
ORIGINAL PAPER

Applied Geomatics (2024) 16:429–440
https://doi.org/10.1007/s12518-024-00560-z

Introduction

Wetland ecosystems are among the most productive sys-
tems in the world. They offer huge ecological, social, and 
economic benefits. It has been shown that they support over 
one billion people globally through the provision of various 
ecosystem goods and services (Amler et al. 2015). The esti-
mated financial value of the ecosystem goods and services 
provided by wetlands such as recreation, education, scien-
tific research, photography, fishing, hunting, and bird-view-
ing (Ola and Benjamin 2019), is US$4.9 trillion annually 
across the globe (Walter and Mondall, 2019). Monitoring, 
conservation, and management of wetland ecosystems at 
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Abstract
Mapping wetland ecosystems at the species level provides critical information for understanding the nutrient cycle, carbon 
sequestration, retention and purification of water, waste treatment and pollution control. However, wetland ecosystems 
are threatened by climate variability and change and anthropogenic activities; thus, their assessment and monitoring 
have become critical to inform proper management interventions. Contemporary studies show that satellite-based Earth 
observation (EO) has significant potential for achieving this task. While many multispectral EO data are freely and read-
ily available, its broad spectral bands limit its utility in differentiating subtle differences among similar plant species. In 
contrast, hyperspectral data has a high spectral resolution, which is superior in discerning minute differences in similar 
plant species. However, this data is associated with high dimensionality and multicollinearity, which negatively affect the 
performance of traditional, parametric classification algorithms. To this end, machine algorithms are often preferred to 
classify hyperspectral data due to their robustness to various data distributions and noise. The current study compared the 
performance of three advanced machine learning classifiers, i.e., Support Vector Machine (SVM), Random Forest (RF), 
and Partial Least Squares Discriminant Analysis (PLS-DA), in discriminating four dominant wetland plant species, i.e., 
Crocosmia sp., Grasses, Agapanthus sp. and Cyperus sp. using simulated hyperspectral data from an upcoming sensor, 
i.e., nSight-2. The results revealed that SVM is superior, with an overall accuracy of 93.18% (and class-wise accura-
cies > 85%). In comparison, there were minor differences in the performances of RF and PLS-DA, i.e., 84.09% and 
83.63%, respectively. Overall, the results demonstrated that all the evaluated classifiers could achieve acceptable mapping 
accuracies. However, SVM is more robust, providing exceptional accuracies, and should be considered for operational 
mapping once the sensor is in space.
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varying scales are planned and executed. However, these 
efforts are hampered by the scarcity of accurate, reliable, 
and up-to-date spatial information about wetland eco-
systems in some parts of the world, particularly in Africa 
(Adam et al. 2010). For example, at the international level, 
wetland ecosystem conservation measures have culminated 
in the demand for large integrated monitoring and reporting 
frameworks such as the Ramsar Convention of 1971. This 
Convention aims at the wise use of wetlands with emphasis 
on the wetland ecosystems and protection of Red Data spe-
cies within this ecosystem (Dixon et al. 2016). Moreover, it 
provides for cooperation regarding the conservation, preser-
vation, and management of wetlands and their sustainable 
use at national and international scales. Wetland ecosystem 
functions are critical in supporting eleven of the seventeen 
United Nations Sustainable Development Goals (UN-SDG), 
also known as Agenda 2030. Other efforts include the Stra-
tegic Plan for Biodiversity 2011–2020 and the Post-2020 
Global Biodiversity Framework of the Convention on Bio-
logical Diversity (Rebelo et al. 2018). All these initiatives 
aim at achieving environmental sustainability and the health 
of humanity while eradicating poverty. The success in meet-
ing these targets hinges on a thorough understanding of the 
current and emerging pressures on wetland ecosystems and 
their various components, like the wetland plants, through 
a robust suite of monitoring strategies. Wetland plants play 
an important role in the provision of food, habitat, and sanc-
tuaries of endemic and endangered animals. They improve 
water quality and abate floods. As such, the quest for accu-
rate and reliable wetland plant species mapping is increas-
ingly needed for understanding terrestrial processes such 
as surface energy balance, biogeochemical cycles, biomass 
distributions, carbon budgets, and climate change modelling 
(Mahdavi et al. 2018).

While the potential of remote sensing has been widely 
demonstrated, discriminating wetland plant species using 
this technique is not without challenges. Spectral analysis 
of wetland plant species is affected by high intra-class and 
low inter-class variability (Adam et al. 2010). High spatial 
heterogeneity and temporal dynamics, resulting from sea-
sonal and daily changes in water levels make the extent and 
spectral separability of wetland plant species difficult (Lud-
wig et al. 2019; Adam et al. 2010). For example, the one 
plant species can give different spectral signatures owing 
to the seasonal and daily changes in water levels, while on 
the other hand, varying species may portray similar reflec-
tance (Adam and Mutanga 2009). According to Dronova 
and Tadeo (2016) dead plant matter attenuates the spectral 
signal of vegetation, while inundation affects plant signal 
in the red and near-infrared regions of the electromagnetic 
spectrum.

The debut of space-borne hyperspectral sensors provides 
new prospects for plant species discrimination in complex 
environments such as wetlands. Spectroscopic data from 
these sensors offer detailed spectral information, increas-
ing many opportunities to detect relevant spectral absorp-
tion regions that enable differentiation of subtle differences 
among related Earth surface targets. However, only a few 
hyperspectral sensors exist as pre-operational and technol-
ogy demonstrator missions and thus have limited scope, e.g., 
Hyperion, Compact High-Resolution Imaging Spectrometry 
(CHRIS), Environmental Mapping and Analysis Program 
(EnMap), and Hyperspectral Precursor of the Application 
Mission (PRISMA). Therefore, home-grown sensors such 
as the forthcoming nSight-2 by the Space Advisory Com-
pany in South Africa have the potential to meet the data 
requirements for priority research areas. The sensor offers 
160 linear filtered and pre-selected spectral bands in the 
VNIR spectral range (i.e., 400 – 900 nm). However, prior 
to its launch, it is imperative to evaluate the relevance of 
its spectral settings for many applications including wet-
lands species discrimination. Gasela et al. (2022) assessed 
the usefulness of nSight-2’s spectral settings for classifying 
various wetland plant species and found that it performed 
superior to EnMap and WorldView-2.

Despite promising results with hyperspectral data, its 
properties, such as many (thousands) contiguous and cor-
related bands, may lead to poor classification accuracy 
(Raczko and Zagajewski 2017). Most of these spectral 
bands do not add new information; instead, they burden 
the classifiers (Dabija et al. 2021; Elgeldawi et al. 2021). 
Furthermore, high dimensionality creates an imbalance 
between input bands and training samples, resulting in 
overfitting since collecting many training samples that 
balance with input bands is expensive. Additionally, mul-
ticollinearity and nonlinearity in hyperspectral data create 
challenges for many classifiers leading to poor classifica-
tion accuracy. Several machine learning classifiers exist 
and have been tested for many applications in remote sens-
ing. However, their performance varies according to their 
robustness to noisy and highly dimensional datasets as well 
as land cover types, among others. Some of the commonly 
used machine learning classifiers include Support Vector 
Machines (SVM), Random Forest (RF), Neural Networks 
(NN), Decision Trees (DT), and Partial Least Squares Dis-
criminant Analysis (PLS-DA). For example, Stratoulias et 
al. (2018) used SVM and Maximum Likelihood to classify 
emergent wetland vegetation in Lake Balaton, Hungary. 
Gosh et al. (2014) used Hyperion and HyMap data in a for-
est in Germany to compare the performances of SVM and 
RF and found that their performance was similar at 71% 
and 72%, respectively. In another study, Raczko and Zaga-
jewski (2017) compared SVM, RF, and NN for tree species 
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classification using airborne hyperspectral APEX images in 
Karkonosze National Park in Poland, the ANN achieved the 
highest overall classification accuracy with 77%, compared 
with 68% of SVM, and 62% of RF. Elsewhere in a dense 
species Central European forest area, Richter et al. (2016) 
compared RF, SVM, and PLS-DA in tree species classifica-
tion using an airborne AISA Dual imaging system, and their 
results showed that the PLS-DA consistently outperformed 
SVM and RF with an overall accuracy of 78%, followed by 
73% for SVM, and 65% for RF.

In other studies, these machine learning algorithms 
achieved considerably high accuracies. For example, Yang 
et al. (2019) compared the performances of RF and Gradient 
Boosting Decision Trees (GBDT) and SVM in a cropland 
ecosystem in Jiangsu Province of East China and found that 
GBDT had a higher overall accuracy of 92.4% compared 
with RF and SVM accuracies of 91.8% and 90.5%, respec-
tively. In another study, Britz et al. (2022) worked on the 
spectral-based classification of plant species groups and 
functional plant traits in three grassland ecosystems in Aus-
tria to compare the performances of Multi-Layer Perceptron 
(MLP), PLS-DA, and RF. They concluded that MLP outper-
formed both PLS-DA and RF, achieving an overall accuracy 
of 95.7%.

As shown in the studies above, there are inconsistencies 
in the performance of these machine learning algorithms 
when used with varying datasets and vegetation types, thus 
making it difficult to conclude the superiority of a single 
classifier. To ascertain the full potential of the nSight-2 sen-
sor in the classification of wetland plant species, there is a 
need to explore the performances of various machine learn-
ing classifiers. The comparison of various machine learning 
classifiers will facilitate the choice of the optimal algorithm 
for future mapping of the distributions of wetland plant spe-
cies using nSight-2 once it is operational. Such distribution 
maps are essential for optimizing management approaches 
and strategies to ensure sustainable wetland ecosystems. 
Therefore, this study compared the performances (measured 
by overall agreement, quantity, and allocation differences) 
of SVM, RF, and PLS-DA in discriminating wetland species 
in a Ramsar Wetland Site, located in Mpumalanga province, 
South Africa. In hindsight, the performances of these algo-
rithms also illustrate their sensitivity to high dimensionality 
and multicollinearity because they were tested with hyper-
spectral data.

Study area

The study was conducted in Verloren Vallei Nature Reserve 
(VVNR, Fig. 1), which is a Ramsar site and managed by 
the Mpumalanga Tourism and Parks Agency (MTPA). It is 

located in Emakhazeni Local municipality, approximately 
15 km north of Dullstroom town in the Mpumalanga Prov-
ince of South Africa. The climate in the area is character-
ised by cold winters with the lowest temperatures of about 
− 13 °C between May and August, and hot and wet summers 
with the highest temperatures of about 29 °C and an average 
annual rainfall of more than 800 mm. The relief is under-
lain by rock outcrops and hills at an altitude of 2000  m. 
The VVNR is home to several red data species and birds 
of significance hence was declared by the Ramsar Conven-
tion as a site of international importance in 2011. Verloren 
Vallei Nature Reserve wetlands are significant for reduc-
ing flooding in the Lowveld of South Africa and improv-
ing water quality, by allowing a steady flow of water during 
the dry season. It is also a habitat for the endangered flora 
and fauna. It is home to the blue crane birds that have been 
declared endangered. Several other Red Data Species mam-
malian species like the striped weasel, grey rhebok, and 
blesbokcan also be found at VVNR. Interested readers may 
visit https://verlorenvalei.org.za/ for additional information 
and pictures.

Materials and methods

An overview of the methodology is provided in Fig. 2.

Sampling strategy and spectral measurements

Spectral measurements were recorded in the lab following 
a field survey conducted from the 14th to 18th of December 
2020 since in-situ spectral measurements were not possible 
due to overcast weather conditions. We selected thirty 40 m 
x 40 m plots within a 100 m buffer of the wetlands across 
the study area using a random sampling strategy. Each plot 
was tagged with a GPS coordinate, using Garmin eTrex® 
20 with ± 3 m GNSS accuracy. The choice of the plot dis-
tribution was based on the spatial dominance of plant spe-
cies of interest, i.e., Crocosmia paniculata, Agapanthaceae, 
Themeda triandra, and Cyperus sp. (Fig. 3), while the plot 
size was selected considering the spatial resolution of the 
forthcoming sensor, i.e., nSight-2 (~ 20 m). Moreover, we 
considered the potential of applying the models to satel-
lite images to map spatial distributions of these species 
in the future. Various leaves of the four dominant species 
in the study area, i.e., Crocosmia paniculata, Agapantha-
ceae, Themeda triandra, and Cyperus sp. were harvested 
from five randomly selected sub-plots of 1 m x 1 m within 
each plot. The choice of these plant species was based on 
their endemic feature as the cornerstone of the Verloren 
Vallei Nature Reserve and their wide occurrence within the 
wetland areas. These sub-plots represented homogeneous 
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Data processing

It is critical to assess the capability of forth-coming sensors 
for various applications to ascertain their utility and robust-
ness to support such applications. Therefore, in the current 
study, the spectral configuration for the nSight-2 sensor, a 
planned hyperspectral Earth observation satellite, was simu-
lated and tested with various classifiers to determine their 
prospects in the context of plant species mapping. This sen-
sor will have a spectral range from 400 to 900 nm with 160 
linear filtered and pre-selected spectral bands. To simulate 
the spectral resolution of the nSight-2 sensor, we measured 
full-range spectral reflectance in 30 plots, which resulted in 
2151 spectral bands sampled at an interval of 1 nm. These 
2151 spectral bands were then resampled based on the 
spectral settings (i.e., full width at half maximum and band 
centers) of the nSight-2 sensor using the Hsdar R pack-
age (Lehnert et al. 2018). Using Gaussian distribution, the 
spectral response of each band was estimated. The pre-pro-
cessed (resampled) spectral data had a spectral range of 467 

species per plot. The leaves were preserved for quality in 
plastic bags and stored in a cooler box. To capture variabil-
ity per plot, several spectral measurements were captured 
on various parts of the leaves. The Spectral Evolution PSR-
3500 spectrometer (Spectral Evolution, Inc. © 2014), used 
here, had a spectral range of 350 – 2500 nm, spectral reso-
lutions of 3.5 nm, 10 nm, and 7 nm at 350 nm – 1000 nm, 
1500 nm, and 2100 nm, respectively. The spectral bands in 
the regions: 350 – 1000 nm, at 1500 nm, and at 2100 nm 
have nominal spectral sampling intervals of 1.5 nm, 3.8 nm, 
and 2.5 nm, respectively, and were interpolated to 1 nm fol-
lowing Kganyago et al. (2017). A 5-watt Tungsten halogen 
light on the Fiber Optic Illumination Module provided an 
artificial light source similar to the natural light and a bifur-
cated cable attached to the leaf clip was used to take spectral 
measurements, thus masking background effects. Calibra-
tion using a white reflectance panel was performed after 
every five spectral measurements.

Fig. 1  Verloren Vallei Nature Reserve in Mpumalanga province, 
South Africa. Wetlands are delineated in navy blue (obtained from the 
Biodiversity GIS website, https://bgis.sanbi.org/). The outer shaded 

boundary in blue represents a sampling area (100  m buffer) for the 
current study. The band combination of the Sentinel-2 image in the 
background is B12, B8A, B4
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resampling strategy. The in-bag samples consist of about 
two-thirds (i.e., 63.2%) of the total training data, and the 
remaining one-third of the samples (i.e., out-of-the-bag 
[OOB] samples, [32.8%]) is used for cross-validation (Lim 
et al. 2019; Zafari et al. 2019). RF requires tuning of two 
parameters, i.e., the number of trees (n-tree) and the num-
ber of variables randomly selected at each split (mtry). 
The accuracy tends to increase with the increasing n-tree 
(Breinman, 2001), but stabilises with no further improve-
ments in accuracy at around 500 trees. On the other hand, 
the default mtry is the square root of the total number of 
variables in the dataset (i.e.,default is 

√
m ), and the lower 

the mtry result in diverse and less correlated trees (Probst 
et al. 2019). The two parameters assist in avoiding overfit-
ting in the RF classification model. An overfit model is one 
that performs optimally with the training data but poorly 
generalises the independent test data. In the current study, a 
grid-search strategy – an approach for exhaustively select-
ing tuning parameters from all possible combinations – was 
used to search for optimal n-tree and mtry. The n-tree val-
ues from 100 to 1000 were tested. A pair of n-tree and mtry 
parameters that result in minimum OOB error is considered 
optimal. After testing the n-tree values from 100 to 1000 
with an interval of 100, and mtry values from 1 to 

√
m , 

the optimal parameters were 500 and 2 for n-tree and mtry, 

– 901 nm with a mean bandwidth of 6.08 nm. The samples 
were split into 70% training and 30% validation datasets for 
classifying wetland species using various machine learning 
classifiers described in the next section.

Machine learning classifiers

Three machine learning classifiers were used in the current 
study, i.e., Random Forest (RF), Support Vector Machine 
(SVM) and Partial Least Squares-Discriminant Analysis 
(PLS-DA). The three classifiers differ in terms of their fea-
tures and have strengths and weaknesses reported in the 
literature. Below, we describe each classifier, the required 
tuning parameters and their respective strengths and weak-
nesses as reported in the literature.

Random forest classifier

Random Forest (RF) is a tree-based classifier based on the 
Classification and Regression of Trees (CART) (Breiman et 
al., 1984). It classifies the different classes by combining 
results from many (i.e., hundreds of) decision trees using 
a voting strategy (Breinman, 2001). Each tree is trained 
with a random subset of variables and training samples (i.e., 
in-bag samples) selected using a bagging or bootstrapping 

Fig. 2  Summary of the methodological flow.
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estimation and uses a smaller number of training samples 
without overfitting (Melgani and Bruzzone 2004). SVM is 
highly sensitive to the type of the kernel, the size of the ker-
nel, and parameter C (Hsu et al. 2010). We used the com-
monly used Radial Basis Function (RBF) kernel, which 
requires two tuning parameters, i.e., sigma (γ) and regulari-
sation parameters (C). The γ parameter controls the width of 
the kernel facilitating the SVM to distinguish multi-modal 
classes in a high dimensional space, while the C parameter 
controls the trade-off between the maximisation of the mar-
gin between the training data vectors and decision bound-
aries and margin errors of the training data. Its purpose is 
to handle potential noise in the data, class confusion and 
prevent overfitting (Mountrakis et al. 2011). The smaller the 
value of C, the more accurate the classification (Kganyago et 
al. 2018). Similar to RF, the optimal tuning parameters were 
determined using a grid-search strategy and 5-fold cross-
validation (cv). The optimal tuning parameters were 32 and 
0.01136596, for γ and C, respectively, which achieved a cv 
accuracy of 90.54% (Kappacv of 0.87). These were deter-
mined from a range of 0.25 (i.e., 2− 2) to 32 (i.e., 25) and 

respectively, which resulted in an OOB accuracy of 78.29% 
(KappaOOB of 0.72).

Some of the advantages of an RF classifier are that it is 
computationally efficient, transparent, and interpretable, 
does not require many parameters, and results in higher 
classification accuracy (Kganyago et al. 2024). Moreover, 
it has been proven to be robust in handling noisy data and, 
therefore, effective for a wide variety of classification and 
regression tasks (Teluguntla et al. 2018; Golrang et al., 
2020). In contrast, it can result in poor performance when 
there is a sample imbalance between classes, thus overfit-
ting the majority class (Breiman, 2001).

Support vector machine

Support Vector Machine (SVM) (Vapnik, 1999), on the 
other hand, classifies data by finding an optimal hyperplane 
in n-dimensional space with the highest margin between 
classes (Tzotsos and Argialas 2008). It defines decision 
boundaries using geometrical characteristics of data through 
a hyperplane based on support vectors rather than density 

Fig. 3  Dominant plant species identified in the Verloren Vallei Nature Reserve. (a) Crocosmia sp. (b) Agapanthus sp. (c) Cyperus sp. and (d) 
Grasses
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in hyperspectral data (Peerbhay et al. 2016). Richter et al. 
(2016) show that the higher number of predictor variables 
than observations and the multicollinearity of the spectral 
bands risk overfitting.

Accuracy assessment

Accuracy assessment was assessed using confusion matrix 
and associated statistical metrics, i.e., overall accuracy (OA, 
Eq. 1), Producer’s accuracy (PA, Eq. 2) and User’s accuracy 
(UA, Eq.  3). Moreover, Allocation Difference (AD) and 
Quantity Difference (QD) proposed by Pontius and Mil-
lones (2011), were used instead of the Kappa co-efficient. 
Overall accuracy indicates the percentage of correctly clas-
sified samples (Eq. 1).

OA =

∑r
i=1 nü

n
× 100 � (1)

where r is the number of classes, nii
 are the diagonal ele-

ments and n represents the total number of considered sam-
ples. Although there is no universally accepted value of OA, 
Anderson et al. (1976) considered 85% acceptable, while 
Pringle et al. (2009) prefer any OA value > 70%. Therefore, 
the current study considers OA values > = 75%OA < = 85% 
as acceptable and those above 85% as exceptional.

The PA, calculated from the confusion matrix, indicates 
the probability that the classifier has correctly classified the 
samples. It is calculated by taking the total number of cor-
rect classifications for a particular class, i.e.,nii

 and divid-
ing it by the column total, i.e., nicol

 (see Eq. 2) (Verma et al. 
2020). The UA is calculated by dividing the total number of 
correctly classified the samples for a particular class, i.e.,nii

 
the row total, i.e.,nirow

 (see Eq. 3).

PA =

(
nii

nicol

)
� (2)

UA =

(
nii

nirow

)
� (3)

nii
 is the number of correctly classified samples and nicol

 
and nirow

 are the column and row totals, respectively 
(Verma et al. 2020). Omission Errors (OE) and Commission 
Errors (CE) were also calculated for each class as 1− PA  
and1− UA , respectively.

Quantity Difference (QD, Eq. 5) refers to the imperfect 
match in the class proportions between the classification 
and reference datasets. In contrast, Allocation Difference 
(AD, Eq. 6) refers to the imperfect match in the class alloca-
tions between the reference and classification datasets given 
their quantities (Warrens 2015).

0.5 (i.e., 2− 1) to 2 (i.e., 21) with an interval of 0.01 in Caret 
R-package (Kuhn 2008).

Its strength lies in that it is computationally fast and 
does not employ density estimation to discriminate classes; 
instead, it utilises the geometrical characteristics of data to 
define decision boundaries by assessing only support vec-
tors (Melgani and Bruzzone 2004). Moreover, it does not 
require a priori knowledge about the statistical distribution 
of data, can reduce classification errors while increasing res-
olution, and is insensitive to highly dimensional data (Pal 
and Foody 2010; Mountrakis et al. 2011). However, SVM 
has some weaknesses, such as being computationally inef-
ficient, highly sensitive to parameter tuning, lacking proba-
bilistic outputs, and difficult to interpret complex decision 
boundaries (Ray 2024).

Partial least squares-discriminant analysis

Lastly, Partial Least Squares-Discriminant Analysis (PLS-
DA) is a multivariate supervised statistical algorithm that 
finds a linear regression model by constructing predictive 
variables and response variables into a new space (Chauhan 
et al. 2020). The PLS-DA creates predictive and response 
variables with few eigenvectors from spectral data matrices 
(Peerbhay et al. 2013). This results in data that is correlated 
and characterised by predictor variables that are more than 
the observations. PLS-DA then finds optimum components 
that improve its classification performance (Peerbhay et 
al. 2013, 2016). The PLS-DA was used by Peerbhay et al. 
(2013) to test its robustness in classifying commercial tree 
species in KwaZulu Natal. They found that PLS-DA can 
significantly discriminate tree species with an overall accu-
racy of 88.8% using AISA Eagle bands. Although this was 
in a different environment, their studies ascertain that the 
PLS-DA can be successfully used in with hyperspectral data 
in vegetation mapping and monitoring. Richter et al. (2016) 
used airborne hyperspectral in a heterogeneous mixed for-
est in Central Europe to compare the performances of SVM, 
RF and PLS-DA in discriminating tree species; interest-
ingly, PLS-DA outperformed both SVM and RF. Like SVM 
classifier, we used a grid-search strategy and 5-fold cv to 
search for the optimal number of components (i.e., latent 
variables) for PLS-DA from a total of 160 components (i.e., 
same as the number of spectral bands in nSight-2). The opti-
mal model had 2 latent variables, which explained the high-
est variability, i.e., > 20%. PLS-DA analysis was performed 
using the Caret R-package (Kuhn 2008).

The strengths of PLS-DA include reducing noise in the 
dataset, showing the probability of a sample belonging to 
the class being modelled, and selecting the best variables (Li 
et al. 2016). Moreover, it can handle multicollinearity, miss-
ing data, and information redundancy, which is common 
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The class-wise accuracies (i.e., PA and UA) were fairly 
high across all models, i.e., mostly about 75%. For Crocos-
mia sp., SVM outperformed both RF and PLS-DA achiev-
ing PA and UA of 100%. On the other hand, there was no 
difference in the PA performances of RF and PLS-DA, while 
UA was higher in PLS-DA, i.e., 90.32%, than RF which 
only achieved 84.62%. Moreover, SVM outperformed both 
RF and PLS-DA classifiers with a PA of 100% and a UA of 
86.67% for Grasses. On the other hand, RF and PLS-DA 
had PA above 91% and 95%, respectively. There was no sig-
nificant difference in the UA of RF and PLS-DA, with only 
a < 1% difference. Interestingly, PLS-DA had the highest PA 
for Cyperus sp. (i.e., 93.10%), which is ~ 1.5% higher than 
the PA achieved by SVM and ~ 9% higher than RF. How-
ever, the UA of the PLS-DA was the lowest (i.e., 84.38%), 
while there was no difference between the UA achieved 
by RF and SVM. RF had the worst PA for Agapanthus sp. 
across the compared algorithms (i.e., 66.67%), while PLS-
DA achieved the best PA (i.e., 93.33%) for the same class. 
Figure 4 shows the class-wise errors, i.e., Omission (OE) 
and commision errors (CE). As can be seen, RF and SVM 
models had the highest OE, i.e., > 30%, for Agapanthus sp. 
while the PLS-DA model had an OE of ~ 6% for the same 
class. Grasses had the highest CE, i.e., > 25%, across clas-
sifiers, while the RF and SVM models achieved CE of 0% 
for Agapanthus sp. as compared to PLS-DA model’s ~ 12%.

Discussion

The comparison of the performance of machine learning 
algorithms is a critical endeavor considering that previous 
studies show inconsistencies in performance according to 
the climatic environments, vegetation and species types, 
and datasets. It is particularly interesting to determine the 
suitability of the algorithms for classifying plant species 
using the simulated data of forthcoming sensors in spe-
cific priority environments such as wetland sites. In many 
regions, including the developing regions, the wetland envi-
ronments are threatened by climate variability and change, 

QD =

∑∣∣n+i
n

− ni+
n

∣∣
2

× 100� (4)

AD =

∑
(2 ×min

(
n+i
n

− nii
n
,
ni+
n

− nii
n

)
)

2
× 100 � (5)

n+i
 and ni+

 represent the marginal sums of the columns and 
rows, respectively. AD is divided into Shift and Exchange. 
The lower the QD and AD values the better the classifica-
tion accuracy.

Results and discussion

Results

The classification results from three evaluated machine 
learning classifiers are presented in Table  1. As shown, 
the Support Vector Machines (SVM) achieved a superior 
Overall Accuracy (OA) with 93.18%, followed by Random 
Forest (RF) with 84.09%, and then Partial Least Squares-
Discrimination Analysis (PLS-DA) with 83.63%. The 
corresponding Allocation Difference (AD) and Quantity 
Difference (QD) were also proportionately low for the SVM 
classification model, i.e., ~ 2% and < 5%, respectively, jux-
taposed with the RF classification model, i.e., ~ 9% and 
~ 7%, respectively. The PSL-DA classification model, on the 
other hand, had ~ 7% for the AD and 10% for QD. Although 
the PSL-DA classification model had a relatively lower OA 
than the RF classification model, its AD was better at 6.36% 
compared to the 9.09% of the RF classification model. To 
compare the differences caused by pair-wise and non-pair-
wise class confusions, the Shift and Exchange metrics were 
used. The RF and PLS-DA classification models had similar 
Shift (i.e., pair-wise class confusions) of 4.54%, while the 
SVM classification model had the lowest Shift of ~ 2%. The 
Exchange (i.e., non-pair-wise class confusions) was 0% for 
SVM model and < 2% for the PLS-DA classification model, 
while it was 4.54% for RF classification model.

Table 1  Random Forest (RF), Support Vector Machines (SVM), and Partial Least Squares-Discrimination Analysis (PLS-DA) classification results
RF SVM PLS-DA
PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Crocosmia sp. 84.62 84.62 100 100 84.85 90.32
Grasses 91.67 73.33 100 86.67 95.83 74.19
Agapanthus sp. 66.67 100.0 84.62 100 93.33 87.5
Cyperus sp. 84.62 91.67 91.67 91.67 93.10 84.38
OA (%) 84.09 93.18 83.63
(95% CI) ± 0.1089 ± 0.0753 ± 0.0694
AD (%) 9.09 2.27 6.36
Shift (%) 4.54 2.27 4.54
Exchange (%) 4.54 0.00 1.81
QD (%) 6.81 4.54 10.00
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who also found SVM performing better than RF. Rackzo 
and Zagajeweski (2017) compared ANN, SVM and RF in 
the classification of trees in Karkonosze National Park in 
Poland, using the Airborne Prism Experiment hyperspectral 
data and found that SVM performed better, achieving an 
accuracy of 68% when compared to the 62% achieved by 
RF. Dabija et al. (2021) compared the performance of SVM 
and RF in the classification of different vegetation classes 
in eastern Romania using Sentinel-2 data and found that 
SVM performed better with an accuracy of 88% compared 
with the 70% achieved by RF. The higher performance of 
SVM can be explained by its ability to handle small training 
samples, which characterised the current study. The findings 
here are different from a similar study (Richter et al. 2016), 
which found that the PLS-DA outperformed SVM and RF in 
forest tree species discrimination where it achieved > 78% 
compared to 72% of SVM and 68% of RF. Indeed, the spe-
cies sought after by this study were different structurally and 
in a different environment, and the relatively low perfor-
mance of the PLS-DA in this study can be attributed to the 
fact that it is a linear algorithm and, therefore may have been 
ineffective in identifying non-linear patterns in the dataset.

The class-wise PA and UA metrics were fairly high 
across all models. However, the Crocosmia class had rela-
tively high PA and UA across the classifiers. This can be 
attributed its larger parcels and regular boundaries. A high 
PA of all the other classes except Agapanthus shows that 
there was no spectral confusion among those classes, while 
there was significant misclassification of Agapanthusus 
with other classes. The grasses class had > 90% PA across 
all the classification models, while its UA was < 75% for 

as well as human over-utilisation and conversion to other 
land-uses. This study found that the SVM classifier was 
the most suitable algorithm for classifying wetland veg-
etation using the resampled nSight-2 data. In contrast, the 
RF and PLS-DA classification models generally performed 
similarly, with only slight differences. The superior perfor-
mance of the SVM classifier can be explained by its ability 
to combat overfitting. Moreover, the SVM classifier’s per-
formance can be attributed to the high 5-fold cv accuracy, 
i.e., 90.54%, achieved during the training process, indicat-
ing the robustness of the trained model and its generalisa-
tion capability. On the other hand, the training (i.e., OOB) 
accuracy of RF was 78.29%, while the final model resulted 
in 84% accuracy. Therefore, the results suggest that param-
eterisation of the classifiers could have played a critical role 
in the performances of these classifiers on the test dataset. 
The tuning accuracies seem to influence the final perfor-
mances of the classification models. This means the higher 
the training accuracies, the better the model performance on 
the independent testing data. The different training accura-
cies also raises questions of the influence of the resampling 
techniques, i.e., 5-fold cv and bagging (or bootstrapping) for 
SVM and RF, respectively, necessitating further investiga-
tion into their influence on the model performance.

SVM was able to reduce overlap in the spectra of the 
plant species under study for plant species discrimination, 
as depicted by low AD and QD (2.27% and 4.54%), which 
were lower than those of RF and PLS-DA (9.09% and 
6.81% and 6.36% and 10.00%, respectively). The obtained 
accuracies are in agreement with the accuracies achieved 
by Rackzo and Zagajeweski (2017) and Dabija et al. (2021) 

Fig. 4  The class-wise performances of Random Forest (RF), Support 
Vector Machines (SVM), and Partial Least Squares-Discrimination 
Analysis (PLS-DA) in classifying wetland species. PA and UA denote 

the Producer’s and User’s Accuracy, respectively while OE and CE are 
Omission and Commission Errors respectively
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occurrence and spatial distributions of certain species. This 
is particularly important for Verloren Vallei Nature Reserve, 
a Ramsar wetland site, where attractive plant species such 
as Crocosmia paniculata and Agapanthus are a tourism 
attraction due to their aesthetic flowers, while cyprus sp. 
occurs in the moist areas. Therefore, although both Cro-
cosmia paniculata and Agapanthus have a status of “Least 
concern” in the Red List of South African Plants (Raimondo 
et al., 2009), the reserve managers may be interested in 
assessing their presence and absence and spatial changes 
over time against threats of alien invasive species and effect 
of changes in climatic patterns, heatwaves, and droughts to 
safeguard their tourism value. Also, changes in the spatial 
distribution of cyprus sp. may be indicative of changes in 
the wetland extent in response to climatic variability. On the 
other hand, the relatively poor class-wise accuracies of the 
Agapanthus sp. and grasses by the RF classification model 
suggest that the resulting species-specific maps may be mis-
leading and extra attention may be required when utilising 
this classifier for these specific classes. The reported accu-
racies and class-wise errors provide a baseline for wetland 
managers to establish monitoring protocols; thus, using 
these machine learning classifiers can help detect changes 
in vegetation patterns over time, allowing for adaptive man-
agement strategies in response to evolving wetland condi-
tions or potential threats.

Limitations

This study encountered several shortcomings that can be 
leveraged for further investigation. Among these was the 
fact that the spectral data was not acquired under field con-
ditions and by a satellite. Instead, the data was simulated 
using the spectral band settings of the forthcoming sensor 
(i.e., nSight-2). Therefore, other sources of error may be 
encountered when real data is used, such as residual errors 
after atmospheric correction and spectral mixing; hence, the 
models obtained here may not be necessarily transferable 
to the satellite sensor measurement. Future studies should 
attempt to collect data under field conditions, where the 
spectral reflectance will be representative of various plant 
components and backgrounds. Also, gaussian noise may 
be added in line with the nSight-2’s signal-to-noise ratio 
to ensure that more realistic spectral observations are used 
instead of leaf spectra, used here. Nonetheless, the results in 
the current study demonstrate the potential of the upcoming 
nSight-2 hyperspectral sensor and SVM in classifying wet-
land species. It is anticipated that advanced algorithms such 
as deep neural networks and extreme gradient boosting may 
result in better results; therefore, it is recommended that 
future studies consider evaluating the performance of these 

both RF and PLS-DA, compared with > 85% for the SVM 
model. This confirms the superiority of the SVM classifier 
in discriminating wetland plant species. While the per-class 
accuracies differed between classes and algorithms, they 
were generally high, i.e., > 80%, except Agapanthus sp. and 
grasses in RF and grasses in PLS-DA models. Indeed, the 
plant species in the current study differed in terms of their 
structural properties; however, the spectral measurements 
from leaves instead of canopies may have resulted in invari-
ant spectral signatures in certain regions of the electromag-
netic spectrum due to similar biochemical composition, e.g., 
water content. Therefore, the classifiers considered here 
could not adequately discriminate such species as indicated 
by the AD and QD in RF and PLS-DA (Table  1). More-
over, many spectral bands, characteristic of hyperspectral 
data, cause the “curse of dimensionality” where the num-
ber of variables is greater than the number of observations 
(i.e., p > n) and many others may be collinear. Therefore, 
the results obtained here indicate that RF and PLS-DA are 
sensitive to these phenomena, while the superior perfor-
mance of the SVM classifier ascertains the findings of pre-
vious studies that showed its strength in dealing with high 
dimensionality and small datasets (Melgani and Bruzzone 
2004; Pal and Foody 2010; Mountrakis et al. 2011). This is 
critical for eliminating certain processing steps such as data 
dimensionality reduction and feature selection, which are 
commonly required when dealing with hyperspectral data, 
thus enhancing the capability to rapidly provide information 
for wetland management purposes.

The results also showed that there is no significant differ-
ence between class-wise performances of RF and PLS-DA 
algorithms. This can be explained by the fact that PLS-DA 
is a multivariate method that is slightly passive in feature 
selection. PLS-DA does not select features of importance in 
the classification process. Instead, it generates and selects a 
few latent variables that contain the greatest variability rep-
resentative of the entire dataset (Ruiz-Perez, 2020), which 
resulted in a proportionately better classification accuracy 
comparable to that of the RF classifier. While there were 
reasonable overall accuracies across classifiers, i.e., ~ 84 
− 93%, this may be misleading for practical wetland man-
agement applications. Therefore, the PA and UA provide 
further insights into the capability of the algorithms with the 
simulated nSight-2 dataset as well as the reliability of the 
results. For example, the high class-wise accuracies achieved 
by the SVM classification model in all classes can be criti-
cal information for wetland managers, equipping them with 
reliable and actionable knowledge about the spatial distri-
bution of specific species within the wetland and how they 
change over time. Moreover, species-specific maps can be 
extracted to support conservation decisions, resource alloca-
tion, and prioritisation based on the dominance or negligible 
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use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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