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Abstract
Background Fanconi-Debré-de Toni syndrome (also known as Fanconi renotubular syndrome, or FRST) profoundly 
increased the understanding of the functions of the proximal convoluted tubule (PCT) and provided important insights into 
the pathophysiology of several kidney diseases and drug toxicities.
Data sources We searched Pubmed and Scopus databases to find relevant articles about FRST. This review article focuses 
on the physiology of the PCT, as well as on the physiopathology of FRST in children, its diagnosis, and treatment.
Results FRST encompasses a wide variety of inherited and acquired PCT alterations that lead to impairment of PCT reab-
sorption. In children, FRST often presents as a secondary feature of systemic disorders that impair energy supply, such as 
Lowe’s syndrome, Dent's disease, cystinosis, hereditary fructose intolerance, galactosemia, tyrosinemia, Alport syndrome, 
and Wilson’s disease. Although rare, congenital causes of FRST greatly impact the morbidity and mortality of patients and 
impose diagnostic challenges. Furthermore, its treatment is diverse and considers the ability of the clinician to identify the 
correct etiology of the disease.
Conclusion The early diagnosis and treatment of pediatric patients with FRST improve the prognosis and the quality of life.

Keywords Cystinosis · Fanconi syndrome · Fanconi renotubular syndrome · Fanconi-Debrè-de Toni syndrome · Proximal 
tubule · Renal tubular transport · Rickets

Introduction

A 3-month-old girl presented with rickets, glycosuria, albu-
minuria, and recurrent fevers, progressing to end-stage kid-
ney disease (ESKD) at the age of 5 years and passing away 
shortly after. At autopsy, cystine crystals filled the renal 
tubule cells. This was Guido Fanconi’s first case in 1931 of 
a rare condition marked by a general defect in renal proxi-
mal tubule reabsorption [1], further described by de Toni 
[2] and Debré [3]. Although rare, Fanconi-Debré-de Toni 
syndrome (more commonly known as Fanconi renotubular 

syndrome, or FRST) profoundly increased the understanding 
of the functions of proximal tubular cells (PTCs) and pro-
vided important insights into the pathophysiology of several 
kidney diseases and drug toxicities. 

Despite Fanconi’s findings in the twentieth century, it is 
currently known that FRST encompasses a wide variety of 
inherited and acquired proximal convoluted tubule (PCT) 
alterations that lead to impairment of PCT reabsorption [4]. 
The true incidence of FRST is unknown, and only a hand-
ful of studies have examined the epidemiology of its con-
genital causes. While acquired and exogenous causes can 
be seen in any age group depending on the underlying cause 
and/or drug exposure, some inherited causes affect mostly 
boys due to X-linked inheritance [5]. Some specific causes 
of inherited FRST have a higher incidence in Caucasians, 
such as cystinosis, caused by mutations in the CTNS gene 
(> 70% in Caucasians) [6]. Nevertheless, diagnostic chal-
lenges, especially in resource-limited settings [7], may lead 
to a lack of essential data to identify the true epidemiology 
of these conditions.
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As congenital causes of FRST greatly impact the mor-
bidity and mortality of patients and impose diagnostic 
challenges, this review sought to explore the pathophysi-
ology, etiology, diagnosis, and treatment of this impor-
tant syndrome, mainly focusing on inherited causes of the 
disease.

Transport mechanisms in the proximal convoluted 
tubule

The PCT is the major resorptive segment of the nephron 
and is responsible for the reabsorption of sodium, chloride, 

water, bicarbonate, phosphate, glucose, amino acids, lac-
tate, citrate, low-molecular-weight (LMW) proteins, and 
several other substances. The PCT contains a wide brush 
border with a high concentration of microvilli that increase 
the surface area for transport mechanisms. Hence, this seg-
ment is accountable for nearly 65% of the filtered load and 
a key element in the regulation of homeostasis [8]. In this 
section, we briefly overview the main transport mecha-
nisms along the PCT by dividing them into transporters 
found in the initial and terminal regions of this nephron 
segment. All transporters described here are represented 
in Fig. 1.

Fig. 1  Transport mechanisms along the proximal convoluted tubule 
(PCT).  Na+–K+-ATPase activates the extrusion of  Na+ from the PCT 
into the bloodstream, generating an electrochemical gradient for pas-
sive entry of  Na+ via several antiporters and cotransporters. a In the 
cytosol, CAII catalyzes the intracellular conversion of  CO2 and  H2O 
into  H2CO3, which dissociates into  H+ and  HCO3

−.  H+ is secreted 
into the PCT lumen in exchange for  Na+ via NHE3, which is down-
regulated by NHERF-1 and upregulated by AII.  HCO3

− returns along 
with  Na+ to the blood via NBCe1. Glucose is reabsorbed with  Na+ 
via SGLT2 and returns to the blood through GLUT2. Amino acids 
and  Na+ are reabsorbed via  Na+/amino acid cotransporters and enter 
the blood via  Na+-independent transporters. Phosphate is reabsorbed 
via NaPi. Lactate isoforms are absorbed with  Na+ via  Na+/lactate 
cotransporters and enter the bloodstream via sodium-independent 
transporters. Citrate is reabsorbed via NaDC-1 and is transported 

to the mitochondria. In the cytosol,  NH3 is formed by glutaminase. 
Glutamine is converted into equimolar amounts of  NH4

+ and  HCO3
−. 

 NH4
+ dissociates into  NH3 and  H+.  NH3 is secreted via simple dif-

fusion, and  H+ is exchanged with  Na+ via NHE3; generated  HCO3
− 

passes along with  Na+ to the blood via NBCe1. b Glucose and  Na+ 
are reabsorbed via SGLT1 and return to the blood via GLUT1.  Cl− 
can be reabsorbed through NHE3-dependent  Cl−/oxalate and  Cl−/
formate exchangers;  Cl− enters the blood via simple diffusion,  K+–
Cl− cotransport, or  Na+-2HCO3

−/Cl− exchange. PCT proximal con-
voluted tubule, CA II carbonic anhydrase, NHE3  Na+–H+ antiporter/
exchanger, NHERF-1  Na+–H+ exchanger regulatory factor-1, AII 
angiotensin II, NBCe1  Na+/HCO3

− cotransporter, SGLT2  Na+/glu-
cose cotransporter 2, GLUT2 glucose transporter 2, NaPi  Na+/phos-
phate cotransporter, NaDC-1  Na+/dicarboxylate cotransporter 1, 
GLUT1 glucose transporter 1, NHE3  Na+–H+ antiporter/exchanger
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Importance of basolateral  Na+–K+‑ATPase pump

The  Na+–K+-ATPase pump is located in the basolateral 
membrane of both the initial and terminal PCT [9]. The 
 Na+–K+-ATPase pump involves a 3:2 stoichiometric ratio, 
essential for active extrusion of  Na+ from PCT cells into 
peritubular interstitial fluid and eventually into the blood-
stream. This enzyme activity contributes to generating an 
electrochemical gradient that facilitates passive entry of 
 Na+ into PCT cells through several sodium antiporters and 
cotransporters placed in the apical membrane. Due to this 
process, the  H2O molecule is also easily reabsorbed under 
an isosmotic fashion [8, 10].

Apical  Na+–H+ antiporter/exchanger (NHE)

The  Na+–H+ antiporter/exchanger genetic family comprises 
nine genes, but only the NHE3 transporter is found in the 
apical membrane of both initial and terminal PCT cells [11, 
12]. This antiporter functions in a 1:1 stoichiometric ratio, 
promoting  Na+ entry and  H+ exit, a process linked to the 
reabsorption of filtered  HCO3

− [11]. Numerous regula-
tory mechanisms act on this exchanger:  Na+–H+ exchanger 
regulatory factor-1 (NHERF-1) phosphorylates and even-
tually downregulates NHE3 activity via the cAMP second 
messenger pathway [13]. On the other hand, angiotensin II 
upregulates NHE3 activity via various mechanisms, includ-
ing protein kinase C [14], inositol 1,4,5-triphosphate  (IP3) 
receptor binding protein released with  IP3 (IRBIT) [15], 
 Ca2+/calmodulin-dependent protein kinase II [15], or oxi-
dative stress [16].

Apical  Na+/glucose cotransporter

Although the  Na+/glucose cotransporter genetic family com-
prises six genes, only two of them are expressed in the api-
cal membrane of renal PCT cells: SGLT2 and SGLT1 [17]. 
SGLT2 is responsible for the reabsorption of 90% of the 
filtered glucose, whereas SGLT1 accomplishes the reabsorp-
tion of the remaining 10% [17]. Through those cotransport-
ers,  Na+ and glucose are reabsorbed in a 1:1 stoichiometric 
ratio [18]. The passage of glucose to the interstitial peritu-
bular fluid and ultimately to the blood involves basolateral 
GLUT1 and GLUT2, which are  Na+-independent transport-
ers [17].

Basolateral  Na+/HCO3
− cotransporters

PCT is responsible for the reabsorption of nearly 80% 
of filtered  HCO3

−, which is an important mechanism for 
acid–base homeostasis [19]. Carbonic anhydrase II (CAII) is 
essential for this process since the enzyme catalyzes intracel-
lular conversion of  CO2 and  H2O into  H2CO3, which, in turn, 

dissociates into  H+ and  HCO3
− [20]. Then  H+ is secreted 

into the PCT lumen in exchange for  Na+ via apical NHE3, as 
previously described [11]. Finally, cytosolic  HCO3

− passes, 
along with  Na+, to the peritubular interstitial fluid and ulti-
mately the blood mainly via basolateral  Na+/HCO3

− cotrans-
porter NBCe1 [19].

Apical  Na+/amino acid cotransporters 
and basolateral amino acid transporters

The vast majority of the filtered amino acids are reabsorbed 
in the initial PCT. This process involves the passage of 
amino acids from the tubular lumen into initial PCT cells 
via apical  Na+/amino acid cotransporters driven by an elec-
trochemical gradient (from the tubular lumen to the cell) 
established by the basolateral  Na+–K+-ATPase pump [21]. 
Multiple cotransport systems have been described, including 
the neutral system (or methionine-preferring system), the 
basic system, the acidic system, the iminoglycine system, 
and the β-amino acid system [22], but their description is 
beyond the scope of this paper. Once inside the PCT cell, 
amino acids make their way to the blood probably via facili-
tated diffusion using  Na+-independent transporters in the 
basolateral membrane [21].

Apical  Na+/phosphate cotransporter

Approximately 80–90% of filtered phosphate is reabsorbed 
in initial PCT [23]. Of the three families of  Na+/phosphate 
cotransporters (NaPi), PCT cells express proteins of family 
II, primarily NaPi-IIa but also NaPi-IIc [24]. Both cotrans-
porters prefer divalent Pi  (HPO42−), and the driving force 
reabsorption, as previously mentioned, requires a transmem-
brane  Na+ electrochemical gradient maintained by the baso-
lateral  Na+–K+-ATPase pump [25]. Regarding regulation, 
studies suggest that parathyroid hormone decreases the num-
ber of apical NaPi-lla within minutes and decreases the num-
ber of apical NaPi-llc within hours, increasing phosphate 
excretion [26]. Despite its apparent importance, the current 
understanding of Pi basolateral transporters is scarce.

Apical  Na+/lactate cotransporter

Encoded by the SLC5A8 gene, the apical  Na+/lactate cotrans-
porter is responsible for the reabsorption of both L- and 
D-lactate isoforms [27]. This process is carried out using the 
transmembrane  Na+ electrochemical gradient maintained by 
the basolateral  Na+–K+-ATPase pump [27]. Once inside the 
PCT cell, lactate passes to the interstitium and finally to the 
blood through facilitated diffusion via basolateral sodium-
independent carriers, which have a pronounced preference 
for the L-lactate isomer [27].
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Apical  Na+/dicarboxylate cotransporter 1 (NaDC‑1)

Encoded by SLC13A2, apical  Na+/dicarboxylate cotrans-
porter 1 (NaDC-1) is responsible for the reabsorption of 
metabolic intermediates of the citric acid cycle, such as 
citrate [28]. This symport system is driven by a trans-
membrane  Na+ electrochemical gradient maintained by 
the basolateral  Na+–K+-ATPase pump. Thus, this cotrans-
porter can be characterized as facilitated, secondarily 
active transport, as exemplified previously [28, 29]. The 
dicarboxylate form is thought to be the only form trans-
ported by NaDC-1. Therefore, urine molecules of  H+ play 
an important role in citrate reabsorption since  H+ oxidizes 
citrate to the dicarboxylated form. Once inside the PCT 
cell, the dicarboxylated citrate can be metabolized inside 
the mitochondria as part of the citric acid cycle [28]. 
Finally, citrate also enters PCT cells from the interstitium, 
crossing the basolateral membrane, but few studies have 
addressed these transport mechanisms, and they have not 
yet been fully defined.

NH3/NH4
+ buffer system

The initial PCT is a key nephron segment for  NH4
+ pro-

duction and secretion, which is essential for establishing 
the major buffering system that allows acid excretion in 
the kidneys. Ammonia genesis occurs primarily in the 
mitochondria by the enzyme glutaminase. In this process, 
glutamine is ultimately converted into equimolar amounts 
of  NH4

+ and  HCO3
−.  HCO3

− is reabsorbed via basolateral 
NBCe1, as previously described, and  NH4

+ may prefer-
entially follow the three following pathways for apical 
secretion [30].

Apical  Na+/H+ exchanger (NHE3)

The apical  Na+/H+ exchange by NHE3 may undergo sub-
stitution of  NH4

+ for  H+ at the cytosolic  H+ binding site, 
resulting in  Na+/NH4

+ exchange activity, which is likely the 
main mechanism for  NH4

+ secretion into the PCT lumen. 
The cytosolic  NH4

+ competes with  H+ on the intracellular 
NHE3 binding site, and a high intracellular  NH4

+ concentra-
tion from increased ammonia genesis (as seen in metabolic 
acidosis) combined with low intracellular  Na+ concentra-
tion favors  Na+/NH4

+ exchange. Moreover, metabolic aci-
dosis is also characterized by increased NHE3 expression, 
which further increases  NH4

+ secretion and ultimately acid 
excretion [30]. Intracellular  NH4

+ is thought to be conducted 
into the PCT lumen mediated by apical potassium channels, 
although how this mechanism exactly works is not yet cur-
rently understood [30].

Apical  NH3 transport

Intracellular  NH4
+ may dissociate into  NH3 and  H+.  NH3 

can be secreted likely via simple diffusion, whereas the acid 
may be exchanged with  Na+ via apical NHE3 [30]. Nearly 
all filtered glucose, amino acids, and  HCO3

− have already 
been completely reabsorbed in the early PCT. Some NaCl 
(mainly  Cl−) is reabsorbed in terminal PCT:  Na+ via NHE3 
and  Cl− via  Cl−/formate and  Cl−/oxalate exchangers. Some 
paracellular reabsorption of NaCl also takes place in this 
nephron segment. These processes contribute to the reab-
sorption of approximately 50%–70% of the filtered  Cl− [31].

Apical  Cl−/formate exchanger

Intracellular formic acid dissociates into  H+ and formate. 
This anion can be exchanged with  Cl− in the apical mem-
brane. To maintain this mechanism, formic acid needs to be 
replenished inside the terminal PCT cells. This process is 
accomplished by apical NHE3 activity, which creates the 
driving force for formic acid entry into the cell, and by apical 
 H+/formate cotransport, which, in turn, promotes formate 
entry [31].

Apical  Cl−/oxalate exchanger

Intracellular  H2CO3, previously formed from  CO2 and  H2O 
via the cytosolic enzyme carbonic anhydrase II, can result 
in  H+ and  CO3

2− (carbonate). This anion can be exchanged 
with oxalate via the  CO3

2−/oxalate exchanger in the apical 
membrane. Once inside the cell, oxalate can be exchanged 
with  Cl− via an apical  Cl−/oxalate exchanger, allowing 
 Cl− reabsorption. However, to maintain this mechanism, 
oxalate needs to be replenished inside the terminal PCT 
cells. This process is accomplished by apical NHE3 activ-
ity, which creates the driving force for carbonate extru-
sion, and by the apical oxalate/SO4

2− exchanger, which is 
coupled to the apical  Na+/SO4

2− exchanger, the principal 
mechanism of  SO4

2− reabsorption in PCT. Some possible 
pathways for  Cl− to reach the interstitial peritubular fluid 
and blood are simple diffusion across the membrane follow-
ing an electrochemical gradient,  K+–Cl− cotransport, and 
 Na+-2HCO3

−/Cl− exchange [31].

Pathophysiology

The sequence of events leading to FRST is incompletely 
defined and probably varies according to the etiology. Possi-
ble mechanisms include widespread abnormality of most or 
all of the proximal tubule carriers, “leaky” brush border or 
basolateral cell membrane, inhibited or abnormal  Na+–K+-
ATPase pump, impaired mitochondrial energy generation, or 
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other cell organelle dysfunction. The most common cause of 
FRST in children is an inborn error of metabolism, whereas, 
in adults, FRST is more frequently caused by an endogenous 
or exogenous toxin [32].

The mechanisms behind the disease include decreased 
influx of solute into the blood from the tubular epithelium, 
increased back flux of solute across the tight junctions 
separating the cells that line the tubular epithelium from 
the blood to the glomerular filtrate, defective solute influx 
into the tubular epithelium, and leakage of the solute back 
into the lumen from the tubular epithelium [32]. This could 
be due to a larger problem associated with generating the 
energy that is needed by the cells to accomplish the task of 
bringing solutes in through the brush border membrane or in 
transferring solutes out through the basolateral membrane. 

For example, heavy metal poisoning can compromise the 
utilization of energy by the mitochondria [4].

FRST requires that distal segments of the nephron do 
not absorb the solutes that are reabsorbed primarily by the 
PCT. Malabsorption of these substances could be due to 
altered permeability of tubular membranes or alterations 
of transport carriers. The substances not absorbed include 
amino acids, bicarbonate, glucose, phosphate, proteins, and 
uric acid, and this alteration seems to be associated with 
low ATP levels [5]. The mechanisms underlying acquired 
and inherited causes of FRST are still under investigation. 
It is important to note that type 2 renal tubular acidosis is 
not always associated with FRST, but FRST does present 
with type 2 renal tubular acidosis in the setting of excessive 
excretion of bicarbonate [32] (Fig. 2).

Fig. 2  Summary of the physiopathology of Toni-Debrè–Fanconi 
syndrome (FS). FS has many primary, secondary, and acquired 
etiologies that cause proximal convoluted tubule (PCT) damage 
through various mechanisms. One way the PCT cells may be dis-
rupted is through mitochondrial abnormalities, seen in the inher-
ited forms Fanconi renotubular syndrome types 1, 3, and 5 (FRST1, 
FRST3, FRST5), as well as secondarily to mitochondrial myopa-
thies, tyrosinemia type I, and mitochondrial DNA variants. These 
diseases disrupt the electron transport chain, impairing oxidative 
phosphorylation and ultimately leading to insufficient ATP forma-
tion and build-up of reactive oxygen species (ROS), which acti-
vates proinflammatory and profibrotic mediators, resulting in PCT 
cell damage. Another mechanism is the deposition of foreign struc-
tures resulting in oxidative and inflammatory stress. This is seen 
with immunoglobulin (Ig) light chains and crystal accumulation 
due to plasma cell dyscrasias and cystinosis, respectively. Further-
more, PCT cells may be directly injured via autoimmune mecha-
nisms, drug toxicity or intracellular response to impaired transcrip-

tion (FRST4). Lowe’s syndrome and Dent’s disease type II cause 
damage due to cytoskeletal abnormalities that decrease functional 
adherens junctions and impair protein trafficking. Protein and sol-
utes may also accumulate in the cytoplasm due to defects in spe-
cific transporters, as seen in Fanconi–Bickel syndrome (defective 
glucose transporter 2—GLUT-2), FRST2 (defective sodium phos-
phate cotransporter 2a—NaPi-IIa), anticonvulsant therapy (inhibit 
carbonic anhydrase), lysinuric protein intolerance (defective cati-
onic amino acid transporter), and Dent’s disease type I (impaired 
megalin and cubilin-mediated amino acid endocytosis). All of these 
forms of cell aggression result in increased oxidative stress, inflam-
mation, and fibrosis, resulting in loss of the brush border and flat-
tened PCT cells with thickened basement membranes. This con-
juncture leads to apical dedifferentiation with a global loss of solute 
resorptive capacity, which explains the findings of hyperaminoaci-
duria, low-molecular-weight (LMW) proteinuria, hyperphospha-
turia, glycosuria, bicarbonaturia, and pyuria characteristics of FS. 
FRST Fanconi renotubular syndrome, PT proximal tubular
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FRST can occur due to inherited or acquired causes. Pri-
mary inherited FRST is caused by a mutation in the sodium 
phosphate cotransporter  (NaPi-II) in the proximal tubule. 
Recent studies have identified new causes of FRST due to 
mutations in the EHHADH and HNF4A genes. FRST can 
also be one of the many manifestations of various inherited 
systemic diseases, such as cystinosis. Many of the acquired 
causes of FRST with or without proximal renal tubular 
acidosis are drug induced, with the list of causative agents 
increasing as newer drugs are introduced for clinical use, 
mainly in the oncology field [33].

Etiology

As previously stated, FRST is caused by a global dysfunction 
of solute reabsorption in the PCT, which is a highly energy-
demanding process; hence, most of the pathophysiological 

pathways underlying FRTS are related to mitochondrial 
cytopathies and defects in the respiratory chain [34]. FRST 
often presents as a secondary feature of systemic disorders 
that impair energy supply, such as Lowe's syndrome, Dent's 
disease, cystinosis, hereditary fructose intolerance, galacto-
semia, tyrosinemia, Alport syndrome, and Wilson's disease, 
but it has also been reported in primary form as a Mendelian 
disorder in both autosomal dominant and recessive manners, 
caused by specific mutations in a variety of genes. Table 1 
summarizes the causes of FRST.

Primary Fanconi syndrome

There are five Mendelian forms of FRST recognized to be 
caused by mutations in different loci, with unique inher-
itance patterns and phenotypic presentations. FRST1 was 
first mapped to chromosome 15q15.3 [35] via a genome-
wide screen of 24 members of a family with seemingly 

Table 1  Fanconi syndrome 
classification and common 
etiologies

FRTS Fanconi renal tubular syndrome

Classification Etiology

Primary Fanconi syndrome FRST1: GATM mutations, autosomal dominant
FRST2: SLC34A1 mutations, autosomal recessive
FRST3: EHHADH mutations, autosomal dominant
FRST4: HNF4A mutations, autosomal dominant
FRST5: NDUFAF6 mutations, autosomal recessive
Mitochondrial DNA deletion
Idiopathic Fanconi syndrome (unknown genetic mechanism)

Fanconi syndrome secondary to 
hereditary disorders

Cystinosis
Hereditary fructose intolerance
Tyrosinemia type I
Lowe’s syndrome
Dent’s disease
Lysinuric protein intolerance
Fanconi-Bickel syndrome
Alport syndrome
Galactosemia
Wilson’s disease
Mitochondrial myopathies

Acquired Fanconi syndrome Antiretroviral drugs (tenofovir, didanosine, lamivudine and stavudine)
Anticancer agents (ifosfamide, immune checkpoint inhibitors, tyros-

ine kinase inhibitors)
Antibiotics (aminoglycosides, tetracycline)
Anti-protozoals (suramin)
Anticonvulsants (topiramate, valproate)
Salicylates (aspirin)
Iron-chelating agents (defarosirox)
Dicarboxylic acids (fumaric acids, maleic acid)
Heavy-metal exposure (cadmium)
Plasma cell dyscrasias (myeloma, leukemia, lymphoma)
Monoclonal gammopathies
Autoimmune causes
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autosomal dominant FRTS reported by Wen, Friedman, 
and Oberley [36]. Then upon next-generation sequencing 
and segregation analysis of 28 later-reported affected mem-
bers of 5 unrelated families, heterozygous missense muta-
tions were found in a specific region of the GATM gene, 
which encodes the enzyme glycine amidinotransferase 
[37]. Interestingly, this enzyme is involved in the creatinine 
biosynthetic pathway, and other recessive loss-of-function 
mutations in this gene have been previously associated with 
cerebral creatinine deficiency syndrome, characterized by 
neurologic impairment without renal manifestations [38]. 
However, the specific heterozygous mutations described in 
the above-mentioned study created an additional interaction 
interface within the GATM protein and resulted in linear 
aggregation and fibrillary aggregate deposition on mito-
chondria, as shown on biopsy of the PCT cells. This build-
up of GATM complexes resulted in enlarged mitochondria 
resistant to turnover with increased reactive oxygen species 
(ROS) production, higher activation of the inflammasome, 
and upregulated expression of profibrotic mediators such 
as NLRP3, fibronectin, and interleukin (IL)-8 [37]. These 
changes resulted in increased PCT cell death and fibrosis, 
which could explain why variants in this specific region of 
the gene presented phenotypically as FRST.

FRST2 was subsequently described as an autosomal 
recessive disorder in a consanguineous Arabic family, pre-
senting with the classical findings of rickets, osteopenia, 
hypercalciuria without renal tubular acidosis and, unlike 
the previously described symptoms, with elevated serum 
1,25-dihydroxyvitamin D [1,25(OH)2D3] [39]. After 
20 years, the same family was re-evaluated [40], and the 
affected patients exhibited normal levels of urinary calcium 
excretion and vitamin D deficiency, which suggests that 
during childhood, 1,25(OH)2D3 was overproduced by the 
kidneys in response to hypophosphatemia. They underwent 
genetic analysis, and a homozygous 21 bp duplication was 
found on the SLC34A1 gene (chromosome 5q35.1–q35.3), 
which encodes the renal sodium phosphate cotransporter 
NaPi-IIa, causing complete loss of its function. The mutant 
cotransporter was absent from the plasma membrane, which 
seems to be the cause of a deleterious effect on the normal 
function of the PCT transporters [40].

FRST3 was first described in 1992 by Tolaymat et al. in 
four generations of a large African American family with the 
ordinary presentation of FRTS segregating as an autosomal 
dominant disorder [41]. In a follow-up study, the phenotype 
was linked to a heterozygous missense mutation in the gene 
EHHADH (chromosome 3q27), which encodes enoyl-CoA 
hydratase-L-3-hydroxyacyl-CoA dehydrogenase, a bifunc-
tional enzyme expressed in the proximal tubular (PT) that 
is involved in the oxidation of fatty acids on the peroxisome 
[42]. Curiously, the described heterozygous mutation in 
EHHADH did not impair beta-oxidation in peroxisomes of 

knockout mice but rather created a new targeting signal in 
the N-terminus of the enzyme, misdirecting it to mitochon-
dria [42]. Respirometric measurements showed that cells 
with the mutant EHHADH had reduced oxidative phospho-
rylation capacity due to disruption of the mitochondrial 
trifunctional protein (MTP). They also presented respira-
tory chain supercomplexes, products of the incorporation 
of mutated EHHADH, impairing mitochondrial respirasome 
assembly [43]. Renal tubular cells depend on fatty acid oxi-
dation in mitochondria as their predominant energy source 
[44], so this dominant-negative toxic effect of the mutant 
protein in energy metabolism seems to impair proximal sol-
ute resorption, resulting in FRTS.

FRTS4 is a unique manifestation of full FRTS associ-
ated with maturity-onset diabetes of the young (MODY), a 
monogenic type of diabetes characterized by neonatal hyper-
insulinemia and macrosomia [45–47]. This unique pheno-
type presents in an autosomal dominant form and is caused 
by one specific mutation (c.226C > T/R76W) in HNF4A, 
a gene where other mutations had been previously related 
to the pancreatic beta-cell-affecting phenotype but not to 
FRTS. This finding shows that it was not secondary to the 
other clinical features but rather a direct effect of the R76W 
variant. The HNF4A gene is a hepatic transcription factor. 
This specific mutation induces variations in the charge and 
hydrophobicity of the transcription factor’s DNA-binding 
domains, suggesting that the renal phenotype results from 
defective interaction of HNF4A with regulatory genes in the 
renal proximal tubule [46].

Finally, FRTS5 refers to a particular Acadian variant 
characterized by generalized proximal tubular dysfunction, 
subsequent chronic kidney disease and pulmonary intersti-
tial fibrosis [48]. The Acadians are a founder population in 
Nova Scotia, Canada, among which several families have 
been described with this phenotype combination segregating 
in an autosomal recessive manner [48–50]. Whole exome 
and genome sequencing studies found that this form of the 
disease was caused by a splice-affecting intronic variant on 
NDUFAF6 [50], which encodes NADH:ubiquinone oxidore-
ductase complex assembly factor 6 (C8ORF38), which is 
involved in the biogenesis of complex I (ubiquinone) of the 
respiratory chain. The above-mentioned variant was associ-
ated with complex I deficiency and structural mitochondrial 
defects affecting the proximal tubular epithelium and pulmo-
nary epithelial cells, tissues that are sensitive to ROS and are 
highly energy-requiring, which ultimately leads to FRTS5 
and pulmonary fibrosis [50].

Apart from the known Mendelian FRTS forms, another 
primary manifestation of the disease has been reported in 
association with a specific mitochondrial DNA variant. In 
a patient presenting with FRTS and retinitis pigmentosa, 
southern blot analysis revealed that the phenotypic traits 
resulted from a heteroplasmic mutation of mitochondrial 
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DNA with three different mtDNA types: some normal, some 
with a 6.7 kb deletion, and some with a deletion/duplication 
of 9.8 kb [51]. Furthermore, biochemical and morphological 
investigations of a patient with neonatal FRTS, a child of a 
consanguineous Turkish couple, showed severe deficiency of 
complex III of the respiratory chain but did not point toward 
a specific causative genetic variant [52].

Several other case reports of idiopathic FRTS presenting 
sporadically or in familial forms suggest that there might be 
more mutations and genes involved in the pathophysiology 
of this disease. There are earlier descriptions of transmission 
in autosomal dominant [36, 53], autosomal recessive [54], 
and X-linked manners [55], none of which included genetic 
testing, but they were able to rule out hereditary causes due 
to systemic inborn errors of metabolism and acquired ori-
gins of FRTS, accounting for primary forms of FRTS with 
unknown causes.

Fanconi syndrome secondary to systemic inherited 
diseases

Apart from the primary causes of FRTS, inherited systemic 
diseases, including cystinosis, hereditary fructose intoler-
ance, galactosemia, tyrosinemia, Lowe syndrome, Wilson 
disease, glycogen storage disease type 1, arthrogrypo-
sis–renal dysfunction–cholestasis (ARC) syndrome, and 
mitochondrial disorders, are secondary causes.

Cystinosis

The most common inherited cause of FRTS is cystinosis 
[56], an autosomal recessive lysosomal storage disorder 
characterized by a defect in cystinosin, the lysosomal cys-
tine transporter, which leads to a multi-organ accumulation 
of cystine. This metabolic disorder is caused by homozygous 
mutations or deletions in the gene CTNS, located on chro-
mosome 17p13.2 [57], and usually presents as the infan-
tile/nephropathic form, characterized by failure to thrive 
at approximately 6–9 months of age, kidney dysfunction 
between 6 and 18 months, and kidney failure by 10 years 
of age if left untreated. Extrarenal features are caused by 
cystine crystal deposition in other tissues, resulting in pho-
tophobia (from corneal deposition), hypothyroidism, diabe-
tes, myopathy, and central nervous system damage. Other 
forms, such as ocular cystinuria, present without renal 
impairment and tend to be milder in adults. The proximal 
tubular damage is mediated by cystine accumulation and 
crystallization in PCT, which causes its cells to lose their 
brush border, become flattened, and acquire thicker base-
ment membranes [58], leading to build-up of inflammatory 
infiltrate on the interstitium, apoptosis, and oxidative stress 
[59]. The result is a global loss of solute transporters (such 
as NaPi-IIa and SGLT-2) and endocytic receptors (such as 

megalin and cubilin, responsible for reuptake and lysosomal 
degradation of ultrafiltered plasma proteins). This process, 
known as apical dedifferentiation, explains the early solute 
loss and proteinuria before tubular characteristics of FRTS. 
The lesion extends longitudinally over time and results in 
PCT cell atrophy and interstitial fibrosis [60].

Hereditary fructose intolerance

Hereditary fructose intolerance is an autosomal reces-
sive disorder characterized by a deficiency of the enzyme 
aldolase B, encoded by the gene ALDOB (9q31.1) [61]. It 
becomes symptomatic in infancy when fructose or sucrose 
is added to the diet and is usually well managed by limiting 
fructose ingestion. However, in high fructose administration 
scenarios, a dose-dependent abnormality of proximal tubular 
function similar to FRTS was observed [62].

Tyrosinemia type I

Tyrosinemia type I is an autosomal recessive disorder caused 
by deficiencies of the last enzyme in the tyrosine degradation 
pathway, fumarylacetoacetase, due to mutations in the FAH 
gene. This type presents with liver disease and renal dysfunc-
tion leading to rickets, characteristic of FRTS, probably caused 
by a build-up of fumarylacetoacetate, which is not metabo-
lized in the absence of functional FAH. In animal models, this 
metabolite was thought to damage mitochondria and disrupt 
nuclear membranes, leading to apoptosis of PCT cells [63].

Lowe’s syndrome

Lowe oculocerebrorenal syndrome is an X-linked recessive 
disorder composed of a classic triad of congenital cataracts, 
impaired intellectual development, and renal tubular dys-
function consistent with FRTS but may also present with 
muscle damage with ragged red fibers, hypotonia, and 
hyporeflexia. It is caused by different mutations in the OCLR 
gene, which encodes a lipid phosphatase that processes the 
metabolite phosphatidylinositol 4,5-bisphosphate in the 
trans-Golgi network. Build-up of this substrate was shown 
to impair actin cytoskeletal polymerization, which is essen-
tial for the formation and maintenance of tight and adherens 
junctions, critical structures for renal tubule function and 
lens differentiation [64, 65]. OCLR has also been shown 
to interact with clathrin and regulate protein trafficking 
between endosomes and the Golgi apparatus in endocytosis, 
another imperative function for resorption in the PCT [66].

Dent’s disease

Dent’s disease is a phenotypically diverse renal tubular 
disorder characterized by hypercalciuric nephrolithiasis, 
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usually presenting with hypophosphatemic rickets and 
low-molecular-weight proteinuria, that may be divided 
into types I and II. The first type is caused by muta-
tions in the CLCN5 gene (Xp11.22), which encodes the 
voltage-gated chloride channel CLC-5, that acts on the 
acidification of endosomes stimulated by ATP [67]. This 
acidification is essential for proteolytic degradation of the 
low-molecular-weight proteins reabsorbed by the proximal 
tubule via megalin and cubilin-mediated endocytosis [68]. 
The second type of Dent’s disease is caused by a mutation 
in the OCLR (Xq 26.1) gene and presents as a milder form 
of Lowe’s syndrome, without its oculocerebral manifes-
tations and the proximal renal tubular acidosis typically 
associated with FRTS [69]. Therefore, Dent’s disease type 
2 and Lowe’s syndrome are only distinguishable via clini-
cal evaluation, as the genotypic–phenotypic association 
between the different OCLR mutations causing each dis-
order has not yet been clearly elucidated.

Lysinuric protein intolerance

Lysinuric protein intolerance (LPI) is an inborn error of 
metabolism due to defective cationic amino acid trans-
porters at the basolateral cell membranes, reducing renal 
reabsorption and intestinal absorption of positively charged 
amino acids such as lysine, arginine, and ornithine [70]. This 
autosomal recessive disease is caused by mutation in the 
SLC7A7 (14q11.2) gene, which encodes a catalytic subunit 
of the above-mentioned transporter. FRTS is one of its most 
serious renal manifestations and is related to severe abnor-
malities of apical membrane structure in PCT cells, probably 
due to the toxic effect of retained metabolites or energetic 
metabolism dysfunction [71].

Fanconi–Bickel syndrome

This systemic variation in FRTS described by Fanconi and 
Bickel in 1949 is caused by homozygous mutations in the 
SLC2A2 gene (3q26.2), which encodes the GLUT2 facilita-
tive glucose transporter, expressed in hepatocytes, pancreatic 
beta-cells, in the intestinal brush border, and in the baso-
lateral membrane of tubular epithelial cells [72]. GLUT2 
is necessary for monitoring glucose levels by beta-cells, 
monosaccharide intestinal absorption, hepatic metabolism 
of glucose, and glucose and galactose renal resorption. This 
results in a state of hypoinsulinemia, glucosuria, and con-
sequent imbalances in glucose homeostasis, as well as renal 
accumulation of glycogen, which may lead to other tubular 
defects associated with FRTS [73].

Other inherited diseases associated with Fanconi syndrome

Less often, FRTS may present secondarily to Alport syn-
drome [74], galactosemia [75], Wilson’s disease [76, 77], 
and mitochondrial myopathies such as Kearns–Sayre syn-
drome [78], but the specific pathophysiological basis for 
these associations has not yet been fully elucidated.

Acquired Fanconi syndrome

In adults, FRTS is most frequently caused by drug-
induced nephrotoxicity, as the proximal tubules are 
involved in the excretion of several drugs. It has been 
associated with antiretroviral medications such as tenofo-
vir, didanosine, lamivudine, and stavudine, especially in 
HIV + patients undergoing multidrug therapy [79]. Other 
causes of FRTS are anticancer agents that impair normal 
metabolism and induce cell death, such as ifosfamide, 
which indirectly inhibits complex I of the respiratory 
chain, impairing cellular respiration in PCT cells [80], 
immune checkpoint inhibitors nivolumab/ipilimumab 
[81], and tyrosine kinase inhibitors [82]. Anticonvulsant 
drugs such as topiramate and valproic acid may precipi-
tate FRTS due to inhibition of carbonic anhydrase II [83]. 
Other drug classes associated with FRTS include antibi-
otics such as aminoglycosides and tetracyclines [82, 84], 
iron-chelating agent defarosirox [85], salicylates such as 
aspirin [86], antiprotozoal suramin [87] and dicarbox-
ylic acids such as fumarate and malate [88, 89]. Most 
of these drugs are associated with mitochondrial dam-
age or extensive nephrotoxicity, which may manifest as 
FRTS. Furthermore, chronic heavy metal exposure has 
been associated with FRTS, especially cadmium, which 
is endocytosed and accumulates in PCT cells, generating 
ROS that lead to cellular damage and proximal tubular 
dysfunction [90].

FRTS may also occur secondarily to plasma cell dys-
crasias such as myeloma [91, 92], leukemia [93], lym-
phoma [94], and other monoclonal gammopathies. Renal 
damage usually occurs due to urinary excretion of immu-
noglobulin (Ig) light chains that form crystals and deposit 
in proximal tubular cells [95]. It was demonstrated in 
mouse models that Ig light-chain deposits accumulated 
in lysosomes and impaired their acidification and func-
tion, resulting in defective endocytosis and proteolysis 
and, ultimately, in decreased resorptive capacity of PCT 
cells [96]. Furthermore, autoimmune causes of FRTS are 
rare but have also been described, mostly in association 
with tubulointerstitial nephritis, due to antimitochondrial 
antibodies [97].
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Clinical findings

The clinical findings of FRTS vary according to its etiology 
and the degree of involvement of the proximal renal tubule. 
These include aminoaciduria, glycosuria, increased renal 
clearance of inorganic phosphates, and bicarbonaturia. In 
pediatric patients, the syndrome is often characterized by 
growth retardation and rickets [98]. The occurrence of fever 
and dehydration can be caused by frequent polyuria. The 
literature descriptions and the current clinical experience 
converge to the conclusion that FRTS is not a uniform entity. 
FRTS can manifest as isolated proximal tubular dysfunc-
tion or multiple organ disorders, according to the under-
lying etiology [4]. The main findings of FRTS are hyper-
aminoaciduria, LMW proteinuria, hyperphosphaturia, and 
bicarbonaturia [98]. When all known etiologies of FRTS are 
ruled out, the diagnosis is given as idiopathic FRTS. During 
childhood, the glomerular filtration rate is usually within the 
normal range, but between the first and third decades of life, 
chronic kidney disease may occur [98].

Inherited causes of Fanconi syndrome

The presence of specific heterozygous mutation R76W in 
transcription factor HNF4A in some patients with MODY1 
showed the development of the renal phenotype by affecting 
the transcription of renal genes still unknown [4]. In a study 
with six heterozygous patients for this mutation, the pheno-
type of proximal tubulopathy was observed, characterized 
by generalized aminoaciduria, LMW proteinuria, glycosuria, 
hyperphosphaturia, and hypouricemia, in addition to addi-
tional features not observed in FRTS, including neonatal 
hyperinsulinism, diabetes mellitus, nephrocalcinosis, renal 
impairment, hypercalciuria with relative hypocalcemia, and 
hypermagnesemia [46, 98]. When the etiology of FRTS is 
autosomal dominant or autosomal recessive, especially 
affecting the SLC9A3 gene, ocular involvement is observed 
with the presence of keratopathy, cataracts, glaucoma, and 
blindness [4].

Isolated genetic Fanconi renal tubular syndrome 
(FRTS) findings

Of the three isolated FRTS genetic causes, FRTS1 is closely 
associated with progressive chronic kidney disease [4]. On 
the other hand, FRTS2 presents phosphaturia and rickets. 
However, not all transport routes of the proximal tubule 
are impaired. Moreover, mutations in the SLC34A3 gene, 
which encodes the renal phosphate transporter NAPi-IIc, 
lead to the development of hereditary hypophosphatemic 
rickets with hypercalciuria. In clinical practice, glycosuria is 

commonly found in patients with hypophosphatemic rickets 
[4].

FRTS3 is characterized by the loss of water, solutes, and 
1 g/day of filtered proteins throughout life. However, the 
glomerular filtration rate did not change. This form does not 
normally result in chronic kidney disease [4, 41, 42]. The 
affected patients manifest rickets, impaired growth, glyco-
suria, generalized aminoaciduria, phosphaturia, metabolic 
acidosis, and proteinuria of LMW due to the mutation affect-
ing mitochondrial metabolism [98].

Mutations in the CTNS gene give rise to nephropathic 
cystinosis, which is the most common cause of FRTS in 
children from Western countries. Cystinosis arises from 6 to 
12 months of age, presenting with growth deficit, polyuria, 
polydipsia, dehydration, hypophosphatemic rickets, hypoka-
lemia, electrolyte abnormalities, aminoaciduria, glycosuria, 
phosphaturia, and renal tubular acidosis. At an older age, 
the affected individuals can acquire photophobia through 
corneal precipitation of cystine crystals, as well as hypothy-
roidism due to hypotrophy of the thyroid gland. Although 
renal function is commonly normal, at about 10 years of age, 
most patients develop renal failure if left untreated [6, 98].

Clinical findings of GLUT2 and FTH gene mutation

The mutation in the GLUT2 gene causes an autosomal reces-
sive disorder of glucose metabolism that affects tubular cells. 
The disease characteristics are rickets, hepatomegaly, growth 
deficit, fasting hypoglycemia, hyperglycemia, hypergalac-
tosemia in the post-absorptive state and hyperlipidemia [7]. 
On the other hand, patients with mutations in the FTH gene 
develop progressive renal damage beginning in early child-
hood. During the development of FRTS, hypophosphatemia 
and rickets are characteristic, in the same way as generalized 
aminoaciduria, renal tubular acidosis, and mild proteinuria. 
However, glycosuria is less common since plasma glucose 
levels are low. In addition, the syndrome may be responsible 
for worsening carnitine deficiency [98, 99].

Mitochondrial disorders

Mitochondrial disorders are multisystemic diseases that can 
affect individuals at any age. As a cause of FRTS, mito-
chondrial disorders are often observed in age groups ranging 
from newborns to young children. Patients may present with 
partial forms of the syndrome, manifesting renal tubular aci-
dosis with hypercalciuria [43, 98].

Galactosemia (GALT deficiency)

Milk contains an important amount of galactose, and this 
is the main carbon source for neonates because it is incor-
porated more efficiently into glycogen than into glucose. 
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However, when there is a deficiency in the activity of galac-
tose-1-phosphate uridyl transferase (GALT), milk ingestion 
promotes the emergence of classical galactosemia. Thus, 
affected infants manifest episodes of vomiting, diarrhea, 
growth deficit, developmental delay in renal liver and tubular 
dysfunctions, cerebral edema, vitreous hemorrhage, sepsis, 
especially by Escherichia coli, and, frequently, jaundice and 
indirect hyperbilirubinemia [98, 100].

Acquired causes of Fanconi syndrome

Among the acquired causes of FRTS, focal and segmental 
glomerulosclerosis can be a cause, but with an unidenti-
fied defect in most cases. Immunological and hematological 
disorders can also result in FRTS. For instance, Sjögren's 
syndrome, in which 4% of patients have FRTS, is associ-
ated with the development of osteomalacia, thoracic bone 
deformities, fractures of the humerus diaphysis bilaterally, 
and intense thinning of the cortical bone [97]. Rarely, post-
transplanted renal patients develop the syndrome as a conse-
quence of the procedure. Patients with acute tubulointersti-
tial nephritis, and uveitis, in addition to manifesting asthenia, 
general malaise, nocturia, weight loss, and polydipsia, can 
present incomplete or complete symptoms of FRTS, includ-
ing LMW proteinuria, glycosuria, aminoaciduria, bicarbo-
naturia, phosphaturia, and uricosuria [98].

Heavy metals are nephrotoxic and can produce FRTS, 
especially in children. Lead is a long half-life non-biode-
gradable metal that causes aminoaciduria and glycosuria up 
to 13 years after contact during childhood. Another example 
is cadmium. Prolonged exposure to cadmium may result in 
FRTS, as observed in the Jinzu River basin in Japan, where 
patients developed severe osteomalacia with intense bone 
pain secondary to multiple spontaneous bone fractures 
[101].

Diagnosis

General diagnostic approach to FRTS

The diagnosis of FRTS is based on the clinical manifesta-
tions associated with laboratory analyses of routine tests of 
blood, urine, and kidney function [102, 103]. By means of 
the blood test, it is possible to identify altered concentra-
tions of metabolites and electrolytes due to the generalized 
defect in the proximal tubular reabsorption of solutes. There-
fore, the serum levels of urea, creatinine, uric acid, sodium, 
potassium, chloride, calcium, phosphate, and magnesium 
were measured. Likewise, blood gas analysis is useful for 
the evaluation of acid–base homeostasis. Additionally, urine 
evaluation includes an acidification test and urinary concen-
tration analysis. The 24-h urine collection is the preferable 

method used to measure creatinine and other electrolytes due 
to its application in the determination of kidney function. To 
that end, the creatinine clearance and the fractional excretion 
rate of electrolytes are calculated and used to estimate the 
glomerular filtration rate and urinary loss of electrolytes. 
Another parameter obtained by the complementary exams 
is the urinary anion gap (AG) [103].

Considering the laboratory tests, the diagnosis is con-
firmed when the results indicate urinary hyperexcretion of 
generalized amino acids, phosphate, glucose, bicarbonate, 
potassium, and urate; hypophosphatemia and normocal-
cemia; and elevated urinary pH in the context of mild to 
moderate metabolic acidosis [104]. The urinary AG remains 
negative and within the reference range due to the normal 
distal secretion of hydrogen [103].

In some cases, the etiological diagnosis is useful for the 
treatment of the underlying condition, and a detailed inves-
tigation should be performed, including molecular genetic 
testing and specific substance concentration measurements. 
This issue is supported by the following analysis of the diag-
nostic methods of three main inherited disorders associated 
with FRTS.

Dent–Wrong disease diagnosis

There are three diagnostic criteria for Dent–Wrong dis-
ease. First, urinary excretion of LMW proteins, such as 
β2-microglobulin, Clara cell protein and/or retinol-binding 
protein, was elevated by at least fivefold above the upper 
limit of normal. Second, hypercalciuria was identified in a 
24-h urine collection. Third, the presence of nephrocalcino-
sis, calcium nephrolithiasis, hematuria, hypophosphatemia, 
or chronic kidney disease. The diagnosis is also confirmed 
by the identification of a mutation in either the CLCN5 or 
OCRL1 gene. However, in a few patients, these mutations 
are not identified, and the diagnosis is not excluded if the 
clinical findings suggest Dent–Wrong disease [105].

Cystinosis diagnosis

The presence of intracellular levels of cystine higher than 
2 nmol half-cystine/mg protein in peripheral leukocytes 
confirms the diagnosis of cystinosis. This finding is usu-
ally associated with demonstration of corneal crystals by 
slit lamp exam and consecutive genetic analysis of the CTNS 
gene [5]. During the prenatal period, the diagnosis is pos-
sible by means of amniocytes or chorionic villi [32].

Hereditary tyrosinemia type I diagnosis

Concerning hereditary tyrosinemia type I diagnosis, elevated 
levels of succinylacetone in plasma and urine have been used 
as the primary marker of this disease [5, 102]. This finding 
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establishes the diagnosis along with the increased plasma 
concentration of tyrosine, methionine, phenylalanine, ele-
vated urinary concentration of tyrosine metabolites, and the 
compound 5-aminolevulinic acid (δ-ALA). Additionally, it 
may be confirmed by the identification of pathogenic vari-
ants in the FAH gene in molecular genetic testing [106].

Due to its many etiologies, it is challenging to establish 
a protocol for diagnostic screening for FRTS. This disorder 
can be frequently misdiagnosed, and therefore, new studies 
may be useful to guide the early diagnosis of FRTS.

Treatment

Tubulopathies are rare, which explains the low clinical level 
of evidence in regard to treatment. The way to treat may 
vary among physicians since it is primarily based on the 
understanding of renal physiology, clinical observations, and 
individual experiences [107]. Regarding the treatment of FS, 
the correction of hydroelectrolytic and metabolic disorders 
stands out. Alkali replacement, which is important for the 
correction of acidosis [103], can be performed by replacing 
sodium bicarbonate or potassium citrate, usually at 10 mEq/
kg/day (2–15 mEq/kg/day), divided every 6–8 h [108].

In addition, potassium citrate or potassium chloride 
can be used to replace the cation, usually at a dose of 5 
to 10 mEq/kg/day, divided every 6–8 h. Sodium replace-
ment, in turn, can be performed with sodium bicarbonate 
[108]. The replacement of these ions is a significant meas-
ure; however, these measures do not significantly improve 
the condition on a long-term basis [98]. It is important to 
note that potassium citrate, bicarbonate or acetate can be 
used to correct acidosis and hypokalemia at the same time. 
Sodium wasting and dehydration are treated with a combina-
tion of sodium bicarbonate, citrate, and chloride, depending 
on the degree of acidosis. Regarding phosphorus replace-
ment, phosphate solution at a concentration of 15 mg/mL or 
sodium and potassium phosphate tablets containing 250 mg 
of phosphate can be used, with an initial dosage of about 
2 to 3 mmol/kg/day in divided doses. Concerning magne-
sium replacement, it is common to use magnesium sulfate at 
variable doses according to the serum level [108]. Usually, 
the initial magnesium sulfate dose is 2.5 to 5 mg/kg (0.1 to 
0.2 mmol/kg) three times daily orally, adjusted to serum lev-
els. If the plasma levels of vitamin D, calcitriol, and L-car-
nitine are low, these components must be replaced [108]. In 
patients with rickets, treatment with calcitriol can be effec-
tive, although it is more appropriate to correct hypophos-
phatemia by replacing phosphate with neutral phosphate 
solution [103]. Regarding calcium replacement, calcium 
carbonate can be used, starting with 400 mg of elemen-
tal calcium per day [108]. It should also be noted that the 
administration of phosphate, 1,25-dihydroxycholecalciferol, 

and bicarbonate must be well monitored since, if there is 
an excess dose, the patient may develop nephrocalcinosis 
or present renal calculi formation [109]. To prevent further 
reduction of phosphorus, care should be taken not to admin-
ister calcium with food or with the phosphate formulation to 
prevent calcium from reducing the absorption of the orally 
ingested phosphate.

In the case of nephropathic cystinosis, the treatment 
includes the oral administration of N-acetyl-cysteine 
[110] and the use of cysteamine. This approach can reduce 
intralysosomal cystine stores and improve the prognosis of 
patients, delaying the progression to end-stage renal disease 
and decreasing extrarenal impairment [108]. Oral therapy 
with cysteamine is performed at doses of 60 to 90 mg/kg/
day every 6 h and generally achieves 90% cellular cystine 
depletion, as evidenced by the evaluation of circulating lym-
phocytes [111]. Furthermore, it is noteworthy that successful 
renal transplantation, despite reversing renal failure, does not 
significantly improve the extrarenal manifestations of cys-
tinosis; therefore, cysteamine therapy should continue after 
transplantation [32]. Cysteamine should be administered as 
soon as the diagnosis of cystinosis is made and continued 
for life, even after kidney transplantation to protect extrare-
nal organs [109]. The drug ELX-02, a selective eukaryotic 
ribosomal glycoside (ERSG), was tested for cystinosis in 
a clinical trial aiming to verify its efficacy in reducing the 
baseline cystine levels in leukocytes. However, this study 
was discontinued during the second phase due to limitations 
of its design [112].

Patients with cystinosis may also manifest gastrointestinal 
symptoms such as choking, vomiting, nausea, lack of appe-
tite, diarrhea, constipation, and difficulty swallowing [113]. 
Recombinant human growth hormone was used in 20% 
of children to improve growth and weight gain. Families 
reported that growth hormone improved both appetite and 
gastrointestinal problems [113]. Furthermore, some patients 
who had difficulty swallowing required feeding via a gastric 
and/or jejunal tube or even total parenteral nutrition in very 
severe cases [113].

In addition, individuals with FRST may present ophthal-
mological alterations, starting with photophobia, and may 
progress to amaurosis [108]. This is because cystine crys-
tals cause light reflections and result in photophobia, with 
substantial discomfort. Untreated adolescents may develop 
painful corneal erosions, punctate, filamentous, or banded 
keratopathy, iris crystals, and peripheral corneal neovas-
cularization [109]. The treatment is carried out using a 
cysteamine ophthalmic solution: one drop in each eye every 
hour while the patient is awake [108]. Administration of this 
solution is capable of completely dissolving corneal cystine 
crystals within 8 to 41 months, even at an older age [109].

Another relevant symptom of FRTS is hypothyroidism 
[108]. There is evidence to indicate that progressive thyroid 
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atrophy, with gradual loss of thyroid function, is considered 
part of the normal course of the infantile form of cystinosis. 
Therefore, thyroid-stimulating hormone (TSH) and thyrox-
ine hormone (free T4) should be monitored every 6 months 
from 2 years of age. In the presence of hypothyroidism, 
it is recommended to start thyroid hormone replacement 
[108]. For glucose monitoring, fasting glucose and glycated 
hemoglobin should be monitored annually from 5 years of 
age, as patients with FRTS tend to present glucose intoler-
ance [108]. Furthermore, there is a need to standardize the 
treatment of hyperglycemia and diabetes, as there is still no 
consensus on the management of these alterations [114]. 
An overview of the treatment scheme of FRTS can be seen 
in Table 2.

Conclusions

FRTS is a global dysfunction of PCT, which is mainly char-
acterized by glycosuria, phosphaturia, generalized aminoaci-
duria, and type II renal tubular acidosis. Although uncom-
mon, this condition presents high morbidity and mortality, 
especially when diagnosed late. Several advances have been 
made recently toward the discovery of new forms of this syn-
drome, which has contributed immensely to the knowledge 
of the physiological functions of PCT. Nevertheless, the 
treatment is still poorly studied, and many of its underlying 
causes are considered irreversible.
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