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Abstract
Biodistance analysis can elucidate various aspects of past population structure. The most commonly adopted measure of
divergence when estimating biodistances is the mean measure of divergence (MMD). The MMD is an unbiased estimator of
population divergence but this property is lost when the dataset includes variables with very high or low frequency. In the present
paper, we examine newmeasures of divergence based on untransformed binary data and the logit and probit transformations. It is
shown that a measure of divergence based on untransformed data is a better unbiased estimator of population divergence. The
conventional MMD is a satisfactory distance measure for binary data; however, it may produce biased estimations of population
divergence when there are many traits with frequencies lower than 0.1 or/and greater than 0.9. Finally, the measures of diver-
gence based on the probit and logit transformations are usually biased estimators.
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Introduction

Biodistance analysis examines the relatedness or distance of
past populations, employing skeletal and dental phenotypic
data. These phenotypic data include metrics and nonmetric
traits, and are used as a proxy for the genotype with the un-
derlying assumption that phenotypic variability expresses
phylogenetic variation (Relethford 2016). The observed
biodistances may be attributed to various factors such as gene
flow, shared ancestry, or other processes (Buikstra et al. 1990;
Hefner et al. 2016; Pietrusewsky 2013); therefore, this type of
analysis can elucidate important aspects of past population
history.

Biodistance studies were among the first domains of phys-
ical anthropology developed as early as the eighteenth century
(Blumenbach 1775). Early studies were heavily focused on
craniometrics and had a typological and descriptive character

(e.g., Broca 1863; review by Stojanowski 2019). From the
1960s and the emergence of New Archaeology, biodistance
analysis diversified the topics addressed and encompassed
various issues of past population structure and short-distance
mobility along with large-scale migrations (Buikstra 1979;
Corruccini 1972; Rightmire 1970). The generalization of the
use of advanced non-destructive methods for data collection
(e.g., geometric morphometrics), along with the enhanced
availability of software to implement complex statistical tests,
has contributed to biodistance studies still being broadly used
in the twenty-first century (Pilloud and Hefner 2016).

Any measure used to estimate biodistances should have two
main properties: (a) it should be an unbiased estimator of popu-
lation divergence because even though we are estimating paired
biodistances between samples, what we are actually interested in
is the distance among the populations from which these samples
derive, (b) it should provide the means to evaluate if the
biodistances estimated are statistically significant or not.

Many measures of dissimilarity have been proposed for
binary data, including Jaccard distance, simple matching dis-
tance, and Hamming distance. In biodistance studies, the most
common measure used, mainly because it is an unbiased esti-
mator of population divergence, is the mean measure of diver-
gence (MMD). The MMD was devised by the British statisti-
cian C.A.B. Smith in order to be used by M.S. Grewal (1962)
in his estimation of biological divergence across generations
of laboratory mice in sublines of the C57BL strain.
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Subsequently, the use of the MMDwas generalized in anthro-
pology through the work by A.C. Berry and R.J. Berry, who
examined the biodistance of different human groups using
nonmetric skeletal traits (e.g., Berry and Berry 1967; Berry
1974). This measure is still extensively adopted for
biodistance estimation using skeletal and dental dichotomous
nonmetric traits in studies across the world (e.g., Irish 2016;
Nikita et al. 2012; Ullinger et al. 2005). Its use is so general-
ized that it has led a number of scholars to propose ways of
automating its calculation (Bertsatos and Chovalopoulou
2016; Nikita 2017; Santos 2018; Sołtysiak 2011), whereas
recently, a new version of a parametric bootstrap for the mean
measure of divergence has been developed to make it suitable
for samples with scarcity of data (Zertuche and Meza-
Peñaloza 2020).

Despite its broad applicability, the MMD has two
limitations: (a) it is based on the arcsine transformation,
so when there are many traits with low or high frequen-
cy (less than 0.1 or greater than 0.9), it ceases being an
unbiased estimator of population divergence, (b) when
traits are inter-correlated, the relationships used to deter-
mine the statistical significance of the distances may not
be accurate. For these reasons, datasets are usually
edited prior to the use of the MMD in order to remove
traits with low or high frequency as well as inter-
correlated traits (Harris and Sjøvold 2004; Irish 2010
and references therein). Nonetheless, such editing may
lead to the loss of important information as it often
results in a substantial number of variables/nonmetric
traits being eliminated from the estimation of the
biodistances.

In the present paper, we examine three new measures of
divergence based on untransformed data and the logit and
probit transformations, additionally to the MMD. To test the
performance of these measures of divergence, we use simu-
lated data and real datasets of dental nonmetric traits. The aim
is to test under what conditions the aforementioned measures
of divergence are unbiased estimators of population diver-
gence and consequently whether untransformed data or some
transformation, which does not require data editing/elimina-
tion, produces better results.

Measures of divergence

A general expression

Consider two samples, 1 and 2, originating from two popula-
tions with binary data that code the presence or absence of a
specific trait. If n1, n2 are the sample sizes and k1, k2 the
number of individuals in the samples possessing the particular
trait, then an obvious measure of divergence is the squared
Euclidean distance:

ED ¼ φ1−φ2ð Þ2 ð1Þ

where φ1 = k1/n1, φ2 = k2/n2 are the proportions of the in-
dividuals in the samples possessing the trait under examina-
tion. Despite its simplicity, Eq. (1) is not an appropriate mea-
sure of divergence for biodistance studies because this dis-
tance is not an unbiased estimator of population divergence.
This is because the expected value of ED, E[ED], is given by
(Souza and Houghton 1977):

E ED½ � ¼ E φ1−φ2ð Þ2
h i

¼ E φ1−φ2ð Þ½ �ð Þ2 þ Var φ1−φ2ð Þ
¼ p1−p2ð Þ2 þ Var φ1ð Þ þ Var φ2ð Þ

ð2Þ

where p1, p2 are the expected values ofφ1,φ2, that is, p1, p2
are the proportions of individuals in the two populations hav-
ing the trait in question. It is seen that the expected value of
ED is not equal to the corresponding Euclidean distance be-
tween the populations, (p1 − p2)

2, due to the variances
Var(φ1), Var(φ2).

A direct way to define an unbiased estimator of population
divergence has been adopted in developing the well-known
mean measure of divergence (MMD) (Berry and Berry 1967;
Berry 1974, 1976; Grewal 1962; Sjøvold 1973, 1977; Souza
and Houghton 1977). In general, to define an unbiased esti-
mator of population divergence, a data transformation is se-
lected, t = f(φ) that either stabilizes the variance or the variance
is expressed in terms of pi, ni, i.e., Var(ti) = Vi = V(ni) or
Var(ti) = Vi = V(pi, ni), where V(ni) denotes a function of ni
and V(pi, ni) denotes a function of pi, ni. Then, an unbiased
estimator of population divergence is defined from

MD ¼ t1−t2ð Þ2− V1 þ V2ð Þ ð3Þ

since, according to Eq. (2), we have:

E MD½ � ¼ T1−T2ð Þ2 þ V1 þ V2− V1 þ V2ð Þ ¼ T1−T2ð Þ2 ð4Þ

where T1, T2 are the expected values of t1, t2. This defini-
tion is straightforwardly extended to the case where each pop-
ulation consists of r traits. Then, for each trait i, we have:

MDi ¼ t1i−t2ið Þ2− V1i þ V2ið Þ ð5Þ

and therefore, a total measure of divergencemay be defined
from:

TMD ¼ ∑
r

i¼1
MDi ¼ ∑

r

i¼1
t1i−t2ið Þ2− V1i þ V2ið Þ

n o
ð6Þ
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whereas the mean measure of divergence (including the
commonly adopted C.A.B. Smith’s MMD and its extensions)
is given by:

MMD ¼ TMD=r ð7Þ

If the transformed data is nearly normally distributed and
under the hypothesis that there is no population divergence,
the quantity:

S ¼ ∑
r

i¼1

t1i−t2ið Þ2
V1i þ V2i

ð8Þ

will be distributed approximately as the chi-squared distri-
bution with r degrees of freedom, χ2

r , provided that all r traits
are independent (Souza and Houghton 1977). Therefore, this
statistic can be used to test the null hypothesis that TMD = 0.
Alternatively, we may use the following test statistic (Sjøvold
1977; Souza and Houghton 1977):

T ¼ TMD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ∑

r

i¼1
V1i þ V2ið Þ2

s
ð9Þ

which follows the standard normal distribution N(0,1).

Data transformations

Several data transformations have been proposed for propor-
tions, which exhibit, at least approximately, the requested
properties for the variance. The most common transformation
is the arcsine transformation, which is a variance-stabilizing
transformation. Within the context of the mean measure of
divergence, this transformation can be performed by means
of Smith’s formula, t = sin−1(1 − 2φ), where sin-1 is the inverse
trigonometric sine function, although two other transforma-
tions, the Freeman and Tukey (1950) and Anscombe (1948)
transformations, perform better and have replaced Smith’s
formula. Using the arcsine transformation and irrespective of
the specific formula used to implement this transformation,
the variability of the transformed data is given by Bartlett
(1947) and Sjøvold (1977):

Var tð Þ≈1=n ð10Þ

except for very small or high φ values and low n values,
lower than 20. This expression of Var(t), in combination with
Eqs. (6) and (7), yields directly Smith’s mean measure of
divergence (MMD) (Berry and Berry 1967; Berry 1974,
1976; Grewal 1962; Harris and Sjøvold 2004; Irish 2010;
Nikita 2015; Sjøvold 1973, 1977).

Apart from the arcsine transformation, there are at least
three other approaches that should be taken into account: the
untransformed proportions, the logit, and the probit transfor-
mation. For untransformed proportions, we have (Sjøvold
1977):

E φ½ � ¼ p and Var φð Þ ¼ p 1−pð Þ=n ð11Þ

whereas for the logit transformation, t = logit(φ) = ln(φ
/(1- φ)), Bartlett (1947) suggests:

Var tð Þ≈ 1

p 1−pð Þn ð12Þ

For the probit transformation, it is not known what the
variance expression in terms of p and n is (Bartlett 1947).
However, there is a close relationship between logit and probit
functions that may be expressed as (https://en.wikipedia.org/
wiki/Probit):

logit φð Þ≈probit φð Þ=
ffiffiffiffiffiffiffiffi
π=8

p
ð13Þ

which yields:

Var probit φð Þð Þ≈Var
ffiffiffiffi
π
8

r
logit φð Þ

� �

¼ π
8
Var logit φð Þð Þ≈ π=8

p 1−pð Þn ð14Þ

Equations (12) and (14) may be written as

Var tð Þ≈ cP;L
p 1−pð Þn ð15Þ

where cP = 1 for the logit transformation and cL = π/8 for
the probit transformation. Note that Var(t) in Eq. (15) varies
linearly with 1/n at a constant p value, whereas at a constant n
value, it varies linearly with 1/p(1-p). Therefore, a plausible
modification of Eq. (15) that may extend its validity is the
following:

Var tð Þ≈ αP;L=p 1−pð Þ þ bP;L
n

ð16Þ

where αP, L, bP, L are constants. When bP, L = 0 and αP, L =
cP, L, Eq. (16) is reduced to Eq. (15). However, we should
point out that Eq. (15) and, therefore, Eq. (16) are approximate
expressions of Var(t) and, therefore, we should use simula-
tions to determine the optimum values of αP, L, bP, L and cP, L
that make these expressions of Var(t) useful in the widest
possible range of p, n values. This issue is examined below
in the “Materials and methods” and the “Results and discus-
sion” sections.
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Measures of divergence

Based on the results presented above for the variance of
transformed/untransformed data and the general expression
for the total measure of divergence, Eq. (6), we obtain the
following measures of divergence:

Untransformed data

Using raw data, t = φ, and Eqs. (6) and (10) readily yield:

UMD ¼ ∑
r

i¼1
φ1i−φ2ið Þ2− p1i 1−p1ið Þ

n1i
−
p2i 1−p2ið Þ

n2i

� �
ð17Þ

where n1i is the number of individuals from sample 1 in
which the presence of trait i is examined and n2i is the corre-
sponding number of individuals from sample 2.

Arcsine transformation

It results in the well-known mean measure of divergence
(MMD):

MMD ¼ TMD

r
¼ 1

r
∑
r

i¼1
t1i−t2ið Þ2− 1

n1i
−

1

n2i

� �
ð18Þ

where t1i and t2i denote the transformed φ values of each
trait per sample. As mentioned above, initially, the transfor-
mation was performed by means of Smith’s formula, but now,
due to better performance, the transformations suggested by
Freeman-Tukey (1950) and Anscombe (1948) are preferred.
The latter may be expressed as:

t ¼ sin−1 1−2
kþ 3=8

nþ 3=4

� �
ð19Þ

where k shows how many times each trait appears in a
sample of n size, that is, φ = k/n. Note that for the MMD,
the addition of the value 0.5 in the two last denominators of
Eq. (18) has been suggested (Green and Suchey 1976; Irish
2010).

Probit transformation

The probit transformation gives:

PMD ¼ ∑
r

i¼1
probit φ1ið Þ−probit φ2ið Þð Þ2−P1i

n1i
−
P2i

n2i

� �
ð20Þ

where

P1;2 ¼ aP
p1;2 1−p1;2

� � þ bP≈
cP

p1;2 1−p1;2
� �≈ π=8

p1;2 1−p1;2
� � ð21Þ

Logit transformation

The logit transformation gives:

LMD ¼ ∑
r

i¼1
logit φ1ið Þ−logit φ2ið Þð Þ2−L1i

n1i
−
L2i
n2i

� �
ð22Þ

where

L1;2 ¼ aL
p1;2 1−p1;2

� � þ bL≈
cL

p1;2 1−p1;2
� �≈ 1

p1;2 1−p1;2
� � ð23Þ

In all the above relationships, with the exception of the
MMD, Equation (18), the population probabilities p1, p2
may be estimated from the corresponding sample quantities,
φ1, φ2 since, according to Equation (11), E[φ] = p, i.e., φ is an
unbiased estimator of p. However, when p is close to 0 or 1
and the sample size is relatively small, φmay be equal to 0 or
1. In this case, Bartlett’s correction may be used (Harris and
Sjøvold 2004), which entails the replacement of p=0 with
p=1/4n, and p=1 with p=1-1/4n. Finally, although P1,2 and
L1,2 may be approximated via Eqs. (21) and (23), i.e., P1,2 =
π/(8p1,2(1-p1,2)) and L1,2 = 1/(p1,2(1-p1,2)), it is better to use
the expressions with the constants aP, bP, aL, bL. These con-
stants are estimated using simulations, as discussed below.

Materials and methods

Tests for data transformations

To examine the performance of the data transformations, we
used a simple simulation, which estimates the conditions un-
der which the variance of the transformed data may be
expressed as a function of p, n, what this expression is under
logit and probit transformation, and whether the transformed
data follow a nearly normal distribution or not. The rbinom
function of the R language, which can model individual
Bernoulli trials, was used for its implementation. Based on
rbinom, a function was written that generates random numbers
from the binomial distribution, it creates samples of random
numbers of various size, n, and binomial probabilities, p, it
calculates the φ value of each sample of size n, and, based on
the φ values, it estimates the variances after the transforma-
tions under study using 100000 iterations (samples). The func-
tion also provides histograms and Q-Q plots to test the nor-
mality of the transformed/untransformed data. The Q-Q plots
were created by means of the qqPlot function of the car li-
brary. For the logit and probit transformations, Bartlett’s cor-
rection was used when a φ value equal to 0 or 1 was generated
(Bartlett 1936; Harris and Sjøvold 2004). Concerning con-
stants a, b, and c in Eqs. (21) and (23), these have been esti-
mated in Excel spreadsheets using Solver by minimizing the
value of the sum of squared errors, where errors are the
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differences between calculated and simulated variances. The
calculations were performed in the region 0.15 ≤ p ≤ 0.85 and
n ≥ 50 (Supporting Data S1). Note that even though we used n
≥ 50 when estimating constants a, b, and c in the Solver, we
have found that the same values may be used for smaller n
values (n ≥ 30).

Generation of simulated data

To test the measures of divergence presented above, we used
simulated data and real datasets of dental nonmetric traits. The
simulated data were multivariate binary data. In all artificial
datasets, the number of samples was equal to 5 consisting of
either 10, 20, 30, 40, and 50 cases or 100, 200, 300, 400, and
500 cases to test the effect of sample size. The number of traits
per sample was r = 20. The binary data were generated given
marginal distributions and a correlation matrix using the
generate.binary function of the MultiOrd package of the R
library. We used two types of correlation matrix: the unit
correlation matrix and the matrix with the greatest correlations
that is compatible with the marginal probabilities adopted for
the generation of the various artificial datasets. In what con-
cerns the marginal probabilities, p, the first sample is generat-
ed from uniformly distributed p values between p1 and p2, the
second sample is generated from uniformly distributed p-
values between p1+step and p2+step, the third consists of
uniform values between p1+2*step and p2+2*step, and so
on, where step takes the values 0, 0.005, 0.05, and 0.1, p1
takes the values 0, 0.05, and 0.1, and p2 the values 0.1,
0.15, and 0.2. Typical matrices of marginal probabilities and
correlation matrices used in the present study are shown in the
Supporting Data S2.

To examine the bias of the distances under study, very large
samples of 10000 cases each were used to approximate pop-
ulations from which 1000 samples of 10, 20, 30, 40, and 50
cases or 100, 200, 300, 400, and 500 cases were randomly
drawn; their distances were computed and averaged. The bias
is evaluated from the difference between population distances
and averaged sample distances. Note that the distance between
populations 1 and 2 is calculated from the sum of terms (T1i −
T2i)

2, where i ranges from 1 to r and Tmay be estimated either
from the value of the transformation t = f(φ) at the population,
T = f(p)≈ f(φ), or from the expected value of t, T = E[t].
Considering Equation (4), the latter should be preferred.

Simulation of a real dataset

The simulation of a real dataset of samples with binary data is
straightforward using correlated multivariate binary variates
of known marginal probabilities. However, to test whether a
given measure of divergence behaves as an unbiased popula-
tion estimator, we need to simulate the populations from
which the dataset originates. This may be achieved if we take

into account that the sample φ value is an unbiased estimator
of the corresponding population p value. For this reason, in the
present study, populations of size 50000 were created using as
marginal probabilities the φ values of the original samples.
Then, 1000 samples were randomly drawn from the popula-
tions; their distances were calculated and averaged.

When a measure of divergence is an unbiased estimator of
population divergence, population and averaged sample dis-
tances coincide. Therefore, a simple scatterplot of the popula-
tion and averaged sample distances of all pairs of populations/
samples under study is a simple way to visualize biases and
detect their magnitude.

At this point, we should clarify the following. When we
simulate a population based on the sample φ value, then the
corresponding population p value is practically equal to φ, p ≈
φ. Similarly, for the population T value, we have T ≈ t, where t
is a transformation of φ. Therefore, according to Eqs. (3) and
(6), the distance between two simulated populations i, j is
greater than that between the corresponding original samples
and this difference is equal to the sum of sample variances
Vi + Vj. Consequently, if we consider a scatterplot with
pairwise sample, population, and averaged sample distances,
the original distances do not coincide with the population
distances unless the sum Vi + Vj is very small, i.e., when the
sample sizes are large. The original distances coincide with
the population distances under all circumstances if we subtract
from each distance between populations and from each aver-
aged distance between samples drawn randomly from the pop-
ulations the sum Vi + Vj estimated from the sample properties.
Note that since the bias is estimated only from the difference
between population and averaged sample distances and during
this correction, the same quantity (Vi + Vj) is subtracted from
the population and averaged sample distances, the biases in
the estimation of population divergence remain the same.
Therefore, under this correction, if a measure of divergence
is an unbiased estimator, the averaged sample distances will
coincide with the distances between the original samples and
between the simulated populations; otherwise, the averaged
sample distances will deviate from the corresponding original
and population distances.

Datasets of dental nonmetric traits

The dataset of actual archeological material of dental nonmet-
ric traits was collected by the first author from seven
archeological sites across Greece. The archeological material
intentionally comprised datasets with diverse temporal and
geographic distribution in order to evaluate how meaningful
the obtained biodistances are. In particular, we used three
Cretan assemblages: Kephala Petras rock shelter, Livari-
Skiadi rock shelter, and Eleutherna, and four mainland
Greek assemblages: Xeropigado, Akraiphnio, Christianoi,
and Pella. The number of dental traits in the original database
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was 28 (GR-28). A subset of this dataset with 12 traits (GR-
12) was also examined after data editing to remove traits with
φ ≤ 0.01.

The Kephala Petras rock shelter lies 1 km east of the mod-
ern town of Siteia in north-eastern Crete and dates to the Early
Minoan IB - Middle Minoan IB/IIA (ca. 2900-1875/1850BC)
(Tsipopoulou 2010). The Livari-Skiadi rock shelter is located
in south-eastern Crete and it is largely contemporary to the
Kephala Petras material, dating to the Early Minoan IB - Early
Minoan III (ca. 2900-2100/2050BC) (Papadatos and Sofianou
2015). The material from Eleutherna was excavated in a
proto-Byzantine Basilica and dates to the 6th–7th c. AD
(Themelis 1994–1996). Xeropigado is located in north-
western Greece (near the modern city of Kozani) and dates
to the Early and Middle Bronze Age (2420–1730 BC)
(Maniatis and Ziota 2011). Pella is in north-central Greece
and dates to the Early Bronze Age (Akamatis 2009). The
cemetery of ancient Akraiphnio is located at the eastern coast
of Lake Kopais in central Greece (close to the modern city of
Thebes) and temporally spans the Late Geometric to the Late
Roman times (7th c. BC–6th c. AD) (Sabetai 1995;
Vlachogianni 1997). The skeletal assemblage from
Christianoi was found inside the Church of Transfiguration
of the Saviour at Christianoi, in the district of Triphylia in
Messene in the Peloponnese, and dates approximately to the
13th c. AD (Kappas and Sakkari 2012). The bioarcheological
analysis of the above assemblages has been published in
Nikita et al. (2019) for Akraiphnio, Kalliga (2015) for Pella,
Triantaphyllou (2010) for Xeropigago, Triantaphyllou (2012)
for Kephala Petras, Bourbou (2004) for Eleutherna, and
Triantaphyllou (2016) for Livari-Skiadi, while the material
from Christianoi is currently under preparation for
publication.

The main feature of the dental dataset is the great percent-
age of traits with small and very small φ values (Table 1). For
more details about this dataset, see the Supporting Data S3.

Software to test distance measures

The generation of artificial data for distance measures, as well
as the calculation of the distance measures presented in this
study and their p values, was carried out by means of four
homemade functions in R: simbiasbinMDs, simperbinMDs,
biasbinMDs, and perbinMDs.

The simbiasbinMDs function is used to generate artificial
data for five samples of 20 traits based on certain marginal
probabilities and correlation matrices. Based on these data,
pairwise distances between populations are calculated, where
each population is approximated by a sample of 10000 cases.
The obtained distances are compared to pairwise distances
between samples randomly drawn from the corresponding
populations. The latter distances are averaged over 1000 sam-
ples each. The function provides also dendrograms for sample
and averaged distances using the hclust() function.

The simperbinMDs function is used to estimate the accu-
racy of the p values of the estimated distances obtained from
artificial data. For this estimation, p values obtained for each
distance from the two test statistics, S and T, Eqs. (8) and (9),
are compared to p values estimated from the permutation
method. The permutation method adopted involves the fol-
lowing steps: (1) calculation of the value d of a certain mea-
sure of divergence and the values S and T of the test statistics
using the original dataset, (2) random redistribution of all
cases into new groups with sizes equal to the original ones,
(3) calculation of di and the values Si and Ti of the test statistics
based on the new groups, (4) repetition of steps 2 and 3 at least
M=1000 times, and (5) estimation of three p values for each
distance from the ratios N(di ≥ d)/M, N(Si ≥ S)/M, and N(Ti ≥
T)/M, where N(x≥y) is the number of cases where x is greater
than or equal to y.

The biasbinMDs function is used to assess biases in the
estimation of population divergence. The original dataset is
used to simulate the respective populations and calculate all
pairwise population distances using the measures of diver-
gence discussed in the present study. Then, these distances
are compared to the corresponding pairwise distances between
samples randomly drawn from the populations. As in the first
function, the latter distances are averaged over 1000 samples
each. From the comparison, we can assess which of the dis-
tances calculated on the dataset under study are unbiased es-
timators of population divergence. The function provides also
dendrograms of the distances of the original dataset and the
averaged distances.

Finally, the perbinMDs function estimates the accuracy of
p values of distances calculated on a specific dataset. It works
like the simperbinMDs function.

All software material is given as Supporting Data S4.

Results and discussion

Results for data transformations

Some of the obtained results are shown in Table 2 and Fig. 1,
whereas more details are presented in the Supporting Data S1.
The results show that, apart from the untransformed data,
where the relationship Var(φ) = p(1 − p)/n is valid for every

Table 1 Percentage of low and high trait frequencies in datasets of
dental nonmetric traits from Greek archeological assemblages

Dataset Traits φ≤0.1 φ≤0.05 φ≤0.01 φ≥0.9

GR-28 28 51.0% 35.7% 20.9% 0

GR-12 12 8.3% 3.6% 0 0
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p and n value, all other expressions exhibit, as expected, as-
ymptotic variance stabilization as well as asymptotic normal-
ity. Asymptotic normality is also shown from the untrans-
formed data.

For the variance of the transformed data, the arcsine trans-
formation performs better since it fails for p ≤ 0.1 or p ≥ 0.9
when n ≤ 20, whereas for probit/logit, these limits are p ≤ 0.15
or p ≥ 0.85 when n ≤ 30. In what concerns the normality of the
φ, t data, in general, there are rather strong deviations from
normality when n ≤ 50, irrespective of the p value. The nor-
mality is improved as n increases, especially when p > 0.1 or p
< 0.9. This holds for the untransformed data and the arcsine
transformation, whereas data obtained from probit/logit trans-
formations exhibit more pronounced deviations from normal-
ity especially when p ≤ 0.1 or p ≥ 0.9.

The asymptotic nature of variance stabilization and data
normality is expected to affect the bias of the calculated dis-
tances and the validity of the significance tests. The extent of
this effect can only be assessed through extensive analysis of
artificial and real data, as attempted in the current study.

The problem of negative distances

A main issue when using the MMD is the calculation of neg-
ative MMDs when the compared samples come from popula-
tions that are biologically very similar. In this case, t1i ≈ t2i and
a negativeMMDmay be calculated from the terms −1/n1i and
− 1/n2i. Because negative distances are considered to be bio-
logically meaningless, negative MMD values are changed to
zero prior to subsequent multivariate analyses (Harris and
Sjøvold 2004) or a proper constant is added to all pairwise
MMDs (Ossenberg et al. 2006). An alternative suggestion is
to delete traits that have a negative contribution to the MMD
(Harris and Sjøvold 2004).

If negativeMMD values are considered biologically mean-
ingless and should be transformed to 0, the same approach
should be followed for the individual traits that have a nega-
tive contribution in the calculation of the MMD. However, if
we transform the negative contributions to 0, the MMD is no
longer an unbiased estimator of population divergence. This is

because the calculated sample distances increase since nega-
tive contributions become 0, whereas this procedure leaves
population distances unaffected because in the population
the size n is very large and, therefore, 1/n tends to zero,
resulting in non-negative contributions to the population
MMDs. Consequently, transforming negative MMD contri-
butions to zero should be avoided.

The suggestion to delete traits that have a negative contri-
bution to the MMD seems to solve the above problem; how-
ever, it should also be avoided for the following reason. The
elimination of traits that correspond to biologically similar
populations enhances the differences between the populations,
which may result in false conclusions about their biodistance.
Moreover, for other pairs of samples, these traits may corre-
spond to biologically distant populations. Therefore, the elim-
ination of traits may exclude negative values in the MMD, but
it does not exclude the possibility of a strong bias of the
MMDs in relation to population biodistances.

Finally, Ossenberg’s et al. (2006) suggestion is mathemat-
ically equivalent to adding a constant (the same constant) to
each trait contribution, i.e., (t1i − t2i)

2 − 1/n1i − 1/n2i + const,
where const is the absolute value of the largest negative value
of all (t1i − t2i)

2 − 1/n1i − 1/n2i values over all pairs of samples.
Under this transformation, all the MMDs are raised by the
amount r*const, and for this reason, no negative MMDs are
computed. Moreover, the MMD remains an unbiased esti-
mator of population divergence. Thus, consider that we cre-
ate a dataset of populations using correlated multivariate bi-
nary variates and compute all pairwiseMMDsby adding, say
1, to each trait contribution, (T1i − T2i)

2 − 1/N1i − 1/N2i +
1 ≈ (T1i − T2i)

2 + 1, since 1/N1i ≈ 0 and 1/N2i ≈ 0. Then sam-
ples are randomly drawn from the populations, the MMDs
are estimated via Ossenberg’s et al. (2006) suggestion, (t1i −
t2i)

2 − 1/n1i − 1/n2i + 1, and averaged. In this technique, all
the MMD values are positive and, since the MMD is an un-
biased estimator, population and averaged sample MMDs
converge. It is evident that under Ossenberg’s et al. (2006)
correction all theMMDs are raised by the amount of r (when
const=1) in relation to thepopulationMMDscomputedwith-
out correction. Ifwenowalter the constvalue to2, 3, 4,…,we
obtain a spectrum of MMDs, where for each const value,
population and averaged MMDs will converge, they will be
positive numbers, and they are raised by the amount of r in
relation to theMMDs of the previous const value.Moreover,
all MMDs at the various const values give the same dendro-
grams, metric and non-metric multidimensional scaling
(MDS) plots. Therefore, the choice of const affects the mag-
nitude of the MMD between two samples but it does not
affect the differences among the pairwise MMD values of a
dataset; it is these differences that give useful information
about the relative biodistance among the populations and
help to identify patterns and relationships between
populations.

Table 2 Summary of data transformations for proportions

Transformation Variance Range

No
transformation

p(1−p)/n Every p, n

Arcsine 1/n 0.1 ≤ p ≤ 0.9 and n ≥ 20

Probit 0:26
p 1−pð Þþ0:57

n ≈
0:36

p 1−pð Þn ≈
π=8

p 1−pð Þn

0.15 ≤ p ≤ 0.85 and n ≥ 30

Logit 1:31
p 1−pð Þ−1:17

n ≈
1:1

p 1−pð Þn ≈
1

p 1−pð Þn

0.15 ≤ p ≤ 0.85 and n ≥ 30
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The situation is expected to be the same when const
takes the values 0, −1, −2, … In this case, there is a const
value that makes all MMDs negative. However, even in
this case, population and averaged MMDs converge and
they differ by a constant value from the corresponding
positive MMDs computed using a high positive const val-
ue. Thus, the relative biodistances among the populations
remain the same, and for this reason, the negative MMDs
give precisely the same dendrogram as that of the positive
MMDs. There is only a problem with the applicability of
metric and nonmetric MDS because these techniques de-
mand the input of a distance or dissimilarity matrix with
non-negative elements. However, even in the case where
all MMDs are negative, metric MDS can be applied using
the cmdscale() R function, provided that the dimensions
are selected based on the (two) smallest eigenvalues.
Thus, the correction of negative MMDs concerns exclu-
sively the applicability of nonmetric MDS and the
solution proposed by Ossenberg et al. (2006) is the sim-
plest one which solves the problem and it does not bias the
distances.

As an example, consider Fig. 2, which shows MMDs com-
puted on a simulated dataset using r=20, unit correlation ma-
trix, step=0.05, p1=0.2, and p2=0.4. The sample sizes are 10,
20, 30, 40, and 50 and each population has a size of 10000.
Note that since p1=0.2 and p2=0.4, the sample φ values and
the corresponding population p values will range from 0.2 to
0.6 (0.4 plus 5 times 0.05, which is the step value). For this
reason, the computed MMDs are positive. However, if we
examine the individual trait contributions, we find that in al-
most all cases, there are negative contributions that affect the
final MMDs shown in Fig. 2. In addition, due to these p values
(which are greater than 0.1), the MMD is an unbiased estima-
tor of population divergence despite the small sample sizes.
This is shown in Fig. 2, where the values averaged over 500
MMDs of samples (o) randomly drawn from the populations
converge satisfactorily to the corresponding population
MMDs (•) when const = 0 (Fig. 2a) and const = 1 (Fig. 2b).
Some small deviations concern only the very small first sam-
ple (n = 10). In contrast, if we transform the negative trait
contributions to zeros, the populationMMDs remain unaffect-
ed because there are no negative MMDs (•), whereas the

Fig. 1 Plots of simulated vs. calculated variances for untransformed data and data after arcsine, probit, and logit transformation

Archaeol Anthropol Sci (2021) 13: 4040  Page 8 of 14



corrected MMDs (o) are substantially raised in relation to the
corresponding population MMDs (Fig. 2c), showing a clear
bias of the computed MMD values.

The discussion presented above was focused on the MMD
using the arcsine transformation. However, it is evident that it
concerns all the measures of divergence (MDs) presented in
this study (UMD, PMD, LMD). Moreover, since negative
MMDs concern exclusively the applicability of metric and
nonmetric MDS and the present study does not involve mul-
tidimensional scaling techniques, no correction for negative
MDs has been applied in the remainder of the paper.

Results from simulated data

Representative results obtained from the simulated data are
presented in the Supporting Data S2. This file includes tables
and figures that show the effect of sample size and the pres-
ence of traits with very small φ values on whether the dis-
tances under study are unbiased estimators of population di-
vergence or not. The simulated data was created using func-
tion simbiasbinMDs, which also performed the analysis and

created dendrograms. Figures 3 and 4 present comparisons of
the distance measures UMD, MMD, PMD, and LMD when
the binary datasets have been created using unit correlation
matrix (i.e., a matrix with almost zero correlations) and a
correlation matrix with the strongest positive correlations.
Note that the histograms of the Pearson correlation coeffi-
cients that correspond to the correlation matrices of Figs. 3
and 4, given in the Supporting Data S2, show a peak at 0.75.
In Fig. 3, the sample sizes are small (10-20-30-40-50), where-
as in Fig. 4, the sample sizes range from 100 to 500 (100-200-
300-400-500) cases. In both figures, the percentage of traits
with low relative frequencies is 41% for p < 0.1 and 16% for p
< 0.05.

It is seen that both sample size and the presence of traits
with very small φ values play an important role in whether a
distance is an unbiased estimator of population divergence or
not. As a rule, when the sample sizes are relatively large,
greater than 100 or 200, even for percentages of traits as large
as 90% for p < 0.1 and 40% for p < 0.05, all the examined
distances are either unbiased or nearly unbiased estimators of
population divergence. The presence of strong intercorrela-
tions practically does not affect this property. As the sample

Fig. 2 Comparisons of MMDs when estimated on simulated populations
(●) and averaging 500 distances of samples randomly drawn from these
populations (o). Distances have been corrected for negative contributions
as follows: No correction has been made in a; the value 1 has been added
to all distances at each trait in b; and negative trait contributions have been
transformed to zeros in c

Fig. 3 Comparisons of the various distance measures when estimated on
simulated populations, UMD (●), MMD (▲), LMD (×), PMD (▼), and
averaging 1000 distances of samples randomly drawn from these
populations UMD (o), MMD (△), LMD (+), PMD (▽). Binary datasets
created using r=20, step=0.005, p1=0, p2=0.2, unit correlation matrix (a),
and symmetric correlation matrix with the strongest positive correlations,
(b). Population size=10000 and sample sizes: (1) 10, (2) 20, (3) 30, (4) 40,
and (5) 50
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sizes decrease, below 50 cases per sample, all distances, ex-
cept the UMD, start to show a biased estimation of the popu-
lation divergence. Note that some, usually small, deviations
between population and averaged UMDs disappear when we
increase the repetition number. Therefore, the UMD appears
to be the most robust unbiased estimator of population diver-
gence among all measures of divergence studied. Again, the
intercorrelations among the traits do not affect the biased/
unbiased estimation of the population divergence. This is an
important result because it allows us to simulate a specific
dataset of multivariate binary data using the simple unit cor-
relation matrix.

Results from dental nonmetric traits of archeological
assemblages

The results obtained from the dental nonmetric traits are
shown in Figs. 5 and 6 and the Supporting Data S3. The
calculations in this spreadsheet were performed using the
biasbinMDs function. As mentioned above, this function as-
sesses biases in the estimation of population divergence by
using the original dataset to simulate the respective

populations and subsequently calculating pairwise population
distances and pairwise distances between samples randomly
drawn from the populations. The comparison between the
population and averaged samples pairwise distances allows
the assessment of which of the distances are unbiased estima-
tors of population divergence.

The original GR-28 dataset includes many traits with very
low frequencies (Table 1). However, despite the presence of a
relatively large proportion of low frequencies (21%), the
UMD is an unbiased estimator (Fig. 5). The MMD, PMD,
and LMD exhibit biased estimations of the population diver-
gence, although the bias in theMMD is smaller than that in the
PMD and LMD (Fig. 5 and Supporting Data S3). In addition,
we observe that most of the values of the PMD and LMD are
negative but, as explained above, this is not a problem and it
can be addressed via Ossenberg’s et al. (2006) correction.

If we use data editing and remove traits with p < 0.01, we
obtain the GR-12 dataset, i.e., a dataset with 16 traits less. This
is a great trait reduction and is likely to lead to a significant
loss of information about the clustering of samples/popula-
tions. In the reduced dataset, both the UMD and MMD are
unbiased estimators of population divergence and this proper-
ty has been considerably improved for the other distances as
well (Fig. 5 and Supporting Data S3).

The potential impact of the loss of information when re-
ducing the dataset can be seen using dendrograms. Figure 6
shows Ward’s dendrograms obtained from the UMD and
MMD when applied to the GR-28 and GR-12 datasets. It is
seen that there is indeed a loss of information about clusters
when passing from GR-28 to GR-12. For UMD and MMD,
the dendrograms of the GR-28 dataset show two broad clus-
ters, one encompassing all prehistoric assemblages (Petras,
Livari, Xeropigado, Pella) and the other including the histor-
ical materials (Christianoi, Eleutherna, Akraiphnio). When
using GR-12, the picture obtained is very similar but now
the Early Bronze Age assemblage from Pella clusters together
with the historical materials, which is very difficult to explain
archeologically.

These very tentative bioarcheological results show that
MMD and UMD provide largely the same information but
UMD outperforms the other measures as an unbiased estima-
tor of population divergence, as expected based on the math-
ematical principles underlying its definition. With regard to
whether this measure also generates meaningful biodistances,
in our dataset, this is the case; however, further research
employing larger and more diverse archeological assemblages
which form known biodistance clusters is needed.

Results concerning p value estimation

The results concerning the p values are given in Fig. 7 and in
the Supporting Data S2 and Supporting Data S3 and they have
been obtained using the simperbinMDs and perbinMDs

Fig. 4 Comparisons of the various distance measures when estimated on
simulated populations, UMD (●), MMD (▲), LMD (×), PMD (▼), and
averaging 1000 distances of samples randomly drawn from these
populations UMD (o), MMD (△), LMD (+), PMD (▽). Binary datasets
created using r=20, step=0.005, p1=0, p2=0.2, unit correlation matrix (a),
and symmetric correlation matrix with the strongest positive correlations,
(b). Population size=10000 and sample sizes: (1) 100, (2) 200, (3) 300,
(4) 400, and (5) 500
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functions. The comparisons between p values calculated from
the test statistics S and T and the permutation method reveal
the following. There is a characteristic difference between the
MMD, UMD, and the rest of the measures of divergence
concerning the pattern of their p values. Specifically, when
the PMD and LMD take negative values, whereas the corre-
sponding MMD, UMD are positive, the p values calculated
from the test statistics S and T are much greater that those

estimated from the permutation method, which gives p values
similar to those corresponding to the MMD and UMD. This is
an indication that under these conditions, the permutation
method is more reliable than the test statistics.

In what concerns theMMD and UMD, although the pattern
of their p values is overall the same, there are differences in the
p values calculated from the various techniques, i.e., from the
test statistics S and T, Equations (8) and (9), and the Monte-

Fig. 5 Comparisons of UMD and
MMD when estimated a on GR-
28 and GR-12 datasets of binary
data (+), b on the corresponding
simulated populations (o), and c
by averaging the distances of
1000 samples randomly drawn
from the populations (×).
Population and averaged dis-
tances are corrected by
subtracting the corresponding
variances

Fig. 6 Ward’s dendrograms obtained from the UMD and MMD when applied to the GR-28 and GR-12 datasets. Key: 1 = Petras, 2 = Livari, 3 =
Xeropigado, 4 = Pella, 5 = Christianoi, 6 = Eleutherna, 7 = Akraiphnio
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Carlo permutation method based on the S, T, and d statistics
(Fig. 7). Nevertheless, we have not detected significant differ-
ences between p values calculated from the test statistics S, T
and the permutation method, even in the analysis of simulated
data with strong intercorrelations. Note that the test statistics S
and T are valid if the transformed data is nearly normally
distributed and all r traits are independent. Thus, the compar-
isons of the p values do not show which of the techniques
examined provide the best estimation of the p value.
However, at this point, we should clarify that the calculation
of different p values for a certain distancewhen all p values are
say above 0.1 is unimportant; on the contrary, it shows that
there is no evidence that the distance is statistically significant.
Similarly, different p values but all well below 0.05 provide
strong evidence against the null hypothesis and, therefore,
indicate statistical significance since the smaller the p value,
the stronger the evidence for statistical significance. Finally, in
the limiting case where the estimated p values lie around 0.05,
it is up to the researcher to decide about distance significance.
From this point of view, in most cases concerning the MMD
and UMD, the differences among the p values calculated from
the various techniques examined in this paper are not so sub-
stantial to prevent us from reaching safe conclusions about the
significance of distances under study. In contrast, the estima-
tion of the significance of the computed distances based on all
techniques provides a more secure result. For the remaining
distances, the significance should be based mainly on the per-
mutation method.

A revision of the data editing procedure

Currently, the MMD is usually applied after data editing; nat-
urally, the same could be done for all distances presented

above, especially the PMD and LMD. The data editing pro-
cedure involves the elimination of the following traits from the
dataset:

1. Traits that exhibit only missing values in one or more
samples under study.

2. Traits that exhibit a particularly high (>0.95) or low
(<0.05) frequency within one or more samples under
study.

3. Nondiagnostic traits, that is, traits that are not significantly
different between at least one pair of samples (Harris and
Sjøvold 2004).

4. Traits that exhibit a statistically significant intercorrelation
with one another (Irish 2010 and references therein).

Based on the present study, this procedure should be re-
vised except for the first step since none of the measures of
divergence described above can be computed if there are traits
that exhibit only missing values in one or more samples. For
the second step, traits that exhibit a particularly high or low
frequency within one or more samples may cause problems
since, apart from the untransformed data, all the other expres-
sions for the variance of the transformed data are approximate-
ly valid within a certain range of p and n values. Thus, the
arcsine transformation fails for p ≤ 0.1 or p ≥ 0.9 when n ≤ 20,
whereas for probit/logit, these limits become p ≤ 0.15 or p ≥
0.85 when n < 30. However, the present study showed that
these limits may be violated and a measure of divergence can
show small biased estimations of the population divergence.
This is especially true for the MMD. In any case, the second
step may be revised as follows. We examine whether the dis-
tance under examination is a biased or an unbiased estimator
of population divergence. If it is an unbiased estimator, there
is no need to delete any traits. If it is a biased estimator, we
remove trait(s) starting from those with the smallest/highest
frequency until we obtain a dataset in which the computed
distance is an unbiased or nearly unbiased estimator of popu-
lation divergence. This process may be easily implemented
using function biasbinMDs.

Concerning the third step listed above, it may be ignored.
Nondiagnostic traits may favor the appearance of negative MDs.
However, the existence of such traits indicates that the populations
under study are biologically close to each other, whereas their
elimination enhances the differences between populations, which
may yield false conclusions about their biodistance. If a researcher
wants to avoid negative distance values, Ossenberg et al. (2006)
offer the best solution. Finally, in what concerns the presence of
strongly intercorrelated traits, as we found using simulated data,
such traits do not yield biased estimations of population divergence
and do not have a significant effect on the p values estimated from
the S statistic, Equation (8), which assumes that all r traits should
be independent. Note that in a 2015 study, it was also shown that
the inclusion of intercorrelated traits does not appear to affect the

Fig. 7 p values for the MMD of the GR-12 dataset estimated from test
statistics S (o) and T (△) using Equations (8) and (9) and the permutation
method using as test statistic the values d of the MMD (•) as well as the
test statistics S (+) and T (×) of Equations (8) and (9), respectively
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validity of the MMD results (Nikita 2015). However, the main
reason for many researchers to delete intercorrelated traits is that
the MMD does not take into account the effect of intercorrelated
traits on the population divergence. From this point of view, this is
a justifiable procedure, which, though, as any data elimination
approach, may lead to biased MMD values.

Conclusions

In the present study, we examined three new measures of
divergence based on untransformed data (UMD) and the logit
(LMD) and probit (PMD) transformations. In addition, we
examined the conventional Smith’s mean measure of diver-
gence (MMD) based on the arcsine transformation. The main
conclusions that can be drawn are the following:

1. The UMD based on untransformed data outperforms the
other measures. It is an unbiased estimator of population
divergence and does not exhibit application problems at
very low or very high frequencies.

2. The MMD is a satisfactory distance measure for binary
data, although its application requires a careful test to
avoid biased estimations of population divergence when
there are small sample sizes and many traits with frequen-
cies lower than 0.1 or/and greater than 0.9.

3. The UMD and MMD usually give similar information
about the relative biodistance and the existing patterns
and relationships between populations.

4. The measures of divergence based on the probit and logit
transformations are more prone to biased estimations of
population divergence than the UMD and MMD, espe-
cially in datasets with small sample sizes and traits with
very low/high frequencies. Since they have no advantage
over the UMD and MMD, these measures may be con-
sidered inappropriate for the study of datasets of dental (as
well as cranial) traits.

5. The statistical significance of the estimated distances
should be based on both the S and T test statistics and
the permutation method avoiding assumptions on trait
independence and normal i ty of t ransformed/
untransformed data.

6. The conventional data editing procedure should be re-
vised. It should be mainly related to the need for a mea-
sure of divergence to be an unbiased estimator. If a mea-
sure of divergence is an unbiased estimator for a certain
dataset, there is no need to delete any traits. If though this
measure is a biased estimator, we remove trait(s) starting
from those with the smallest/highest frequency until we
obtain a dataset in which the computed measure becomes
an unbiased estimator of population divergence.
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