
Vol.:(0123456789)1 3

Applied Geomatics (2023) 15:407–420 
https://doi.org/10.1007/s12518-023-00501-2

ORIGINAL PAPER

Use of time series Sentinel‑1 and Sentinel‑2 image for rice crop 
inventory in parts of Bangladesh

Md. Abdullah Aziz1  · Dipanwita Haldar2 · Abhishek Danodia2 · Prakash Chauhan3

Received: 22 October 2022 / Accepted: 20 February 2023 / Published online: 30 March 2023 
© The Author(s), under exclusive licence to Società Italiana di Fotogrammetria e Topografia (SIFET) 2023

Abstract  
Synergistic use of satellite data has an advantage over single-source data as optical, thermal, and microwave datasets. Previous 
studies have demonstrated the efficacy and focused mainly on the edge of the multisensory data over the stand-alone system 
due to primarily multi-dimension input. Crop classification and crop type mapping is the first step in the natural resource 
management theme, especially in agriculture. During the rainy season, accurate crop classification with crop-cultivar type 
mapping is the most challenging target to achieve using optical datasets. Therefore, the study’s prime focus was to extract 
the temporal signature of rice crop types from multi-temporal SAR datasets and classify various rice crop types based on 
sowing timing in the dominant production zone of rice, the Jashore district of Bangladesh. Sentinel-1 datasets were used 
primarily for the rainy season from July to September 2018; in addition, Sentinel-2 data of October was used to understand 
the relationships among these datasets. The temporal signature of various types of rice and others features was interpreted. 
Besides, the correlation between Sentinel-1 backscatter with Sentinel-2 derived indices has been exercised to find out a 
comprehensive framework for selection of optical vegetation indices which may be used as a proxy of SAR or vice-versa. 
The classified image from Sentinel-2 has around 80% overall accuracy, and 0.71 value of kappa coefficient for rice crop type 
mapping was comparable to SAR (about 80% for late sown crop and slightly less for the other 2 classes); class accuracy 
of the rice crop is 88–90% using three-date dual-polarized data. The latter’s advantage is early estimate availability during 
the initial crop phase when optical data is not available. Three types of rice were observed to be cultivated; these are early 
transplanted rice, late transplanted rice, and very late transplanted rice; among them, late transplanted rice covered a large 
area, and early transplanted rice covered lesser areas during the session. Sentinel-2 derived spectral indices have a higher 
correlation with very late rice crop type for VV backscatter than early (where the response in VH was significant probably 
after saturation in VV response due to matured crop) and late rice crop types. Understanding the micro and macro-scale crop 
structure from a multisource- remote-sensing perspective builds novelty in this research.

Keywords Classification · Sentinel-1 · Sentinel-2 · Rice crop type · Temporal Signature · Backscatter value

Introduction

Microwave remote sensing has a number of advantages 
over optical remote sensing, the most obvious of which is 
its ability to penetrate through clouds and, to some extent, 
rain. Second, because the microwave system is not depend-
ent on the sun for illumination, it can operate 24 h a day. 
Third, microwaves can penetrate deeper into plants than 
EM radiation with an optical spectrum. As a result, when 
it is used to monitor vegetation, it can obtain surface infor-
mation from the vegetation and get some signal back from 
the deep interaction. It can gather leaf, branch, stem, and 
other structural/geometric information under the surface of 
plants in the depths of the vegetation (Macelloni et al. 2001; 
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Fontanelli et al. 2013; Haldar et al. 2014a, b). Fourth, the 
structural qualities and dielectric properties of surface fea-
tures influence the signal by the microwave sensor; therefore, 
this information can reflect surface attributes of objects that 
appear similar in optical terms but differ from a SAR per-
spective (Shewalkar et al. 2014). Furthermore, due to the 
unique specular features of rice fields under flooded surface 
conditions, the SAR delineation of rice fields is relatively 
strong (Choudhury et al. 2012). Based on temporal fluctua-
tions in the SAR backscatter ([dB]) signal, multi-temporal 
SAR data may be used to retrieve the rice-growing cycle. 
The most popular data analysis approach for paddy rice 
identification is the time series analysis of SAR backscatter.

Bangladesh can be defined as a rice-growing and rice-eat-
ing country. Food security and rice security are synonymous 
in Bangladesh (Kabir et al. 2020). Rice is Bangladesh’s pri-
mary food. In Bangladesh, rice is cultivated 78% of total 
net crop area (Mamun et al. 2021; Rahman et al. 2022). 
Bangladesh produced approximately 33.8 million tons of 
rice, where area coverage was about 27 million acres in 
2016–2017 (BBS 2017). Rice accounts for more than 80% 
of the entire food supply. Rice is consumed by higher than 
95% of the population, and it alone provides 76% of daily 

calorie and 66% of absolute protein requirements (Awal and 
Siddique 2011; Rahman et al. 2020).

Agricultural statistics have become increasingly impor-
tant in shaping and disseminating scientific data that is rel-
evant to practically every element of human life and beyond 
(Faisal et al. 2019). Due to lower economic efficiency and 
other characteristics of agricultural output, such as broad 
coverage, severe seasonality, and spatial variability, standard 
ground survey methods make obtaining yearly crop informa-
tion difficult. Furthermore, the obtained data may become 
available too late for decision-makers or planners in the 
country to take necessary action. The application of remote 
sensing technology can be a practical and effective method 
of resolving this issue. Since remote sensing has been used 
to identify and extract areas, the results have been astound-
ing. In India, technology and theory have been continu-
ously improved and have progressed to an operational level 
(Chakraborty et al. 1997; Haldar et al. 2014a, b). Remote 
sensing technology enables scalable and unbiased esti-
mates of rice area to support, enhance, and complement the 
existing system based on survey and statistical approaches 
(Gumma et al. 2014). Crop mapping, area estimation, moni-
toring system, and crop yield forecasts begin with the iden-
tification of crop types (Shewalkar et al. 2014).

Bangladesh has three rice seasons: Aus, Aman, and Boro 
(BRRI 2018). In 2016–2017, total Aman rice production was 
13.6 million tons, about 40% of the total rice production. 
Aman is cultivated from June to November, but typically 
produced from July to October when puddling/transplanted 
in mid-July, peak vegetative stage (booting/flowering stage) 
at early to mid-September and harvested at the end of Octo-
ber or early November. Thus, Aman rice is a Kharif season 
crop during the monsoon season of south-east Asia, and 
most of the time, the sky remains covered by clouds.

Due to frequent cloud cover, most optical remote sensing 
technologies fail to detect rice during the monsoon (Nuevo 
et al. 2017).

Rice crop growth stages were tracked and variation was 
measured using single-polarization and multi-polarization 
SAR datasets. C-band SAR sensors have been the most 
appealing data source for rice mapping at a regional or con-
tinental scale in this technique since data from other SAR 

Fig. 1  Location of Jashore district (Bangladesh)

Table 1  Image date and rice cultivation condition

Date Expected rice growing stage

17/07/2018 Puddling
29/07/2018 Transplanting
10/08/2018 Tillering
22/08/2018 Panicle initiation
03/09/2018 Booting
15/09/2018 Flowering (peak vegetative stage)
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sensors is restricted by low spatial coverage or longer revisit 
durations (Nguyen and Wagner 2017).

The SAR-based vegetation indices were built from full 
polarization radar pictures to measure the rice crop growth 
characteristics, which was an important aspect of this work. 
Recent research has also focused on creating vegetation indi-
ces using dual-polarization SAR data in order to estimate 
biophysical parameters including soil moisture content, crop 
water content, and agricultural yield. However, only a small 
amount of effort has gone into creating hybrid indices that 
combine optical and SAR indices (Alebele et al. 2020).

Sentinel-1 data, which has a spatial resolution of 
10 m × 10 m and a temporal resolution of every 6 days, offers 
a wide range of applications, even at the farm level. The 
European Space Agency (ESA) has recently launched two 
important remote sensing satellites, Sentinel-1A, and Sen-
tinel-1B (collectively called Sentinel-1). It is equipped with 
a C band SAR with a central frequency of 5.405 GHz (ESA, 
2013). Because of its sensitivity to background water and 
crop geometry, this radar frequency is essential for monitor-
ing the lowland rice environment (Choudhury et al. 2012). 
Sentinel-1 can now perform all-weather, day and night 
global surveillance every 6 days because the two spacecraft 
are now 180° apart in orbit (ESA, 2013). Furthermore, Sen-
tinel-1A has a dual-polarization imaging mode that allows 
it to receive both H and V backscattered polarization while 

transmitting one of them. When compared to the full-pola-
rimetric mode, Sentinel-1A helps achieve superior range 
resolution, a larger swath, and lower data processing needs 
(Haldar et al. 2014a, b).

Although Sentinel-1 and Sentinel-2 have two separate 
wavelength-based data acquisition and the manifestation 
with the plant former at a macro level and later at a micro 
level, the later aggregate is the cause for the former SAR-
based system. Both the datasets can make various applica-
tions, i.e., crop inventory, crop mapping, soil moisture, and 
crop yield. Also, the synergistic and conjunctive has proven 
to yield a more robust understanding than the sole usage in 
both area estimates and understanding the crop health and 
yield potential (McNairn et al. 2001a, b; Haldar and Patnaik 
2010, 2012a, b, 2020).

Traditional ground survey methods are still being con-
ducted in Bangladesh for area estimation, monitoring sys-
tems, and crop yield forecasting. According to a survey 
of the literature, there are research on rice growth moni-
toring and modeling using optical data, most of which 
are based on MODIS data; no studies were found on crop 
type identification, monitoring, and modeling its growth 
by SAR data. Thus, this study aims to extract the tempo-
ral signatures of rice types using the Sentinel-1 satellite 
and classify them based on unique temporal signatures to 
determine their transplanting sequence. Also, evaluate the 

Table 2  Spectral indices used in the study and their formula

Sl No Indices Index full name Formula Citations

1 NDVI Normalized difference vegetation index NDVI = (NIR-Red)/
( NIR + Red)

(Zuzulova and Vido 2018)

2 SAVI Soil-adjusted vegetation index SAVI = (1 + L) (NIR-Red)/(NIR + Red + L)
where L is soil condition index

Xue and Su 2017

3 EVI Enhanced vegetation index EVI =  (TM4-  TM3)(1 + L)/(  TM4 –C1  TM3 +  C2 
TM + L)

Xue and Su 2017

4 SLAVI Specific leaf area vegetation index SLAVI = NIR/(RED + SWIR) IDB, 2021
5 NDRE Normalized difference red edge (NDRE) NDRE =  (R790-R720)/(R790 +  R720) Barnes et al. 2000
6 REIP Red edge inflection point (REIP) REIP = 700 + 40[{(p667+P782)/2}-p702]/p738-p702 Herrmann et al. 2010
7 RNDVI Renormalized index of normalized difference 

vegetation index
RNDV = (|NDVIt1|–
NDVIt2|)/(|NDVIt1| +|NDVIt2|)
where t1 and t2 refer to the acquisition date of 

each scene in which the derivative NDVI

Li et al. 2016

8 NDII Normalized difference infrared Index NDII = (ρ0.85-ρ01.65)/ (ρ0.85+ρ01.65) Sriwongsitanon et al. 2015
9 NDSI Normalized difference snow index (NDSI) (Green0.53-SWIR1.65)/(Green0.53 +  SWIR1.65) Sibandze et al. 2014
10 SIWSI Shortwave infrared water stress index SIWSI = (ρSWIR − ρNIR)/(ρSWIR + ρNIR) Olsen et al. 2013
11 ARVI Atmospherically resistant vegetation index NIR − RED − y(RED − BLUE) NIR + RED − y 

(RED − BLUE
y = quotient derived from the components of 

atmospheric reflectance in the blue and red 
channel

IDB, 2020a, b

12 ARVI2 Adjusted resistant vegetation index 2 ARVI2 =  − 0.18 + 1.17 ×  (RNIR −  RRed/
RNIR +  RRed)

Adamu et al. 2018

13 GARI Green atmospherically resistant vegetation index 
(GARI)

GARI = (NIR-[Green-γ(Blue-Red)])/
(NIR + [Green-γ(BlueRed)])

Susantoro et al. 2018
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relationship between SAR-based backscatter values with 
different optical dataset-based indices for effective moni-
toring of the crop during availability of the dual-source 
data or anyone.

Study area

Jashore district is a very prospective area for Aman rice 
production. In 2016–2017, total Aman area of Jashore was 
about 1200 sq. km and production of 346,090 metric tons 
(BBS 2017). Jashore district is located in between 22°48ʹ 
and 23°22ʹ north latitudes and in between 88°51' and 89°34' 
east longitudes (Fig. 1). It is surrounded by two districts 
named Jhenaidah and Magura on the north and two other 
districts on the south called, Satkhira and Khulna, and 
another two districts on the eastern side named Narail and 
Khulna. On the western side, it is surrounded by the West 
Bengal state of India. Jashore district area is about 2500 sq. 
km, and the total population is about 2.4 million (Banglape-
dia 2020). Jashore district has excellent agricultural potential 
under the High Ganges River Floodplain agrological zone. 
Major crops in Jashore are rice, wheat, jute, maize, and oth-
ers (BBS, 2017).

Materials and methods

Datasets

Sentinel‑1

Sentinel-1 launch by European Space Agency (ESA) on 
2014 (https:// scihub. coper nicus. eu/ dhus/) having 10-m spa-
tial resolution and C-band (3.75–7.5 cm) SAR data (ESA 
2013).

Sentinel-1A data were downloaded from the European 
Space Agency (ESA) for Kharif seasons from 17 July 2018 
to 15 September 2018, where polarizations were VV + VH, 
product type, and sensor mode were GRD and IW, respec-
tively. Sentinel 1 data collection dates with rice-growing 
status are shown in Table 1.

Sentinel‑2

Sentinel-2, is an optical sensor also launched by Euro-
pean Space Agency (ESA) having 10-m spatial reso-
lution (Park et al. 2017 and ESA, 2021). In this study 
stating and demonstrating the conjunctive use of SAR 
with optical, in peak rainy season, optical data is unavail-
able; hence, SAR data were used, and post-rain, optical 
data is used; in past studies, the synergy has been estab-
lished, and hence, the datasets may not be repeated and 

used as surrogate for others (Haldar and Patnaik 2010, 
2012a, b, 2020).

Due to maximum cloud coverage during monsoon 
season, only one scene of Sentinel-2 was available in 
the late season during mid-October 2018 (17 Octo-
ber 2018). Nevertheless, this was found useful as this 
coincides with the entire growth stage of the crop and 
could be highly correlated with the multiple scattering 
mechanisms. The cloud-free single scene of Sentinel-
2A, level 2 product which is corrected surface reflec-
tance (ESA, 2022) was downloaded (https:// scihub. coper 
nicus. eu/ dhus/) for preparing level 1 crop classification 
and various spectral vegetation indices to be studied 
conjunctively with the SAR data. Spectral vegetation 
indices depict useful information about crop growth, 
crop condition, crop biophysical parameters relation-
ship, and others (Thenkabail et al. 1999). These were 
used to understand crop growth progress with the multi-
temporal dual-polarized SAR data.

A combination of visible and short-wave infrared bands 
generated thirteen spectral vegetation indices. A further cor-
relation was derived with early, late, and late rice types back-
scatter values in VV and VH polarization. Table 2 illustrates 
the list of spectral indices and their formula.

Fig. 2  Jashore district (Bangladesh)

https://scihub.copernicus.eu/dhus/
https://scihub.copernicus.eu/dhus/
https://scihub.copernicus.eu/dhus/
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Ground truth data

Ground truth data is required to train the classifiers 
and assess the map’s accuracy (McNairn et al. 2014). 
Ground truth (GT) data was gathered in time with sat-
ellite passes. A GPS receiver was utilized to mark the 
coordinates of the rice crop field. Rice crop fields that 
covered more than three to five hectares over a con-
tinuous length were frequently sampled for this study. 
From the latter week of September to the first week of 
October, GPS data were gathered via field survey on 
a total of 50 rice fields and 5 fallow fields. Date of 
crop planting and transplanting as well as crop stage 
were gathered as plant parameters. Additional features 
from Google Earth, including homestead, water body, 
orchard, big city, etc., totaled 18 points of latitude and 
longitude. The classification model was trained using 
70% of the ground truth data, and the final map’s accu-
racy was tested using the remaining 30%. Figure 2 shows 
the ground truth location.

Pre‑processing of SAR data

The pre-processing of Sentinel-1A data includes five 
main steps: (1) orbit file correction; (2) speckle-noise 
filtering using Lee sigma filter and 5 × 5 window; the 
5 × 5 window has been established with a lot of past 
datasets, and this is optimum for many agricultural 
applications (Chakraborty et  al. 1997, Haldar and 
Patnaik 2010, 2019); (3) radiometric calibration to 
convert digital pixel values of VH/VV amplitude into 
sigma naught (σ°) values; (4) terrain correction; and 
(5) data conversion from sigma naught (σ°) values 
to dB values. These scenes were then stacked into a 
multi-temporal composite scene to obtain the stacked 
data of the six dates.

Generation of temporal signature and classification 
approach

Three days’ composite of VV polarization were loaded for 
visualization and extraction of the signature using ENVI 
software, overlaying the GT points and preparing ROI 

Fig. 3  Temporal signature of 
water body using VV polariza-
tion by various GT points

Fig. 4  Temporal signature of homestead using VV polarization by 
various GT points

Fig. 5  Temporal signature of big city using VV polarization by vari-
ous GT points
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(region of interest) of those locations. Statistics of those 
ROIs have been taken for all bands (six days) for both VV 
and VH polarization. Temporal signature of rice (early, late, 
and very late transplanted rice) and non-rice (water body, 
urban, homestead, fallow land, and others) have been pre-
pared eventually by thresholding dB value of each feature, 
extracted for input and preparation of a decision tree.

When SAR data was employed in prior studies, decision 
tree (DT) classification provided superior crop discrimina-
tion and classification accuracy (Friedl and Brodley 1997). 

Our findings backed up previous research, and when SAR 
data was added, DT performed well in crop classification 
(Haldar et al. 2014a, b; Sahu et al. 2018; Dave et al. 2017; 
H. McNairn et al. 2014). The linear discriminating func-
tions that determine the decision tree, which consists of a 
set of decision rules, were utilized to test each node. Senti-
nel-1 datasets’ VV and VH polarizations were used to con-
struct decision algorithms based on temporal backscattering 
responses of different crops (Shanmugapriya et al. 2020). 
The decision tree was used to obtain the output at each level, 
and the classed image was obtained as a result. For accuracy 
assessment, the remaining GT points were taken to prepare 
ROI (region of interest) and merged. A confusion matrix 
was produced, and an accuracy assessment table was found.

Preparation of crop classification map by optical 
image

Red, green, and NIR bands created the false color composite 
(FCC). Crop classification maps of the study area were pre-
pared by supervised classification using a maximum likeli-
hood classifier (MLC) (Singh et al. 2020).

Evaluate the response between backscatter values 
with various optical‑based indices

A correlation analysis was performed between SAR-derived 
backscatter value and optical dataset-derived vegetation 
indices to know the relationship between the datasets and 
find the possible way to use one data as a proxy for other 
data. In this context, thirteen spectral indices were gener-
ated using Sentinel-2, and linear regression equations have 
been developed using backscatter values. This relationship 
was performed for rice crop types as early, late, and very 
late-type to illustrate the perspective of SAR and optical 
data as a proxy.

Whenever  one data is missing, we can use the 
surrogate by another, and this relationship has been 
established  in the past (Ghaffarian et  al. 2018). To 

Fig. 6  Temporal signature of orchard body using VV polarization by 
various GT points

Fig. 7  Temporal signature of fallow body using VV polarization by 
various GT points

Fig. 8  Temporal signature of 
early transplanted rice using 
VH polarization by various GT 
points
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evaluate the relationship between SAR-based back-
scatter values  and various optical-based indices were 
extracted from the Sentinel-2 data. A total of thir-
teen indices, i.e., NDVI, SAVI, EVI, SLAVI, NDRE, 
REIP, RNDVI, NDII, NDSI, SIWSI, ARVI, ARVI2, 

and GARI, were derived from the Sentinel-2 data. 
Then all GT points based value extraction of all indi-
ces was made.

To find out the relationship between SAR-based back-
scatter and various optical-based indices values, one simple 

Fig. 9  Temporal signature of 
early transplanted rice using 
VV polarization by various GT 
points

Fig. 10  Temporal signature 
of late transplanted rice using 
VH polarization by various GT 
points

Fig. 11  Temporal signature 
of late transplanted rice using 
VV polarization by various GT 
points
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linear model was used to evaluate the relationship between 
VV and VH with each of the 13 indexes, for each of the 3 
dates and each of the three rice types, resulting in 234 dif-
ferent models.

The formula of the linear regression model is.
Y = a + bx + Є.
Where Y is dependent variable, a is intercept, b is slope, 

x is independent variable, and Є is residual.
Here, the SAR-based backscatter value is consid-

ered as a dependent variable evaluating the back-
scatter arising due to the scattering attributed to the 
above-ground biomass (scattering elements—tillers 
and leaves standing above the ponded water surface). 
However, optical indices as an independent variable 
are the basis for considering; this is a more funda-
mental attribute to the rice crop health at the micro-
scale level. The chlorophyll-based indices; leaf water 
status; red edge, which results in the macrostructures 
sensed by SAR and others; and also the best-fitted 
model were selected. Observations of early, late and 
very late transplanted rice are respectively area 10, 
12 and 08.

Results and discussion

Temporal signature

Temporal signatures were derived from time sequences of 
observations of the Sentinel-1 data. They are particularly 
significant for monitoring the earth’s environmental changes 
(Liang et al. 2008). The backscatter values of non-rice fea-
tures of the study area (water body, big city, fallow land) 
remain more or less same over time (a little bit changes due 
to some minor factors). Their backscatter values are depicted 
in Figs. 3, 4, 5, 6, and 7 for various GT points.

Paddy has a distinct temporal profile that makes it eas-
ier to distinguish from other crops due to the presence of 
standing background water for a major portion of the paddy 
lifecycle. The only difference between VV and VH is the 
intensity (Chakraborty et al. 1997); the cross-polarized (VH) 
response starts at a significantly lower value and has a much 
larger range than the co-pol (VV) response.

Rice crop is cultivated/transplanted, understanding water 
condition for most of its growth. Due to surface scattering 
predominantly from standing water, too short and very low 

Fig. 12  Temporal signature of 
very late transplanted rice using 
VH polarization by various GT 
points

Fig. 13  Temporal signature of 
very late transplanted rice using 
VV polarization by various GT 
points
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backscatter value (dB) of plant height was found during rice 
transplanting. However, plants’ height increases with time 
to the peak vegetative stage (booting/flowering stage). Also, 
backscatter increases due to double bounce scattering up 
to the peak vegetative stage; after that, it remains constant.

In early transplanted rice, the backscatter of the paddy for 
VH polarization from − 25 to − 13 dB and for VV polariza-
tion ranged from − 19 to − 5 dB, temporal signatures (Figs. 8 
and 9) followed an increasing trend of dB values, and this 
class rice was probably transplanted from early to mid-July. 
In late transplanted rice, for VH polarization, the backscat-
ter of the paddy ranged from − 25 to − 14 dB, and for VV 
polarization, the backscatter of the paddy ranged from − 19 
to − 7 dB; temporal signatures first decreased after that 
increased, which are illustrated in Figs. 10 and 11, and rice 
probably transplanted during late July to early August.

In very late transplanted rice, the backscatter of the 
paddy for VH polarization was from − 24 to − 14 dB and 
for VV polarization ranged from − 18 to − 4 dB. The tem-
poral trends first decreased, then a very slowly increasing 
trend was observed (Figs. 12 and 13), and this rice class was 
probably transplanted from late August to early September.

Rice classification approach by SAR data

Two classified outputs were prepared, and one decision 
tree was prepared using multidate only VV-polarization 
(Fig. 14). Another classified output (Fig. 15) decision tree 

Fig. 14  Classification output of rice area using VV polarization by 
various GT points

Fig. 15  Classification output of rice area using VV and VH polariza-
tion by various GT points

Table 3  Accuracy table for rice classified image

Overall Accuracy 79.86%
Kappa Coefficient 0.71

Class Prod. 
Accuracy 
(%)

User. 
Accuracy 
(% )

Prod. 
Accuracy 
(Pixels)

User 
Accuracy 
(Pixels)

Waterbody 100 100 13/13 13/13
Homestead 78.57 100 11/14 11/11
Big city 100 75 9/9 9/12
Orchard 100 50 7/7 7/14
Fallow 100 75 9/9 9/12
Early trans. rice 81.63 82.76 120/147 120/145
Late trans. rice 70.76 69.74 53/75 53/76
Very late trans. 

rice
68.97 100 20/29 20/20
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for rice was prepared using VV and VH polarizations. 
It was found that the classified output by using only the 
VV polarization had many regions unclassified. Still, the 
classified result using both VV and VH polarization could 
cover more rice areas. There is a distinct difference in 
accuracy when using only VV polarization (overall accu-
racy of 70.24%). The classified output using both VV and 
VH polarization resulted in an overall accuracy of 79.86% 
(Table 3). Thus, we can consider VV + VH classified out-
put for analysis and illustration.

Image showing three types of rice (based on sowing 
date) are found, these are (i) early transplanted, (ii) 
late transplanted, and (iii) very late transplanted rice.

Early transplanted rice probably gets transplanted from 
mid to late July with the onset of the southwest monsoon, 
late transplanted rice from late July to early August, and 
very late transplanted rice from late August to early Sep-
tember. Late transplanted rice covers a large area, and 
early transplanted rice covers very few locations. Thus, 
most farmers transplant rice between late July and early 
August.

Fig. 16  Land use land cover map of the study area
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Crop classification by optical data

Crop classification map derived from Sentinel-2 depicts 
most of the area under rice crop followed by orchard area. 
A few fallow regions were found, which are defined as 
agricultural landscapes. Still, the farmer did not grow 
the crop in the particular season due to the possibility as 
those are under highlands where water cannot stay and is 
not suitable for rice cultivation. Water bodies are domi-
nant in the Southeast Jashore district; as this district is 
the border area of Bangladesh, very few settlement areas 
were found. Thus, accordingly, the Jashore district of 
Bangladesh is mainly an agricultural potential production 
area where rice is the dominant crop in Kharif/monsoon 
season.

The maximum likelihood classifier-based map is shown 
in Fig. 16, and this depicts the broad land-use land-cover 
map. Here, overall accuracy was 80%, and the kappa 
coefficient was 72.25. The results showed the potential 
of supervised classification similar to Singh et al. (2020), 
where they classified sugarcane crops using Indian Remote 
Sensing (IRS) satellite observed LISS-III sensor datasets.

Evaluate the relationship between backscatter 
values with various optical‑based indices

The results of the best-fitted linear regression equation 
parameters of all thirteen spectral indices versus VV and 
VH polarization backscatter values are illustrated in Table 4, 
Table 5, and Table 6 for early, late, and very late-transplanted 
rice, respectively. In the case of early transplanted rice type, 
September 15th data VV polarization dB value has the high-
est correlation with ARVI2 index with 0.81 R2 value. In the 
case of late-transplanted rice, it was found that the highest 
R2 value was 0.27, and this value for the regression model 
of July 17th VV polarization dB value with NDSI spectral 
index. In very late transplanted rice, the highest R2 value 
was 0.83, and this value was found for the best regression 
model of the August 10th VV polarization dB value with 
ARVI2 and SIWSI indices. But most of the optical indices 
have shown moderate R2 with VH backscatter for the early 
sown rice; this coincides with the peak vegetative stage (1st 
fortnight of September). It may thus be inferred that the 
crop health parameters derived in the Sentinel-2 derived 
indices NDVI, ARVI, ARVI-2 at their post-1-month peak 
growth stages (October data) partially explain the backscat-
ter response from the September 15th data. The correlation 
would have been stronger with the early September or August 
optical datasets, probably before the attainment of the peak 
stage, but unfortunately, cloud-free data were not available.

Also, the very late sown crop (end August planted), which 
are very few number fields, showed moderate response with 
SIWSI with September 15th VH polarization again due to 

the reasons mentioned above. They are in peak vegetative 
during mid-October or just before the peak stage in Sep-
tember. In addition, there is the coherence of response in 
VV-backscatter with the cross-poll response (Table 6) as the 
late crop manifested increasing response, unlike the early 
harvest where saturation occurred in VV-September 15th 
(Table 4). For this category of rice, SIWSI and ARVI2 are 
showing higher reactions with the August 10 data; this can 
be attributed either to the previous season’s rice or vegeta-
bles grown before the current rice season.

Thus, we can say early transplanted rice VV polariza-
tion dB value correlates with the ARVI2 index, and late-
transplanted rice VV polarization dB value significantly 
correlates with ARVI2 and SIWSI. Based on the regres-
sion outputs from different rice crop types with VV and 
VH polarization, it was observed that very late rice type 
backscatter values have the highest correlation with opti-
cal spectral vegetation indices, specially NDII, SIWSI, and 
ARVI2. These values may be used as a proxy of SAR data 
or vice-versa.

Conclusions and recommendations

We attempted to categorize various rice types in temporal 
signatures of non-rice features, and backscatter values did 
not change over time. However, in the case of rice crop back-
scatter values, it increases over time. The first rice categories 
have been done using VV polarization. On adding VH polar-
ization, more rice area has come as volume scattering com-
ponent more captured by the cross-polarization response. 
The later stage saturation effect could be taken care of by 
the cross-polarization. The first classification approach used 
only VV polarization, the overall accuracy was 70%, but 
after adding VH polarization for rice, the overall accuracy 
increased up to 80%. Early transplanted rice covers a mini-
mal area, about 4% of the total rice area. On the other hand, 
the late transplanted rice covers a vast area, about 62% of the 
total rice area (majority) picked up by the August SAR data. 
Very late transplanted rice covers about 33% of the total rice 
area. Most of the farmers transplanted their rice between late 
July and early August, some transplanted in mid-late August. 
Very few farmers could do the transplantation from mid to 
late July due to the late onset of rains. Total Aman rice area 
covered around 121,496 ha. According to the newest publi-
cation from the Bangladesh Bureau of Statistics (BBS 2017), 
in 2016–2017, total Aman rice area of Jashore district was 
123,116 ha. Early and late transplanted rice VV polarization 
has good relation with ARVI2 indices.

Though the early transplanted rice was very sparsely 
found, its response and signature were prominently picked up 
by the cross-pol backscatter when the co-pol response was 
saturated. Their relationship, especially the VH backscatter 
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with few indices, viz., the red edge indices, ARVI, and many 
others (Table 6), was moderate depicting. However, the peak 
response of the rice crop has faded away, but the structural/
geometric manifestation left an imprint in VH polarization, 
being dynamic. For the late and very late sown crop, the 
manifestation was in VV-polarization though weaker in the 
former and moderate in the very late harvest due to perfect 
time synchronization with the optical data and captured the 
tillering stage/active-vegetative stage.

The transplantation map helps crop patterns and agro-
climatic condition analysis of the area. Also, the findings 
from the synergistic use of SAR and optical data are novel 
and give us insight into a holistic understanding of the crop’s 
micro and macro-structure. This will add to the appropriate 
field and human resources allocation for crop management, 
mainly when unavailable temporal data. There is further 
need to extend by adding temporal optical data at suitable 
phenological stages for inventory and other crops over years 
and seasons. It will give a complete cropping pattern sce-
nario of that area.
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