all animal species.

Injection of sperm into oocytes

Intracytoplasmic sperm injection (ICSI) has been applied

as a powerful ART tool in various animals, including

humans [21]. This technique involves direct injection into

an oocyte of a spermatozoon drawn into a thin glass pipette

attached to a micromanipulator (Fig. 1). ICSI has dramat-

ically increased the fertility potential of spermatozoa

in vitro, as fertilization of oocytes can occur even when

spermatozoa are immotile [22] or immature [23]. Thus

ICSI can be used to produce offspring from men with

infertility due to oligozoospermia or azoospermia.

The first successful ICSI in mammals was reported by

Uehara and Yanagimachi [24, 25], who demonstrated that

normal pronuclei were formed in oocytes after microin-

jection of hamster spermatozoa. Offspring produced using

ICSI have now been reported for various mammals

(Table 1). Interestingly, the development of mouse ICSI

[26] was first described in 1995, well after the first suc-

cessful human ICSI in 1992 [27]. This can be explained by

the fact that the oolemma of the mouse oocyte is easily

broken during injection of spermatozoa using the conven-

tional sharp glass pipette employed for human ICSI. This

vulnerability of the mouse oocyte to damage from physical

stress was overcome through the use of a piezo pulse-dri-

ven micromanipulator unit [26], which can be used to

puncture the oolemma with minimum damage, signifi-

cantly improving the survival of oocytes after microinjec-

tion. Micromanipulation using a piezo driver has

dramatically increased the success rate of mouse ICSI

procedures. Although many successful mouse studies have

been published since the initial report, most have used the

B6D2F1 hybrid mouse strain, which has shown high oocyte

survival rates after ICSI. Transgenic and knockout strains,

however, have generally been produced from inbred strains

such as C57BL/6. The rates of survival of C57BL/6

oocytes after ICSI are extremely low [28], as these oocytes

have very poor tolerance to the damage caused by micro-

injection compared with oocytes derived from hybrid

strains. Further improvement of ICSI protocols using fro-

zen oocytes [29] and K?-rich media [30] has helped to

improve the survival of C57BL/6 oocytes. Although it is

time-consuming to produce multiple embryos using ICSI,

Fig. 1 ICSI in the rat. The arrow indicates a single sperm head with a

normal shape hung on the tip of a narrow injection pipette.

Table 1 First successful full-term development of ICSI embryos in

various animals

Species Source of

spermatozoa

References

Rabbit Ejaculated Hosoi et al. [75], Iritani and Hosoi [76]

Bovine Ejaculated Goto et al. [22]

Human Ejaculated Palermo et al. [27]

Mouse Epididymal Kimura and Yanagimachi [26]

Sheep Ejaculated Catt et al. [77]

Cat Ejaculated Pope et al. [78]

Horse Ejaculated Cochran et al. [79]

Monkey Ejaculated Hewitson et al. [80]

Pig Ejaculated Martin [81]

Rat Epididymal Miyata et al. [82], Hirabayashi et al. [83]

Hamster Epididymal Yamauchi et al. [84]

Goat Ejaculated Wang et al. [85]
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as the process entails injecting only a single spermatozoa

into each oocyte using a micromanipulator, this method is

the ‘‘gold standard’’ for the rescue of valuable mouse

strains in which conventional reproduction is difficult or

impossible.

Conditions for micro-insemination

As noted above, ICSI can be used with immotile and

immature spermatozoa as donor gametes to produce a new

generation, and thus the motility of spermatozoa is not a

factor for fertilization and preservation. Prior to the devel-

opment of ICSI, testicular spermatozoa and round sperma-

tids with no motility could not be used for in vitro

fertilization of oocytes [21]. With ICSI, the ability to utilize

these immature round, elongating, or elongated forms of

spermatids has significantly increased the potential to pro-

duce offspring from infertile animals and humans. Offspring

have been obtained even with the use of testicular sperma-

tozoa and round spermatids collected from immature ani-

mals [31]. Historically, the success rates for producing

offspring using round spermatids have been quite low, as a

round spermatid lacks the ability to activate the oocyte.

Artificial activation using strontium has shown some success

in supporting subsequent embryonic development, and fur-

ther improvements may increase its effectiveness. These

fertilization techniques can be used as tools to shorten

breeding cycles in the case of inbred or congenic strains,

where backcrossing is normally required [32]. Successful

production of offspring has also been reported with the use

of oocytes injected with spermatozoa matured in vitro after

collection from fresh [33] and frozen [34] testes.

Generally, spermatozoa are preserved with the aim of

maintaining their motility for fertilization of oocytes

in vitro. The standard method of gamete cryopreservation

requires solutions containing various specialized cryopro-

tectants that must be stored in liquid nitrogen at -196 �C.
Genetic strains of value can be preserved more simply and

easily, however, with the use of ICSI. For example, off-

spring have been obtained from oocytes injected with

immotile spermatozoa collected from the reproductive tract

of specimens stored for 20 days at 4 �C [35]. Offspring

have even been produced after ICSI using testicular sper-

matozoa collected from mouse cadavers frozen at -20 �C
for 15 years, with no specialized cryopreservation [36].

These reports indicate that sperm fertility can be main-

tained even when spermatozoa are stored without special-

ized treatments for preservation. In one study, the

fertilizing ability of spermatozoa was maintained in a

solution adjusted to high osmolality by the addition of

NaCl, without adding cryoprotectants [37]. Other studies

have reported that immotile spermatozoa cryopreserved

using simple culture media and Tris-based solutions with-

out the addition of cryoprotectants were able to maintain

their fertility and produce viable offspring [38–40]. Thus

the development of ICSI has led to simple methods of

sperm preservation and increased their fertility potential.

Simple sperm preservation by freeze-drying

Liquid nitrogen is normally used for cryopreservation of

spermatozoa and other cell types, and although it is

indispensable for long-term preservation of samples, the

need for a continuous supply of liquid nitrogen and

mechanical maintenance of the equipment used for sample

storage are disadvantages. Preservation by freeze-drying

has been studied as an alternative method, as it can be used

to store biological materials for a prolonged period in a

refrigerator (4 �C) or even at ambient temperatures

(Fig. 2). After the initial report of full-term development in

a mouse model [41], successful freeze-drying of sperma-

tozoa has been described for various mammals (Table 2),

and improved methods of freeze-drying have allowed

spermatozoa to maintain their fertility [42]. Improvements

in these methods have been well studied in mouse and rat

models by Kaneko et al. [40, 43–47]. In recent studies,

mouse and rat spermatozoa were preserved for 3–5 years at

4 �C after freeze-drying in a simple solution containing

Fig. 2 Freeze-dried spermatozoa in glass ampoules. The arrow

indicates freeze-dried sperm at the bottom of the ampoules.
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10 mM Tris buffer and 1 mM ethylenediaminetetraacetic

acid (EDTA) [48, 49]. Moreover, animal generations

derived from oocytes fertilized with freeze-dried sperma-

tozoa have been shown to be healthy, with normal life

expectancy and reproductive potential [48–50].

Protection of sperm DNA during preservation is an

important factor for subsequent development of oocytes

after ICSI. The addition of an EDTA or ethylene glycol

tetraacetic acid (EGTA) chelating agent or the use of a

freeze-drying solution with an alkaline pH contribute to the

inactivation of internal sperm DNase [42, 43, 45]. Studies

have shown that employing a Tris–EDTA buffer as a

simple freeze-drying solution effectively protects against

disruption of sperm DNA during storage [40, 45]. The

temperature during storage of spermatozoa is also impor-

tant for proper preservation. Although 4 �C is the optimal

temperature for long-term preservation of freeze-dried

spermatozoa, research has demonstrated they can be stored

for at least three months at room temperature [47]. These

findings are evidence that freeze-drying of sperm allows

for easy and safe transportation worldwide and short-term

preservation at ambient temperatures that requires neither

liquid nitrogen nor dry ice. In fact, offspring have been

obtained from oocytes fertilized with freeze-dried sperm

transported by air between Japan and the United States at

ambient temperatures [51]. This method clearly has many

advantages over conventional cryopreservation (Table 3).

Evaporation has also been used for sperm preservation as

an alternative method to freeze-drying, [52, 53]. Normal

offspring have been produced from oocytes injected with

sperm that were dried on a glass slide using nitrogen gas.

With developments in dry-state preservation such as

freeze-drying and evaporation, liquid nitrogen is no longer

required. As such, the concept of gamete preservation must

evolve, and future innovations in dry-state oocyte and

embryo preservation will further establish their efficacy.

Kaneko [54] has reported detailed protocols for freeze-

drying spermatozoa, as well as anticipated results.

Application of freeze-dried spermatozoa in endangered

species conservation

The technique of freeze-drying of spermatozoa has now

been applied in the conservation of wild animal species.

Many species are endangered or threatened with extinction

[55], and ART methods can be used in conservation efforts

for species experiencing reproductive difficulties under both

captive and wild conditions [56]. Gamete preservation,

especially for spermatozoa, is an effective method for the

recovery of animal populations. Because the timing of

oocyte production is limited by the female reproductive

cycle, it is very difficult to collect spermatozoa and oocytes

at the same time for fertilization in vitro. Since spermatozoa

are more easily accessible than oocytes, it is much more

practical to collect the spermatozoa and preserve them

temporarily. Although cryopreservation has been the stan-

dard method for storing spermatozoa, there are many animal

species without established freezing and collecting proto-

cols. Freeze-drying of spermatozoa is an important con-

tributor to resource conservation, as the standard freeze-

drying protocol can be applied for various species [48, 49,

57, 58]. Chimpanzee, giraffe, and jaguar sperm samples

have been freeze-dried in the same solution (10 mM Tris

and 1 mM EDTA) that is used for mouse and rat sperma-

tozoa. Moreover, the fertilizing ability of these sperm sam-

ples can be maintained with preservation at 4 �C [59].

Gamete preservation in liquid nitrogen requires a con-

tinuous supply of liquid nitrogen and mechanical mainte-

nance of equipment. Unfortunately, valuable sperm samples

Table 2 Successful freeze-drying of spermatozoa from various

animals

Species Development

outcome

Longest

storage

duration

References

Rat Offspring 5 years Kaneko and Serikawa [48]

Mouse Offspring 3 years Kaneko and Serikawa [49]

Rabbit Offspring More than

2 years

Liu et al. [57]

Horse Offspring 3.5 months Choi et al. [86]

Hamster Offspring 1 week Muneto and Horiuchi [58]

Bovine Blastocysts 3 months Keskintepe et al. [87],

Martins et al. [88]

Pig Blastocysts 1 month Kwon et al. [89]

Monkey 8–16-cell

stage

Less than

2 months

Sánchez-Partida et al. [90]

Table 3 Comparisons between cryopreservation and freeze-drying

for storage of sperm samples

Contents Cryopreservation Freeze-drying

Storage Liquid nitrogen tank Refrigerator (4 �C), room
temperature (short-term)

Solutions With

cryoprotectants

10 mM Tris ? 1 mM

EDTA (TE buffer)

Transportation Dry-shipper (liquid

nitrogen vapor),

dry ice

Envelope, room temperature

Storage term

in emergency

2 weeksa 3 months at room

temperature

Backup Liquid nitrogen tank Refrigerator (4 �C)b

a Liquid nitrogen is vaporized at 5–10 L/day upon cessation of the

liquid nitrogen supply.
b A backup may not be required, as samples can be stored for short

periods at room temperature.
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stored using this method can be lost if the supply of liquid

nitrogen is interrupted, especially during natural disasters

such as earthquakes and typhoons [60]. Establishing safe

facilities and equipment for use in the event of emergencies

is not cost-effective. Freeze-drying sperm samples is a

simple technique that can rescue many animal species from

endangerment or threat of extinction, and can be envisioned

as the ultimate ‘‘freeze-dried zoo’’ to protect against the

extinction of wild species including mammals, birds, rep-

tiles, amphibians, and fish.

Gene modification by sperm vectors using ICSI

Genome editing using engineered endonucleases, such as

zinc-finger nucleases (ZFNs) [61], transcription activator-

like effector nucleases (TALENs) [62–64], and the clus-

tered regularly interspaced short palindromic repeat

(CRISPR)/CRISPR-associated (Cas) systems [65, 66],

provides a powerful vehicle for producing genetically

engineered animals. Gene knockout and knock-in animal

models can be produced easily and rapidly through the use

of direct injection of engineered endonucleases into

oocytes, without the use of embryonic stem cells [67]. It is

known that exogenous materials injected together with

sperm into oocytes are integrated into chromosomes [68,

69], and such simple transgenesis via ICSI has been

established for the production of genetically engineered

animals. In addition, simple sperm preservation techniques

such as freeze-drying can effectively aid efforts to preserve

animal strains in cases where the number of strains has

increased exponentially as a result of genetic engineering.

Conclusions

Here, we have reviewed the latest ART tools, with a par-

ticular emphasis on micro-insemination and gamete pres-

ervation. The development of new fertilization methods

such as ICSI using micromanipulation has dramatically

increased the fertility potential of spermatozoa. Further-

more, simple preservation of spermatozoa that requires

neither specialized cryoprotectants nor liquid nitrogen is

now possible. With the use of freeze-drying, sperm samples

can be preserved over a long period of time and transported

safely and easily, without the need for liquid nitrogen.

Surprisingly, micromanipulation has led to methods of

producing new generations of animals without the use of

male gametes. Cloning techniques using somatic and stem

cells have had a high impact on artificial mammalian

reproduction [70, 71], and cloned animals have already

been produced for many species. Although the partheno-

genetic development of oocytes is normally impossible in

mammalian reproduction, research using gene modifica-

tion has demonstrated parthenogenetic development of

mouse oocytes that have formed offspring [72]. Other

studies have shown that spermatozoa and oocytes can be

differentiated from induced pluripotent stem cells, and

offspring have been obtained from these differentiated

gametes [73, 74]. It is expected that additional novel

techniques for artificial reproduction will be developed in

the near future.
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