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Abstract
Numerous uses of the hyperspectral remote sensing technology exist for identifying land cover and tracking its evolution. 
The classification of hyperspectral images must now take into account both spectral and spatial information due to recent 
advancements and the production of images with high spatial resolution. Convolutional neural networks (CNNs) have 
much employed in recent years to enhance the classification precision of hyperspectral images. The simultaneous use of 
spatial feature extraction methods in CNNs has not received significant attention in prior studies. In this study, a novel CNN 
architecture has been developed for classifying hyperspectral images. The weighted genetic (WG) algorithm is used in the 
proposed technique to minimize the hyperspectral image’s dimensions. The WG algorithm keeps every band in the image 
and gives each one weight between zero and one based on how much information it contains. Following the expectation 
maximization (EM) method to the collected features, the segmented objects are then categorized using the CNN algorithm. 
Three benchmark hyperspectral images, Pavia, DC Mall, and Indiana Pine, were used to assess the proposed approach. The 
trials’ findings demonstrate the proposed approach’s superiority over the multilayer perceptron (MLP) algorithm in the Pavia, 
DC Mall, and Indiana Pine images by 14, 16, and 8% in the overall accuracy parameter, respectively.

Keywords Hyperspectral image · Object-based classification · Weighted genetic (WG) · Expectation maximization (EM) 
segmentation · Deep learning

Introduction

In the past two decades, there has been considerable 
advancement in hyperspectral remote sensing technology. 
The capacity to generate data with high spectral, spatial, and 
radiometric properties enables improved analysis and the 
effective identification of ground objects. It also introduces 
additional challenges not present in multispectral data. The 
first issue is the high volume of the data, which necessitates 
specialized technology and software for processing. Another 
issue is the time length needed to process the data (Homay-
ouni & Roux, 2003). Reducing the number of bands is one 
way to address these issues. Several techniques have been 
proposed for this purpose, such as feature extraction and 

feature selection (Chang, 2003). Genetic algorithms are a 
few of the applications for evolutionary computation tech-
niques with success applications in fields such as the vehicle 
routing problem, feature selection, optimization, heart sound 
segmentation, or traveling salesman problem (Sivanandam 
& Deepa, 2008).

The classification of these images is the current focus 
of most hyperspectral remote sensing technology research. 
Hyperspectral image classification techniques include two 
groups (Akbari, 2017) – (Akbari, 2020a). The first group 
refers to spectral or pixel-based classification techniques 
in which each pixel is allocated to a particular class solely 
based on its spectral data without considering the data in 
nearby pixels. Support vector machine (SVM) (Cristianini 
& Shawe-Taylor, 2000) and multilayer perceptron (MLP) 
neural network (Atkinson & Tatnall, 1997) are two exam-
ples of these techniques. The spectral-spatial or object-
based classification methods fall under the second group 
using surrounding pixels’ spectrum data in addition to 
their own (Akbari et al., 2022) – (Pan et al., 2020). Three 
techniques are used to extract spatial information: nearest 
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neighborhoods (Huang & Zhang, 2009), morphological 
profiles (Pesaresi & Benediktsson, 2001), and segmenta-
tion (Tarabalka et al., 2011). According to qualities like 
homogeneity, segmentation algorithms identify objects in 
the image (a group of pixels with the same attribute). The 
benefits of adopting segmentation techniques are listed in 
(Bitam & Ameur, 2013) – (Tarabalka et al., 2010). In these 
approaches, each item is described as a spatial neighborhood 
for all pixels inside it. While maintaining regions with one 
or more pixels, this technique builds huge neighborhoods 
for vast and uniform areas. Therefore, the segmentation map 
will produce accurate and complete spatial information if 
a precise map of objects is to be constructed based on the 
spatial structures in the image. Hierarchical and expectation 
maximization (EM) (Celeux & Govaert, 1992) algorithms 
are among these methods. Golipour et al. (2015) reported a 
spectral-spatial classification approach based on hierarchi-
cal segmentation (Golipour et al., 2015). They employed 
multinomial logistic regression and SVM classification to 
calculate the conditional probability distribution for each 
class. In 2020, Akbari used the marker-based hierarchical 
method (MHS) to classify the hyperspectral image after 
first reducing its dimensions with the minimal noise fraction 
(MNF) technique (Akbari, 2020b). A spectral-spatial feature 
tokenization transformer approach with a Gaussian weighted 
feature marker for function transformation was described 
in (Sun et al., 2022), collecting spectral-spatial characteris-
tics as well as sophisticated semantic features for the clas-
sification of hyperspectral images. Aletti et al. introduced a 
new semi-supervised approach for multilayer segmentation 
of hyperspectral images in order to compare the similarity 
indices of various spectra (Aletti et al., 2021). This method 
combines suitable linear discriminant analysis.

Convolutional neural networks (CNNs) have gained 
attention in recent years in areas including image 
classification, segmentation, target recognition, and video 
analysis, among others (Xu et  al., 2015). Considering 
regional connections, CNNs may extract spatial information. 
Additionally, the weight-sharing method in these networks 
significantly lowers the network’s trainable parameters 
(Hong et al., 2021a) – (Hong et al., 2021b). Li et al. classified 
hyperspectral images using CNNs (Li et al., 2019). Zhao 
et al. developed a collaborative classification system using 
hyperspectral and LiDAR data shown to be very effective 
at isolating features from multisource remote sensing data 
(Zhao et al., 2020). Ding et al. suggested a convolutional 
neural network based on diverse branch modules (DBB) 
(Ding et al., 2021). It enriches the spatial feature by merging 
branches with various scales and levels of complexity, 
such as convolution sequence, multiscale convolution, and 
average pooling. As a result, single convolution’s capacity 
to extract features is enhanced. Ahmad et al. have expressed 
several strategies to improve the performance of the deep 

learning method in hyperspectral images (Ahmad et al., 
2022). They examined the deep learning technique in three 
different ways for this purpose: spectral features, spatial 
features, and spectral-spatial features.

From the review of previous researchers, it is feasible 
to comprehend the significance of spatial features and 
dimensionality reduction in enhancing classification 
accuracy from a study of prior studies. The weighted 
genetic algorithm has achieved the best result among the 
dimensionality reduction methods, in which no information 
deleted, and each band assigned a weight between zero and 
one. So, this study tried to provide a new spectral-spatial 
classification method using dimensionality reduction 
techniques, spatial feature extraction, and CNN classification 
of the generated objects. This problem is significant because 
the proposed network can produce deep spectral-spatial 
features to reach high levels of accuracy in classification. It 
is true even when little training data is available. The main 
innovation of this paper is to provide a framework for using 
deep learning to increase the accuracy of the classification 
with the increase in the quality of the input data. To 
achieve this, first, we designed the architecture of CNNs as 
a suitable-based network. Then, the input raw image was 
reduced dimensionally with the help of the weighted genetic 
algorithm. After applying the EM algorithm, image objects 
were created and considered as network input.

Methodology

Figure 1 shows the steps of the proposed spectral-spatial 
classification method. As observed, the proposed technique 
begins by using the WG algorithm to decrease the image’s 
dimensions, followed by the EM algorithm to extract the 
spatial information, and CNNs to classify the segmented 
objects. The three algorithms used in the proposed technique 
are described in the following section.

Fig. 1  Schema of the proposed 
approach
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A. Weighted genetic (WG) algorithm

The most popular evolutionary algorithm that includes 
recurring procedures and no single method is genetic 
algorithms, a subset of meta-heuristic optimization 
approaches. The individuals in the current population 
are sorted according to their worth throughout each iter-
ation of the algorithm (generation), a new population 
of solutions created by employing the genetic operators 
select, crossover, and mutation. This process continues 
until the algorithm’s termination condition is satisfied 
(Zhuo & Zheng, 2008). In the binary genetic algorithm, 
each subset of characteristics is represented using a 
binary string as an n-dimensional chromosome, where 
1 and 0 denote the presence or absence of a particular 
feature, respectively (Zhuo & Zheng, 2008). However, 
in the WG method, this string has values between 0 
and 1. The fitness function is used to determine the 
likelihood of each chromosome’s survival and trans-
ferred to the following generation. In this study, the 
value of each chromosome was calculated using the 
kappa coefficient parameter of the MLP classification. 
Additionally, the select operator uses the roulette wheel 
approach. According to this strategy, the likelihood of 
choosing each chromosome is inversely correlated with 
its merit score (Huang & Wang, 2006). To avoid the 
selection of local optimums, the crossover operator with 
a single point and the mutation operator was applied. 
The algorithm will stop if the fitness function does not 
improve before a specific repetition, equivalent to 100 
generations. If it does, the repetition will continue until 
the 100th generation. This halting condition was also 
considered as a dynamic condition in this study.

B. Expectation maximization (EM) segmentation

The EM algorithm, as a member of the statistical algorithms, 
operates under the presumption that the data are described 
by a statistical model (Celeux & Govaert, 1992). We assume 
that the pixels in a cluster are drawn from a multivariate 
Gaussian probability distribution in order to cluster the 
hyperspectral image using the EM technique. Equation (1) 
states that the probability distribution function may be used 
to statistically model each individual image pixel.

where  wcϵ[0, 1] is the mixing ratio (weight) of cluster C 
with 

∑C

c=1
wc = 1 and Q(μ, Σ) is the multivariate Gaussian 

density with mean vector μ and covariance matrix is Σ. In 
this relation, P is the probability distribution function and C 
is the number of clusters.

(1)P(x) =

C∑
c=1

wcQc

(
x;μc,Σc

)

In this relation, d is equal to the dimensions of the variable 
x and |Σ| means the determinant of the matrix Σ and T also 
indicates the transpose of the vector. The estimation of the 
distribution parameters Ψ = {C,  wc, μc, Σc; c = 1, 2, …, C} is 
done iteratively, similar to the EM classification technique. 
The pixels are given the cluster C designation during the 
parameter estimate phase. As a result, the clustering of pixel 
vectors into C clusters is accomplished after the algorithm 
convergence.

C. Convolutional neural networks (CNNs)

A variety of tasks relating to image processing, machine 
vision, signal processing, and natural language process-
ing may be solved using deep learning, a potent machine 
learning technique. CNNs, applied in disciplines involv-
ing remote sensing images, is one of the most well-known 
deep learning architectures (Lyu & Mou, 2016). This 
technique classifies remote sensing images more accu-
rately than previous deep learning systems through super-
vised learning and runs images through several layers, 
such as neurons or tiny kernels (convolution). Each neu-
ron examines a little portion of the image before produc-
ing an output. This output contains the class or possibly 
the best description of the classes. Three layers make up 
the convolutional neural network architecture employed 
in this study. Convolution is the first layer, where weights 
(kernels) progressively travel across the image to extract 
various information. Three convolution layers are part of 
the architecture that employed in this study. The second 
layer is the pooling layer. This layer shrinks the dimen-
sions of location-related data to lower the number of 
parameters, cut expenses, and avoid overfitting. The third 
layer, fully coupled, reduces the input layers to a single-
dimensional layer (Dutta et al., 2017).

In the classification process with CNNs, the train-
ing samples are randomly divided into several groups 
because network processing is time-consuming and 
heavy. Each group contains an equal number of training 
samples. For each iteration, only one set of pieces is sent 
to the network for training, and the output value deter-
mined after operating each layer. Then, it is trained by 
the stochastic gradient descent with momentum (sgdm) 
method and using the cross-entropy cost function of the 
network. The process completes after entering all small 
groups generated from training samples into the network. 
The training process will not stop until reaching the max-
imum number of steps. The structure of CNN layers is 
examined next.

(2)

Qc

(
x;μc, Σc

)
=

1

(2�)
d

2

1

||Σc
||
1

2

exp

{
−
1

2

(
x − μc

)T −1∑
c

(
x − μc

)}
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Convolution layer

The convolution layer uses linear convolution filters with 
dimensions  kw ×  kh × d to extract features.  Kw is the length 
of the filter,  kh the width of the filter, and d the height of 
the filter, equal to the number of bands of the input image. 
Convolution kernels with size 1 × 1 × d can only extract 
spectral features not spatial ones. If the purpose of clas-
sification is only based on spatial information, the third 
dimension that indicates the number of input bands is one, 
and the kernel is two-dimensional. In the spectral-spatial 
classification mode, a three-dimensional kernel is used. A 
feature map is created after applying each kernel.

Pooling layer

In CNNs, there is usually a pooling layer after the convo-
lution layer, so the number of feature maps in this layer 
equals the convolution layer. The purpose of the pooling 
layer is to reduce the computing power required for data 
processing through dimensionality reduction. In addition, 
due to the combination of the output results of several neu-
rons of the convolution layer, the pooling layer produces 
features stable against rotation and position change. These 
features, known as dominant features, increase the speed 
of network convergence and cause better network training. 
Different functions can be used in the pooling layer. The 

most used are maximum and average functions. As the 
maximum one produces better results, according to the 
research, it is used in the pooling layer (Chen et al., 2016).

Fully connected layer
This layer combines the spectral and spatial features 

extracted in the previous layers to classify the input data. 
As the name suggests, for two successive layers to be fully 
connected, all neurons in this layer must be connected 
to all neurons in the next layer. The output value of the 
fully connected layer can be calculated from Eq. (3) using 
weight and bias values (Srivastava et al., 2014).

In Eq. (3), w(k)is the weight of the position k, and b 
is the bias value. In the discussion of classification with 
CNNs, the number of neurons of the last fully connected 
layer is selected as the number of classes using the maxi-
mum smoothing function calculated from Eq. (4). Pos-
sible output is produced that specifies the probability of 
the sample belonging to each of the classes. The sample 
belongs to the class with the highest probability.

(3)o(k) =
(
o(k−1)

)T
w(k) + b(k)

(4)y =
1∑M

K=1
e
WT

L,K
XL+bL,K

⎡⎢⎢⎣

e
WT

L,1
XL+bL,1

⋮

e
WT

L,M
XL+bL,M

⎤⎥⎥⎦

Fig. 2  Pavia dataset: a RGB 
color composite, b reference 
map
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In relation (4), M is the number of classes and the denom-
inator term of the fraction 

∑M

K=1
eW

T
L,K

XL+bL,K is only for the 
normalization of the softmax function.

Hyperspectral data

In this research, Pavia, DC Mall, and Indiana Pine, known as 
the benchmark images in the hyperspectral remote sensing, 
were used to evaluate the proposed method.

A. Pavia dataset

The image of Pavia was taken by the ROSIS-03 sensor 
from the urban area of Pavia in Italy (Chi et al., 2009). The 
images in this collection includes a spatial resolution of 1.3 
m and nine classes. Figure 2 shows color-false combina-
tion and reference map of Pavia. The classes of asphalt, 
meadows, gravel, trees, metal sheets, bare soil, bitumen, 
bricks, and shadows were chosen from this image’s 610 by 

340 pixels and 103 spectral bands to assess the classifica-
tion findings.

B. DC Mall dataset

The HYDICE sensor with a spatial resolution of 3 m resulted 
in the DC Mall dataset (Camastra, 1995). The above image 
includes 210 bands in the spectral range of 0.4 to 2.4 μm and 
seven classes of shadow, trees, grass, water, roads, rooftops, 
and trails. Figure 3 displays the color-false combination of this 
image and its reference map.

Fig. 3  DC Mall dataset: a RGB color composite, b reference map

Fig. 4  Indiana Pine dataset: a 
RGB color composite, b refer-
ence map

Table 1  Values of WG 
parameters in the three datasets 
used

Parameters Value

Population 100
Crossover probability 80%
Mutation probability 0.9%
K-tournament 2
K-elitism 2
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C. Indiana Pine dataset

The AVIRIS sensor with a spatial resolution of 20 meters 
captured the Indiana Pine image of an agricultural region 
in northwest Indiana in 1992 (Landgrebe, 2003). The 
image consists of 220 spectral bands in the range of 0.4 

to 2.5 μm, each with a width of 10 nm. Figure 4 displays 
the reference map and the color-false combination of the 
Indiana Pine image. This image has 16 classes, as you 
can see.

Each image’s defined classes are inversely correlated with 
its nature and complications. In all three image datasets, 10% 

Fig. 5  Pavia dataset classification maps: a SVM, b MLP, c MNF-MHS, d CNNs, e proposed approach
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of the labeled samples were randomly chosen as training data 
and the remaining 90% as test data.

Results and discussion

The values of the parameters derived from the WG method 
implementation, which are the same for all three image 
data, are displayed in Table 1.

The proposed classification method was compared with 
the algorithms from SVM, MLP, MNF-MHS (Akbari, 
2020b), and CNNs. Cross-validation approach was used to 
calculate the values of the two penalty parameters (C) and 
the Gaussian kernel (γ) in the SVM algorithm (Cristianini 
& Shawe-Taylor, 2000). Thus, the final values of the afore-
mentioned parameters were determined to be C=168 and γ 
= 0.02 for the Pavia image, C=240 and γ = 0.01 for the DC 
Mall, and C=156 and γ = 0.01 for the Indiana Pine image. 
Five hundred evaluations were performed on the MLP 

classification method, which was developed using 3 hidden 
layers with 5, 6, and 8 neurons. SVM classification map and 
Gaussian radial basis kernel were utilized to pick markers 
in the marker-based HSEG method. For this purpose, the 
labeling of the connected components was analyzed based 
on eight nearby pixels. In regions with more than 20 pixels, 
5% of the pixels with the highest probability of belonging 
to a class were selected as marker pixels. For small regions, 
fewer than 20 pixels, pixels with a degree of probability more 
than a threshold were chosen as marker pixels. The threshold 
corresponds to the likelihood that is 2% of the highest for the 
entire image (Van der Meer, 2006). The value of the param-
eter Swght was 0.2 for the HSEG method due to the complex-
ity of the hyperspectral images. Reference data was used to 
create the confusion matrix and to extract the parameters for 
overall accuracy (OA), kappa coefficient (κ), and producer 
accuracy for each class to assess the experiment’s accuracy 
(Rosenfield & Fitzpatric-Lins, 1986). The difference between 
the proposed approach and other classification methods was 
also assessed using the Z-statistic (Akbari et al., 2014).

Figure 5 shows the classification maps produced by the 
proposed methods via SVM, MLP, MNF-MHS, and CNNs. 
Compared to the previous methods, the map produced by the 
proposed technique has uniform areas.

The values of the accuracy parameters of the classifi-
cation maps derived from the Pavia hyperspectral image 
are displayed in Table 2 and Fig. 6. As shown, compared 
to the SVM, MLP, MNF-MHS, and CNN algorithms, 
the proposed technique has raised the kappa coefficient 
parameter by 16, 15, 10, and 9%, respectively. Addition-
ally, the proposed strategy has improved all classes’ accu-
racy, which now stands above 90%. The simultaneous use 
of deep learning methods and spatial information in the 
classification process may cause the proposed method’s 
improved accuracy. The accuracy of the findings can also 
be improved by dimensionality reduction using a weighted 
genetic algorithm.

Table 2  Accuracy values obtained for the Pavia image

Values in bold indicate the maximum accuracy value among the clas-
sification algorithms used

SVM MLP MNF-MHS CNNs Proposed 
approach

OA (%) 79.3 81.9 85.4 86.0 95.3
κ (%) 76.0 77.3 82.7 83.2 92.1
Asphalt 80.5 83.0 88.1 86.1 92.2
Meadows 84.0 86.1 87.0 87.2 95.9
Gravel 64.1 69.6 72.1 73.3 90.7
Trees 78.4 86.2 87.3 88.4 92.8
Metal sheets 86.4 85.3 87.1 87.8 96.6
Bare soil 84.4 86.9 85.9 89.4 94.4
Bitumen 80.6 85.2 83.7 82.8 91.0
Bricks 77.5 80.4 83.7 84.2 90.8
Shadows 80.4 79.2 83.3 86.2 95.9

Fig. 6  Comparison of the values 
of the two parameters of overall 
accuracy and kappa coefficient 
for the classification algorithms 
used in Pavia image
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The classification maps for the hyperspectral image of 
the DC Mall are displayed in Figure 7. As can be observed, 
the proposed method’s map is more uniform than the pre-
vious methods’ maps.

The values of the classification maps' accuracy param-
eters, derived from the hyperspectral image of the DC Mall, 
are displayed in Table 3 and Fig. 8. Compared to SVM, 

MLP, MNF-MHS, and CNNs, the proposed technique raised 
the kappa coefficient parameter in this image by 16, 17, 9, 
and 10%, respectively. Additionally, all classes—except for 
roofs—have improved accuracy according to the proposed 
strategy. The class roofs may have a low density and large 
dispersion in the image, contributing to this decline.

Figure 9 displays the classification maps for the hyper-
spectral image of Indiana Pine. As can be observed, the 
proposed method’s map is cleaner than the maps produced 
by existing methods.

Table 4 and Figure 10 provide the accuracy parameter 
values for the hyperspectral image of the Indiana Pine. 
The proposed strategy has improved the accuracy of this 
image. Comparing the kappa coefficient parameter to 
the SVM, MLP, MNF-MHS, and CNN algorithms, the 
increase is 15, 9, 4, and 1%, respectively. The proposed 
strategy has also boosted the accuracy of all classes. As 
previously said, the proposed method’s simultaneous use 
of deep learning techniques, dimensionality reduction, and 
spatial information may blame for the findings' growth.

To identify the position of the proposed method, we 
compared the results with some other deep learning meth-
ods. These methods are as follows:

Fig. 7  DC Mall dataset classification maps: a SVM, b MLP, c MNF-MHS, d CNNs, e proposed approach

Table 3  Accuracy values obtained for the DC Mall image

Values in bold indicate the maximum accuracy value among the clas-
sification algorithms used

SVM MLP MNF-MHS CNNs Proposed 
approach

OA 78.2 77.9 85.2 84.1 93.8
K 75.1 74.1 82.8 81.2 91.0
Shadow 86.1 86.4 87.4 85.5 93.6
Trees 81.1 83.1 86.2 84.3 90.8
Grass 72.3 72.1 81.1 78.6 87.6
Water 80.5 79.6 82.2 79.4 89.3
Road 77.7 80.3 81.5 81.5 90.1
Roofs 85.3 84.3 89.9 88.8 89.8
Trail 76.4 73.2 78.2 79.0 88.1
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(i) Edge-preserving filters (EPF): in this method, first, the 
hyperspectral image is classified with the help of a clas-
sifier such as SVM, and then edge preservation filtering 
such as a guide filter is applied to the possible classifi-
cation maps obtained. Finally, according to the filtered 
probability map, the class of each pixel is selected based 
on the maximum probability (Kang et al., 2013).

(ii) R-VCANet: this method is designed to extract deep 
features from hyperspectral images. R-VCANet has a 
much simpler network structure than other deep meth-
ods. Because the parameters of the convolution kernel 
are obtained through vertex component analysis (VCA), 
they need less number of training samples (Ojala et al., 
2002).

Fig. 8  Comparison of the values 
of the two parameters of overall 
accuracy and kappa coefficient 
for the classification algorithms 
used in DC Mall image

Fig. 9  Indiana Pine dataset classification maps: a SVM, b MLP, c MNF-MHS, d CNNs, e proposed approach
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(iii) Gabor filtering and deep network (GFDN): in the 
GFDN method, Gabor features are first extracted for 
the first three components of PCA and then placed next 
to the spectral ones, and the resulting spectral-spatial 
vector enters the deep SAE network (Kang et al., 2017).

(iv) RPNet: the RPNet method is a new deep learning 
method, randomly selected pieces of the image without 
considering any training as convolution kernels. These 
kernels are applied to extract features on the images 
(Chen et al., 2016).

Table 4  Accuracy values 
obtained for Indiana Pine image

Values in bold indicate the maximum accuracy value among the classification algorithms used

SVM MLP MNF-MHS CNNs Proposed 
approach

OA (%) 77.3 84.8 88.5 90.1 92.4
κ (%) 75.8 81.7 86.1 89.1 90.3
Corn-notill 75.2 80.2 90.8 92.4 92.5
Corn-mintill 79.2 83.1 90.7 90.6 90.8
Corn 79.4 79.4 83.7 92.0 92.3
Soybean-notill 83.0 84.7 90.5 92.4 92.4
Soybean-mintill 92.2 95.3 96.0 97.2 98.2
Soybean-clean 91.1 96.0 97.2 98.8 99.7
Alfalfa 89.1 88.9 93.2 92.9 94.4
Grass-pasture-mowed 92.2 92.5 99.4 98.6 99.9
Grass-trees 78.0 78.0 82.0 89.0 90.0
Grass-pasture 77.7 80.1 94.7 94.5 96.6
Hay-windrowed 70.9 72.2 90.9 90.0 90.6
Oats 87.7 87.7 94.0 98.1 98.4
Wheat 90.1 91.5 96.7 97.5 99.9
Woods 80.9 82.8 89.1 92.0 92.3
Buildings-grass-trees-drives 82.8 88.1 92.4 96.1 97.5
Stone-steel-towers 88.8 90.5 97.8 97.8 98.2

Fig. 10  Comparison of the 
values of the two parameters 
of overall accuracy and kappa 
coefficient for the classification 
algorithms used in Indiana Pine 
image

Table 5  Comparison of the 
method used in this research 
with competing methods

Values in bold indicate the maximum accuracy value among different methods

Dataset EPF R-VCANet GFDN RPNet HybridSN Proposed 
approach

Pavia 84.4 85.6 81.5 84.7 87.7 95.8
DC Mall 87 88.3 83.5 87.9 90.0 96.9
Indiana Pine 78.1 84.8 80.0 84.3 86.5 93.2
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(v) HybridSN: The HybridSN method uses the combina-
tion of 2D-CNNs with 3D-CNNs, in which deep spa-
tial features are extracted with the help of 2D-CNNs 
and entered into 3D-CNNs along with spectral ones, 
and classification is done (Singhal et al., 2017). The 
results of the comparison between this research and 
the proposed method, shown in Table 5, proved that 
the results of the proposed algorithm were superior to 
other methods due to the new architecture considered 
for CNNs and the integration of spatial features with 
spectral features.

The confusion matrices for the proposed approach and 
other methods are compared using the third accuracy crite-
rion, or Z-statistic, in addition to the previously mentioned 
criteria. Table 6 shows the outcomes of this test. As can be 
observed, for all three datasets, the proposed technique dif-
fers considerably from conventional classification methods.

Conclusion

The above research presents an object-based classification 
method with three consequences: (i) feature extraction based 
on a weighted genetic algorithm as a powerful tool to pre-
serve hyperspectral image information, (ii) image segmen-
tation interfering with the classification process through 
introducing spatial information, and (iii) deep learning 
classification method. No band, or information, is removed 
in the weighted genetic algorithm and assigned a weight 
between zero and one based on the information it contains. 
The EM and CNN algorithms used in the proposed method 
are also among the most accurate segmentation and clas-
sification algorithms in satellite images. Three benchmark 

hyperspectral images, Pavia, DC Mall, and Indiana Pine, 
were used to test the proposed approach. The results proved 
the superiority of this technique, quantitatively and quali-
tatively, compared to the four classification algorithms of 
SVM, MLP, MNF-MHS, and CNNs. The results of the DC 
Mall image showed that, unlike the other two images, the 
MNF-MHS algorithm reached better results than the CNNs 
algorithm, proving the higher importance of using spatial 
information compared to spectral information due to the 
higher complexity of this image. Future research will con-
centrate more on spatial data. To this end, techniques like 
nearest neighborhoods based on spectral and texture char-
acteristics can be mentioned to incorporate spatial correla-
tions or by utilizing the principles of multiple discriminant 
analysis, for instance, by using the wavelet tool, to improve 
the classification.
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