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Abstract
One of the most dangerous geo-hazards, landslides cause a progressive loss of rock and soil that have a negative impact on 
human lives, the ecosystem, and the global economy. Darjeeling Himalaya is one of the world’s young fold mountainous 
areas, often suffering from landslide hazards. Hence, the study identifies the landslide susceptibility zone in the Ragnu Khola 
River Basin of the Darjeeling Himalayan region by applying the geospatial-based MCDM technique. This research’s major 
goal is to identify whether this GIS-based multi-criteria decision-making (MCDM) technique is validated or not for landslide 
susceptibility zones (LSZ); if validated, then how much manifests for describing the LSZ in the study area. MCDM evaluation 
applies to determining weight value to integrate different thematic layers of river morphometry like drainage diversity (DD) 
parameters and relief diversity (RD) parameters. Both DD and RD have significant impacts on landslide intensity. Hence, 
both layers are combined using the analytical hierarchy process (AHP) of the MCDM technique for the final LSZ. The final 
result has been validated by ROC analysis using landslide occurring point data obtained from the Geological Survey of India 
(GSI). The outcome of the study shows that 1.45% and 17.83% of areas of the region fall in “very high” and “high” LSZ, 
which belongs to near Mull Gaon, Sanchal forest, and Alubri basty. Most of the area (47.70%) is observed in “moderate” 
LSZ. Only 1.32% and 31.7% are kept in “very low” and “low” LSZ, respectively, throughout the study area. The description 
capability of the technique for LSZ is significant as the area under the curve (AUC) is 72.10%. The validation of the study 
using the frequency density of the landslides (FDL) also indicates the “very high” LSZ is associated with the maximum 
(2.19/km2) FDL. The work will be necessary to develop the overall socio-economic condition of such kind of tectonically 
sensitive region through proper and effective planning.
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Introduction

A natural hazard is an extreme occurrence that harms 
humans or other things that we care about (White 1974). 
In mountainous regions, many natural hazards can hap-
pen in the form of landslides, avalanches, debris flows, and 

flash floods. Among them, landslides are the most common 
(Pourghasemi et al. 2012b). The saturation of soil and ero-
sion of rock by water increased due to high rainfall, reduced 
plant cover, and rapid urban growth in the hilly areas. As a 
result, landslides occur on high gradient slopes in mountain 
areas (Chamling 2013; Bhattacharya 2013; Nad 2015). The 
occurrences of landslides are directly caused risks to human 
beings and losses in private and public assets (Petley 2012; 
Pourghasemi et al. 2012b). However, a study from 1964 to 
1999 revealed that there is a positive increase in the number 
of landslide events happening around the world (Nadim and 
Kjekstad 2009). From 1990 to 2005, it accounted for 4.89% 
of all-natural disasters globally (Alano and Lee 2016; Islam 
and Khan 2018). Landslide susceptibility zones (LSZ) must 
be identified before landslide mitigation measures may be 
implemented (Varnes 1984).

 *	 Dipesh Roy 
	 dipeshroy47@gmail.com

	 Satyajit Das 
	 dassatyajit458@gmail.com

	 Rajib Mitra 
	 rajibmitrageo@gmail.com

1	 Department of Geography and Applied Geography, 
University of North Bengal, Siliguri, West Bengal, India

/ Published online: 26 September 2022

Applied Geomatics (2022) 14:731–749

http://orcid.org/0000-0001-7686-5236
http://orcid.org/0000-0002-3392-7932
http://orcid.org/0000-0002-3018-8935
http://crossmark.crossref.org/dialog/?doi=10.1007/s12518-022-00468-6&domain=pdf


1 3

Landslides are the most widespread disaster in the Dar-
jeeling Himalayan region. It is one of the world’s young 
fold mountainous regions. Climatic variability, tectonic 
disturbances, geological properties, and increased anthro-
pogenic activity such as road, building, and resort construc-
tion have integrated caused landslides in various regions of 
the Darjeeling Himalaya (Basu and Pal 2018). Landslide 
susceptibility studies in the Darjeeling Himalayas are found 
in the work of Bhattacharya (2013), Chawla et al. (2018), 
Chakraborty et al. (2018), Mandal and Mandal (2018), Das 
and Lepcha (2019), Saha and Saha (2021), Das et al. (2022). 
According to the expert opinion, several previous studies on 
landslide susceptibility mapping (LSM) were done based on 
manual interpretations of various thematic layers (Sarkar 
et al. 1995; Virdi et al.1997). Researchers have used quan-
titative approaches in contemporary periods, viz. artificial 
neural networks (Moayedi et al. 2019a, b; Lucchese et al. 
2021a, b; Jacinth Jennifer and Saravanan 2021; Mehrabi and 
Moayedi 2021), logistic regression analysis (Gu et al. 2021; 
Crawford et al. 2021; Sujatha and Sridhar 2021), fuzzy logic 
(Bahrami et al. 2021; Manaouch et al. 2021; Nanehkaran 
et al. 2021), multivariate regression analysis (Arabameri 
et al. 2019; Chu et al. 2019; Pham et al. 2021), and bivari-
ate regression analysis (Zhou et al. 2021) to delineate LSZ. 
Machine learning approaches are now widely used to predict 
natural disasters such as floods, wildfires, earthquakes, and 
doughtiness, among others (Hong et al. 2018; Ahmadlou 
et al. 2019; Mehrabi 2021).

Now, this study uses a multiple-criteria decision-making 
(MCDM) approach from remotely sensed data to emphasize 
the need to create the thematic layers of landslide trigger 
factors that account for the zonation of possible landslide 
hazard zones (Saha et al. 2002, Sarkar and Kanungo 2004). 
Morphology is the measurement and quantitative investi-
gation of the earth’s surface and landforms (Clarke 1996; 
Agarwal 1998; Reddy et al. 2004). To understand the hydro-
geological properties, morphometric analysis is essential. It 
also expresses the prevailing climatic, topographic, geologi-
cal, and geomorphological conditions of the concerned area 
(Horton 1945; Strahler 1952; Hurtrez et al. 1999; Basu and 
Pal 2018).

The study has been conducted using morphometric vari-
ables to demonstrate the LSM of the Ragnu Khola River 
Basin in the Darjeeling Himalayan region. To achieve the 
goal, a large number of morphometric variables were taken 
into account. The two broad aspects of morphometric analy-
sis used to identify LSZ, viz. drainage diversity (DD) and 
relief diversity (RD) (Pal and Saha 2017; Basu and Pal 2018; 
Basu and Pal 2019). In the present study, the authors have 
used the analytical hierarchy process (AHP) for the weight 
generation of different landslide susceptibility indicators. 
The AHP is a widely used strong MCDM technique for 
weighting the indicators (Navarro et al. 2019; Kaur et al. 

2020; Zarei et al. 2021), as postulated by Saaty (Saaty 2004, 
2008). An attempt to check the final output map is also made 
during the accuracy assessment. The work’s novelty lies in 
the utilization of morphometric techniques with the integra-
tion of the AHP method in the studied region. There is no 
published systematic and scientific research based on the 
landslide susceptibility mapping of this study area. The work 
is original, and this kind of study has not already been found 
in this area. Therefore, the authors found the research gaps in 
this landslide-prone river basin in the Darjeeling Himalayan 
region and selected it for the current study. The outcome of 
the work will aid government agencies, policymakers, and 
planners in reducing landslide-related damages and proper 
planning for land use in the areas with “very high” landslide 
susceptibility of the Ragnu Khola River Basin.

Materials and methods

Study area

The Ragnu Khola River basin, considered the study area, is 
located in the Darjeeling district of West Bengal in India. 
The latitudinal extension of this river basin is from 27° 00′ 
19″ N to 27° 06′ 30″ N, the longitudinal extension is from 
88° 16′ 03″ E to 88° 21′ 21″ E, and the basin area is about 
64.79 km2. The river Ragnu Khola is also known as the 
Rongdong River. It is a very small river basin originating 
from the eastern down part of Darjeeling town. The drain-
age pattern of this river basin is the dendritic type which 
means that the river basin has structural control. The Ragnu 
Khola River finally meets with the Bari Rangit River, which 
is the major tributary of the Tista River. This river flows 
in the north-eastern direction based on the natural slope of 
the region. The basin elevation ranges from 230 to 2478 m, 
and most of the area is rocky type. The climatic condition 
of this river basin is monsoon type, and most of the rainfall 
happens during this monsoon period. The average annual 
rainfall of the region is approximately 3094.40 mm. In sum-
mer, the maximum temperature is about 26 °C, while the 
minimum temperature is about 19 °C. But in the winter sea-
son, it remains very low such as the maximum temperature is 
about 6 °C and the minimum temperature is − 2 °C (District 
Survey Report 2021;  Climate-Data.Org 2021). Most of the 
landslides occur during the rainy season when heavy rainfall 
occurs in a short period. Figure 1 depicts the location map 
of the study area with the spatial distribution of historical 
landslide sites within the basin.

Data acquisition and methods for LSM

For extracting the stream network of the Ragnu Khola 
River Basin, a toposheet has been collected from the 
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Survey of India (SOI). The topographical map has the 
G45E8 number on a 1:50,000 scale. The map was geo-
referenced using ArcGIS software in the UTM projection 
45 north zone, with datum WGS 1984, and all stream net-
works of the study area were digitized. Along with this, 
the researchers also used SRTM DEM (30 m) to deline-
ate the basin with the help of the ArcGIS “hydrology” 
tool. The necessary data and maps are also collected from 
the different government websites. The acquired datasets 
are mentioned in Table 1, and the methodological frame-
work of the work is shown in Fig. 2. The essential part of 
delineating LSM is the selection of appropriate landslide 
conditioning indicators. Hence, the present study was con-
sidered based on the frequent landslide occurring factors 
used in several studies (Arabameri et al. 2017; Saleem 
et al. 2019; Liu et al. 2021). Here, 16 indicators are taken 
as landslide conditioning indicators, categorized into two 
broad groups: relief diversity (RD) and drainage diversity 
(DD). A detailed description of the RD and DD indicators 
is given below:

Relief diversity indicators

The basin elevation (Be) is vital in landslide conditioning 
indicators as its gravitational potential energy (Chen et al. 
2019). Variation in elevation of any region affects the geo-
morphological features, nature of the vegetation, and degree 
of erosion. Thus, changes in elevation influence landslide 
susceptibility (Chen et al. 2017). The relief map of the 
region is depicted in Fig. 3a. The slope (Sl) is considered 
the most significant indicator for mapping landslide suscep-
tibility. It can be used to know the steepness of the topog-
raphy (Chen et al. 2019), and it has a direct influence on 
occurrences of landslides. The “Sl” map has been prepared 
from SRTM DEM (30 m resolution). The basin exhibits a 
variety in “Sl,” ranging from 0.33 to 59.42°, as displayed in 
Fig. 3b. As a topographic indicator, the aspect (As) affected 
the landslides, which are triggered due to rainfall (Beullens 
et al. 2014; Gorokhovich and Vustianiuk 2021). It is referred 
to as the direction of the slope of any region. It is interrelated 
with the microclimatic parameters and azimuth of the flow 

Fig. 1   a India, b West Bengal, c Darjeeling district, and d Ragnu Khola River Basin in the Darjeeling Himalaya with landslide occurrence points
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(Erener and Düzgün 2010; Mondal and Mandal 2019). It 
also affects the variation in temperature, relative humidity, 
and vegetation coverage of a slope (Bennie et al. 2006). The 
“As” map of the study area is depicted in Fig. 3c. The land-
slide susceptibility mapping is interrelated with the litho-
logical properties of that area (Pourghasemi et al. 2012a; 
Mandal and Maiti 2014). The rock strength and permeability 
of the land surface vary as per the lithological formations 
(Ayalew and Yamagishi 2005; Wang et al. 2020). The litho-
logical data has been obtained from the Geological Survey 
of India (GSI). It manifested that three formations are pre-
sent in the basin, i.e., Gorubathan, Kanchenjunga Gneiss, 
and Chungthang, as displayed in Fig. 3d. Most of the part 
of the basin is covered with the Kanchenjunga Gneiss for-
mation. The ruggedness index (Ri) is used to understand 
the instability and structural complexity of the topography 
(Strahler 1956; Schumm 1956). The basin demonstrates the 
range of “Ri” is from 0 to 3.12 (Fig. 3e). It was computed 
using Eq. 1, where Rr stands for relative relief, Dd stands 

for drainage density, and K stands for constant (Patton and 
Baker 1976).

The presence of lineaments in any area directly influ-
ences landslide susceptibility (Keefer and Larsen 2007; 
Kaur et al. 2018). Hence, it has been taken as an essential 
landslide conditioning indicator. It represents the geo-
morphologic signatures like topographic breaks, shear 
zones, tectonic structures, and discontinuities (Sarkar and 
Kanungo 2004; Ayalew and Yamagishi 2005). The line-
ament density (Ld) map of the basin is represented using 
the “line density” tool in ArcGIS. The “Ld” value ranges 
from 0 to 1.83 km/km2 (Fig. 3f). The Higher “Ld” region 
has a high probability of frequent landslides (Erener and 
Düzgün 2010). Soil is an essential indicator for mapping 
landslides susceptibility because shallow depth soils are 
mostly affected during landslides (Sharma et al. 2012). 

(1)Ri =
Rr × Dd

K

Table 1   Data used and their sources to identify LSZ in the Ragnu Khola River Basin

Data Parameters Symbol Source Resolution Classification method

Topographical 
map

Dissection index Di Survey of India (SOI)
https://​soina​kshe.​uk.​gov.​in/

30*30 Natural break (Moayedi et al. 2019a, b)

Ruggedness index Ri SOI
https://​soina​kshe.​uk.​gov.​in/

30*30 Natural break (Moayedi et al. 2019a, b)

Relative relief Rr SOI
https://​soina​kshe.​uk.​gov.​in/

30*30 Natural break (Moayedi et al. 2019a, b)

Basin elevation Be SOI
https://​soina​kshe.​uk.​gov.​in/

30*30 Natural break (Moayedi et al. 2019a, b)

Stream frequency Fs SOI
https://​soina​kshe.​uk.​gov.​in/

30*30 Natural break Moayedi et al. 2019a, b)

Drainage density Dd SOI
https://​soina​kshe.​uk.​gov.​in/

30*30 Natural break Moayedi et al. 2019a, b)

Length of overland flow Lo SOI
https://​soina​kshe.​uk.​gov.​in/

30*30 Natural break Moayedi et al. 2019a, b)

Drainage texture Dt SOI
https://​soina​kshe.​uk.​gov.​in/

30*30 Natural break Moayedi et al. 2019a, b)

Junction frequency Jf SOI
https://​soina​kshe.​uk.​gov.​in/

30*30 Natural break Moayedi et al. 2019a, b)

Infiltration number In SOI
https://​soina​kshe.​uk.​gov.​in/

30*30 Natural break Moayedi et al. 2019a, b)

ASTER DEM Slope Sl United States Geological Survey 
(USGS)

https://​earth​explo​rer.​usgs.​gov/

30*30 Natural break Moayedi et al. 2019a, b)

Aspect As USGS
https://​earth​explo​rer.​usgs.​gov/

30*30 Natural break Moayedi et al. 2019a, b)

Geological 
map

Lithology Lg Geological Survey of India (GSI)
https://​www.​gsi.​gov.​in/

30*30 Lithological units

Lineament density Ld GSI
https://​www.​gsi.​gov.​in/

30*30 Natural break Moayedi et al. 2019a, b)

Soil map Soil type St National Bureau of Soil Survey and 
Land Use Planning (NBSS and 
LUP)

https://​www.​nbssl​up.​in

30*30 Textural units
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In the study area, two soil classes are identified (Fig. 3g) 
from the soil map of the NBSS and LUP. The classes are 
“W002” (coarse loamy) and “W004” (loamy-skeletal). 
Both soils are moderately shallow in-depth, and well-
drained. “W002” soil is associated with strong rockiness 
and severe erosion, while “W004” soil has moderate rocki-
ness and moderate erosion. Relative relief (Rr) is the dif-
ference in the highest and lowest altitude of a unit area. 
It is also known as “amplitude of relief” or “local relief” 
(Iqbal et al. 2021). It helps to analyze the morphological 
properties of the topography (Gayen et al. 2013; Basu and 
Pal 2019). The “Rr” map of the study area is prepared 

using Eq. 1 by applying the grid method and the “IDW” 
tool in ArcGIS. The basin represents the “Rr” value varies 
from 140 to 895 m (Fig. 3h). The formula of “Rr” is as 
follows (Smith 1935):

where, H is the highest altitude, and h is the lowest altitude 
of a unit area. The high “Rr” zone is associated with land-
slide susceptible zones (Das and Lepcha2019). Dissection 
index (Di) is one of the landslide conditioning parameters 
and has been considered by several researchers (Altın 

(2)Rr = H − h,

Fig. 2   Methodological frame-
work of the present study
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and Gökkaya 2018; Basu and Pal 2019; Das and Lepcha 
2019). “Di” is known as the ratio between relative relief 
and absolute altitude (Nir 1957). It shows the stage of the 
landscape development and dissection of the river basin 
(Altın and Gökkaya 2018; Basu and Pal 2019). The study 
area reflects the “Di” value which varies from 0.05 to 0.58 
(Fig. 3i). The regions with high and very high “Di” values 
are related to the steep sloping lands and high landslide 
susceptible zone.

Drainage diversity indicators

Drainage density (Dd) is used in the study as the drainage 
diversity (DD) parameter. “Dd” is one of the prominent 
landslide conditioning indicators (Sahana and Sajjad 2017). 
It can be defined as follows (Strahler 1964):

where, L� denotes the total length of the river, and 
A denotes the area drained. The higher “Dd” areas are 

(3)Dd =
L�

A

mainly associated with the regions with slope failure; 
hence, it causes landslide phenomena in the hilly water-
shed (Hasegawa et al. 2014). The value of “Dd” in the 
study area ranges from 1.84 to 7.15 km/km2 (Fig. 4a). 
The factor stream frequency (Fs) has a direct relationship 
with the landslides. In this region, “Fs” varies from 3 to 
24 streams/km2, as illustrated in Fig. 4b. The higher “Fs” 
implies higher chances of landslides and vice versa. For 
the present study, “Fs” is computed using Eq. 4, as follows:

where N� represents the total number of rivers, and A 
represents the area (Horton 1945). Drainage intensity 
(DI) is expressed as the ratio between stream frequency 
and drainage density (Faniran 1968). It represents the 
runoff characteristics of any region (Basu and Pal, 2019). 
Here, “DI” ranges from 0.64 to 5.85, as depicted in 
Fig. 4c. Higher “DI” areas are characterized by maximum 
possibilities of landslide hazard, while lower “DI” areas 
are represented with fewer chances (Das and Lepcha 

(4)Fs =
N�

A

Fig. 3   Raster maps of different relief diversity parameters. a Basin relief, b slope, c slope aspect, d lithological formation, e ruggedness index, f 
lineament density, g soil type, h relative relief, and i dissection index of the Ragnu Khola River Basin in the Darjeeling Himalaya
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2019). Drainage texture (Dt) is associated with the rock, 
relief, soil, climate, and vegetation characteristics of any 
region (Kale and Gupta 2001). “Dt” can be expressed as 
follows (Horton 1945):

where, N� is depicted as the number of streams, and P is 
depicted as the perimeter of the basin. The study area has 
“Dt” value from 0 to 6 streams/km (Fig. 4d). The stream 
junction frequency (Jf) is another crucial morphometric 
parameter of a river basin that influences landslide phe-
nomena. “Jf” is defined as the presence of stream junc-
tion points in each grid (Das and Lepcha 2019). It indi-
cates the area with an unstable slope; hence, a high “Jf” 
value caused landslides. The “Jf” of the region ranges 
from 0 to 12.99 (Fig. 4e). Infiltration number (In) as a 
morphometric parameter illustrated the runoff intensity 
and infiltration capacity of the region (Strahler 1964). 

(5)Dt =
N�

P

The higher “In” implies high runoff and low infiltration, 
and vice versa. The higher rate of infiltration accelerated 
the movement of landslides (Basu and Pal 2019). The 
“In” is calculated for the present study area using the 
following equation (Zavoiance 1985):

where, Dd represents the drainage density, and �� represents 
the stream frequency. In the study area, “In” varies from 
7.59 to 121.04 (Fig. 4f). The length of overland flow (Lo) 
is used as an important morphometric parameter. In terms 
of hydrologic and physiographic growth, “Lo” impacts the 
drainage basin (Horton 1932). Luo et al. (2015) investigated 
the influence of “Lo” on shallow landslides caused by rain-
fall. The “Lo” is calculated using the following equation 
(Horton 1945):

(6)In = Dd × ��

(7)Lo =
1
∕2 × Dd

Fig. 4   Raster maps of different drainage diversity parameters. a Drainage density, b stream frequency, c drainage intensity, d drainage texture, e 
junction frequency, f infiltration number, and g length of overland flow of the Ragnu Khola River Basin in the Darjeeling Himalaya
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where Dd is the drainage density. The study area exhibits 
the “Lo” value ranging from 0.92 to 3.57 km, as depicted 
in Fig. 4g.

Weight value calculation by AHP

The work primarily focuses on preparing the DD and RD the-
matic layers. Hence, drainage density (Dd), drainage texture 
(Dt), drainage intensity (DI), infiltration number (In), stream 
frequency (Fs), length of overland flow (Lo), and junction fre-
quency (Jf) factors were analyzed and combined to create the 

DD layer. On the other hand, the relief diversity (RD) layer 
was prepared by the integration of basin elevation (Be), soil 
type (St), dissection index (Di), ruggedness index (Ri), rela-
tive relief (Rr), slope (Sl), aspect (As), lithology (Lg), and 
lineament density (Ld) parameters (Pal and Saha 2017; Basu 
and Pal 2018; Basu and Pal 2019). Finally, LSM has been 
created using AHP techniques by integrating the RD and DD 
thematic layers with a 50% weightage value for both in Arc-
GIS software. The AHP is a one-level scoring process that 
examines indicators using a pair-wise comparison matrix table 
(Saaty 1990). A nine-point scale (Table 2) is used to rate each 
criterion’s relative preferences on each basis (Malczewski 
2006). The scale was utilized to give a verbal expression to the 
numerical values that were then employed as computed trans-
lations to calculate factor weights for correct mapping. The 
main objective of the AHP framework is to score the weight of 
each LSZ determining factor. The quality of the outcome was 
highly discretionary because of the subjective nature of pair-
wise comparisons. Due to several paths on which the relative 
relevance of components was appraised, the level of consist-
ency was employed in making the judgments. The weights of 
LSZ parameters such as “Dd,” “Dt,” “DI,” “In,” “Fs,” “Lo,” 
“Jf,” “Be,” “St,” “Di,” “Ri,” “Rr,” “Sl,” “As,” “Lg,” and “Ld” 
are summarized in the pair-wise comparison matrix (Table 3 
and Table 4). Here, normalized weights were assigned and 

Table 2   Saaty’s (2005) scale of relative importance

Numerical value Definition

1 Equal importance
2 Equal to moderate importance
3 Moderate importance
4 Moderate to strong importance
5 Strong importance
6 Strong to very strong importance
7 Very strong importance
8 Very to extremely strong importance
9 Extreme importance

Table 3   Pair-wise comparison 
matrix of nine selected 
parameters for preparing relief 
diversity map

Be basin elevation, Sl slope, As aspect, Lg lithology, St soil type, Ld lineament density, Rr relative relief, Ri 
ruggedness index, Di dissection index

Be Sl As Lg St Ld Rr Ri Di Weight

Be 1.00 0.17 4.00 0.14 0.17 0.17 0.20 1.00 1.00 0.03
Sl 6.00 1.00 9.00 5.00 2.00 5.00 6.00 5.00 6.00 0.32
As 0.25 0.11 1.00 0.20 0.17 0.17 0.20 0.25 0.25 0.01
Lg 7.00 0.20 5.00 1.00 1.00 2.00 4.00 5.00 4.00 0.15
St 6.00 0.50 6.00 1.00 1.00 4.00 5.00 6.00 6.00 0.20
Ld 6.00 0.20 6.00 0.50 0.25 1.00 2.00 4.00 5.00 0.10
Rr 5.00 0.17 5.00 0.25 0.20 0.50 1.00 4.00 4.00 0.08
Ri 1.00 0.20 4.00 0.20 0.17 0.25 0.25 1.00 1.00 0.04
Di 1.00 0.17 4.00 0.25 0.17 0.20 0.25 1.00 1.00 0.03

Table 4   Pair-wise comparison 
matrix of seven selected 
parameters for preparing 
drainage diversity map

Fs stream frequency, DD drainage density, DI drainage intensity, DT drainage texture, LO length of over-
land flow, JF junction frequency, IN infiltration number

Fs Dd DI Dt Lo Jf In Weight

Fs 1.00 0.20 1.00 0.17 1.00 1.00 4.00 0.08
Dd 5.00 1.00 4.00 1.00 5.00 4.00 5.00 0.30
DI 1.00 0.25 1.00 0.20 1.00 1.00 5.00 0.09
Dt 6.00 1.00 5.00 1.00 5.00 5.00 5.00 0.34
Lo 1.00 0.20 1.00 0.20 1.00 1.00 1.00 0.07
Jf 1.00 0.25 1.00 0.20 1.00 1.00 2.00 0.07
In 0.25 0.20 0.20 0.20 1.00 0.50 1.00 0.04
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ranked given to each sub-classes. The consistency ratio (CR) 
was defined as the ratio between the consistency index and the 
random consistency index (Mukherjee and Singh 2020). The 
inconsistency is permitted if the consistency ratio is less than 
or equal to 0.1, but if the consistency ratio is larger than 0.1, 
the subjective judgment must be revised. The CR is expressed 
as:

where, RCI = the random consistency index, and CI = consist-
ency index, which can be expressed as follows:

where, ⅄max = the biggest particular value in the matrix, and 
n − 1 = the matrix’s order. The RCI value is depicted in Table 5 
based on Saaty (1990). The CR is scaled from 0 to 1, where 
1 indicates the chance of a randomly produced matrix and 
CR less than 0.10 indicates a reasonable level of homogene-
ity (Malczewski 2006). The resulting weights are shown in 
Table 6 with an acceptable CR. As the linear weighted com-
bination computation rule, weights should add up to 1.0, i.e.,

Validation of the work

Validation of the LSZ is required for the scientific significance 
and utility of the study. The final LSZ of the present study area 
has been validated through systematic validation processes. In 
the first step, validation is done by computing the frequency 
density of landslides with the landslide occurrences data of the 
GSI. In the second step, the final map is validated by prepar-
ing the ROC-AUC (Receiver Operating Characteristic-Area 
Under the Curve). This ROC-AUC has been prepared in Arc-
GIS software using the “ArcSDM” tool. It is a helpful tool 
used to validate the final susceptibility map of such kinds of 
studies. The landslide sample points used for validation are 
presented in the study area’s location map (Fig. 1). We used 
the historical landslide data of the studied region, which was 
collected from the Geological Survey of India (GSI). In the 
ROC, FPR (false positive rate) and TPR (true positive rate) 
have been calculated using Eqs. 11 and 12. The FPR denotes 
the proportion of incorrect predictions in the positive class, 

(8)CR =
CI

RCI

(9)CI =
�max − n

n − 1

(10)
n
∑

j=1

wj = 1

and the TPR denotes the proportion of correct predictions in 
the positive class.

where FP is the total number of false positives, TN is the total 
number of true negatives, TP is the total number of true posi-
tives, and FN is the total number of false negatives.

Results

Relief diversity of the basin

The relief diversity (RD) represents the vulnerability of the 
study area based on terrain properties and slope instability 
(Basu and Pal 2019). It has been produced in respect of nine 
parameters, viz. “Be,” “Rr,” “Di,” “Ri,” “Sl,” “As,” “Lg,” “Ld,” 
and “St” of the basin. The produced map was categorized 
into five successive zones, i.e., “very low” (2.40%), “low” 
(34.02%), “moderate” (45.01%), “high” (18.01%), and “very 
high” (0.56%), as illustrated in Fig. 5a. In this vulnerability 
indicator, the “moderate” zone bears the highest area, while 
the “very high” zone bears the lowest area and is found in 
the southwestern part of the basin. Basically, in terms of the 
condition of the terrain, the “very high” relief diversity zone is 
most vulnerable, and the “very low” zone is least vulnerable, 
occupied in the lower section of the basin.

Drainage diversity of the basin

The drainage diversity (DD) of the basin is portrayed based on 
the strength of the properties of the drainages (Basu and Pal 
2019). It results from the “Fs,” “Dd,” “Dt,” “DI,” “Lo,” “Jf,” 
and “In.” The spatial distribution of the DD is displayed in 
Fig. 5b, and it is also categorized into five classes, viz., “very 
low,” “low,” “moderate,” “high,” “very high.” The “very high” 
DD is mainly found in the upper part of the region, and it has 
been successively low towards the lower reaches. The “very 
high” zone is characterized by steep sloping land, high drain-
age density, high stream frequency, and vice-versa. The “low” 
DD zone occupies the maximum area (45.54%) of the basin, 
while the “very high” zone occupies the minimum extent 
(5.07%). The “moderate” DD zone covered 25.98% area, the 

(11)FPR =
FP

FP + TN

(12)TPR =
TP

TP + FN

Table 5   Random consistency 
index (RCI) based on Saaty 
(1990)

n 1 2 3 4 5 6 7 8 9 10 11 12 13

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56
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Table 6   Normalized weight 
for all parameters based on 
AHP and rank given to their 
sub-classes based on landslide 
vulnerability

Parameters Classes AHP normal-
ized weights

Influence (%) Rank of sub-classes 
based on Saaty’s 
scale

Drainage diversity (DD) parameters
  Drainage density 1.84–3.34 0.306 30.6 1

3.34–4.07 2
4.07–4.74 3
4.74–5.63 4
5.63–7.15 5

  Drainage texture 0–1 0.340 34.0 1
1–2 2
2–3 3
3–4 4
4–6 5

  Drainage intensity 0.64–1.71 0.091 9.1 1
1.71–2.17 2
2.17–2.67 3
2.67–3.71 4
3.71–5.85 5

  Infiltration number 7.59–31.26 0.043 4.3 1
31.26–43.77 2
43.77–63.87 3
63.87–88.44 4
88.44–121.04 5

  Stream frequency 3–7 0.082 8.2 1
7–9 2
9–13 3
13–16 4
16–24 5

  Length of overland flow 0.92––1.67 0.064 6.4 1
1.67–2.03 2
2.03–2.37 3
2.37–2.81 4
2.81–3.57 5

  Junction frequency 0.00–2.59 0.074 7.4 1
2.59–5.19 2
5.19–7.79 3
7.79–10.29 4
10.39–12.99 5

Relief diversity (RD) parameters
  Basin elevation 230–722 0.032 3.2 1

722–1086 2
1086–1446 3
1446–1820 4
1820–2478 5

  Soil type Loamy skeletal 0.207 20.7 5
Coarse loamy 2

  Dissection index 0.05–0.21 0.034 3.4 1
0.21–0.28 2
0.28–0.34 3
0.34–0.42 4
0.42–0.58 5
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“very low” DD zone covered 14.01% area, and the “high” DD 
zone covered 9.40% area of the region.

Landslide susceptibility zones

The landslide susceptibility mapping (LSM) of the Ragnu 
Khola River Basin was prepared using the AHP MCDM 
method based on16 morphometric parameters. In this study, 
mainly LSM is related to the morphometric characteristics of 
the river. It represents the landslide susceptibility of the region 
in relation to relief and drainage conditions (Basu and Pal 
2019). The LSM is displayed in Fig. 6 with five distinct zones. 
The zones are categorized using the natural break classification 

technique to stratify the generated map into five susceptibility 
groups (Akgun et al. 2012; Jaafari et al. 2014; Achour et al. 
2017; Moayedi et al. 2019a, b), viz. “very low,” “low,” “moder-
ate,” “high,” and “very high.” The “moderate” susceptible zone 
contains most of the area (47.70%) of the region, followed by 
“low” zone (31.70%), “high” zone (17.83%), “very high” zone 
(1.45%), and “very low” zone (1.32%) (Fig. 7).

The spatial distribution pattern demonstrates that the 
occurrences of landslide phenomena have been decreas-
ing from the higher elevated lands to the lower elevated 
lands of the basin, i.e., from the southwest to the north-
east corner of the map. Therefore, the upper catchment is 
very highly susceptible to landslide hazards. The “very 

Table 6   (continued) Parameters Classes AHP normal-
ized weights

Influence (%) Rank of sub-classes 
based on Saaty’s 
scale

  Ruggedness index 0.00–0.58 0.035 3.5 1

0.58–1.13 2

1.13–1.76 3

1.76–2.46 4

2.46–3.12 5
  Relative relief 140–357 0.080 8.0 1

357–443 2
443–512 3
512–601 4
604–895 5

  Aspect Flat 0.018 1.8 2
North 2
Northeast 2
East 2
Southeast 2
South 3
Southwest 3
West 2
Northwest 2
North 2

  Slope 0.33–15.86 0.328 32.8 1
15.86–23.27 2
23.27–29.99 3
29.99–37.87 4
37.87–86.42 5

  Lithology Gorubathan 0.159 15.9 2
Kanchenjunga gneiss 4
Chungthang 3

  Lineament density 0–0.28 0.107 10.7 1
0.28–0.79 2
0.79–1.21 3
1.21–1.57 4
1.57–1.83 5
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high” zone is associated with highly elevated land, bear-
ing 1820 to 2478 m in height. The region is also repre-
sented by high “Dd” (5.63 to 7.15 km/km2), maximum 
“Jf” (10.39 to 12.99), and “Fs” (13 to 24 streams/km2), 
and highly rugged topography. Geologically, the zones 
ranging from "very high” to “moderate” landslide sus-
ceptibility are situated over the Kanchenjunga Gneiss 
formation and high lineament density zone (0.79 to 
1.83 km/km2). The “high” susceptible areas are most 
vulnerable in terms of both DD and RD. Here, the rate 
of soil erosion is high due to extreme DD and RD, and 
the region is not suitable for agricultural and construc-
tional activities (Pal and Saha 2017). The Chungthang 
and Gorubathan formation are less susceptible to land-
slides in the basin. The “low” and “very low” susceptible 
areas are less in terms of “Dd” (1.84 to 4.07 km/km2), 
ruggedness (0 to 1.13), and “Rr” (140 to 443 m). These 
zones are often found between 230 to 722 m altitudes, 
with “Ld” ranging from 0 to 0.28 km/km2.

Validation

Based on the landslide occurrence data of the study area, the 
authors have computed the frequency density of landslides 
(FDL) (Basu and Pal 2019), as illustrated in Table 7. The 
“very high” (2.19/km2) FDL is associated with the “very 
high” LSZ. The “high” (0.80/km2) FDL area is also found 
for the “high” LSZ. In comparison, the “moderate” (0.36/
km2) FDL actually falls in the “moderate” LSZ. “Very low” 
LSZ indicates no landslide point due to the FDL being zero. 
The second method entails creating a ROC for verification 
of the LSZ. The AUC achieved by the model is based on the 
landslide inventory map (Fig. 1c) and the produced landslide 
susceptibility map of the river basin. The outcome reveals 
0.721, i.e., 72.10% area under the curve (AUC) (Fig. 8). The 
AUC value ranges from 0.60 to1, where 0.60–0.70 show sat-
isfactory, 0.70–0.80 show good, 0.80–0.90 show very good, 
and 0.90–1 show excellent outcome (Mitra and Roy 2022). 
The result of the study area implies a good accuracy rate as it 

Fig. 5   a Relief diversity and b drainage diversity maps of the Ragnu Khola River Basin in the Darjeeling Himalaya
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falls between 0.70 to 0.80 (Rasyid et al. 2016). Therefore, all 
the morphometric indicators are acceptable in determining the 
landslide susceptibility model of the Ragnu Khola Basin. The 
google earth images of landslide-prone areas also manifest in 
Fig. 9, mainly dominating in the “high” to “very high” LSZ.

Discussion

In the Darjeeling Himalayas, landslides are the most frequent 
natural disaster, and they have been enlarging progressively 
(Chawla et al. 2018). It is an unavoidable natural disaster 
that directly threatens the economic and social progress of 

Darjeeling Himalaya. Landslides can be triggered by natural 
as well as man-made activities such as rainstorms, earth-
quakes, deforestation, etc. It has a high death toll and causes 
significant damage to land and property (Ngo et al. 2021).

The landslide susceptibility areas of the Ragnu Khola 
River Basin in the Darjeeling Himalayan region were 
illustrated by integrated morphometric data and the GIS-
based MCDM method throughout this study. It classified 
the river basin into five distinctive zones. Accuracy is 
typically calculated according to DeLong et al. (1988) 
by (TP + TN)/(TP + TN + FP + FN). The accuracy level 
of the produced LSM is 72.10%. The research identified 
that about 20% area of the river basin was demarcated 

Fig. 6   Landslide susceptibility 
zones in the Ragnu Khola River 
Basin of Darjeeling Himalaya
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in a highly landslide-prone zone, and about 50% area 
was demarcated in the moderate landslide-prone zone; 
therefore, the study area is considered very much sus-
ceptible to landslides in the Darjeeling Himalayan 
region. A similar kind of study in this region has been 
done by Basu and Pal (2018). They also demonstrated 
that 7.61% area of the Gish Basin was very much land-
slide susceptible with an 86.60% predicted rate. Several 
studies, viz., Bhattacharya (2013), Chawla et al. (2018), 
Chakraborty et al. (2018), Mandal and Mandal (2018), 

Fig. 7   Area-wise distribution of 
landslide susceptibility zones in 
the Ragnu Khola River Basin
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Table 7   Frequency density of landslide (FDL) occurrences in differ-
ent landslide susceptibility zones

Landslide suscep-
tibility zones

Area in km2 Number of 
landslides

FDL (no./km2)

Very high 0.90 2 2.19
High 11.50 9 0.80
Moderate 30.45 11 0.36
Low 20.28 6 0.29
Very low 0.90 0 0

Fig. 8   ROC curve for validation 
of the landslide susceptibility 
zones

744 Applied Geomatics (2022) 14:731–749



1 3

Das and Lepcha (2019), Saha and Saha (2021), and Das 
et al. (2022) also observed in the Darjeeling Himalayan 
region as it is very much frequent in the study area.

The study can be improved by comparative analysis 
of the landslide susceptibility maps of the river basin 
produced by different MCDM as well as machine learn-
ing methods. For the validation of landslide susceptibil-
ity mapping, ROC-AUC (Sameen et al. 2020; Lucchese 
et al. 2021a, b) is a popular method, but there are some 
other validation techniques like kappa index (Gautam 
et al. 2021), Information Gain Ratio (IGR), and some 
statistical inferences such as sensitivity, specificity, posi-
tive predictive value, negative predictive value, accuracy, 
etc. (Nhu et al. 2020), can be applied for landslide sus-
ceptibility mapping work (Afolayan et al. 2020). In spite 
of ROC-AUC, other statistical validation techniques like 
MAE (mean absolute error) and RMSE (root mean square 
error) can be applied for further study (Afolayan et al. 
2020). The primary purpose of this investigation is to 
determine how the morphometry of a river basin impacts 
the landslides and their consequences and to recommend 
critical ways to reduce their severity in the Darjeeling 

Himalaya. The findings of this study reveal that while 
landslides and their effects cannot be entirely eliminated, 
they can be reduced to less severe and less dangerous by 
taking only some simple precautions.

Landslide is a persistent threat to human life and live-
lihood in most parts of the world, particularly in hilly 
areas where population and economy have been rapidly 
expanded. So, some landslide preventive measures should 
be adopted to maintain the normality of hilly areas’ popu-
lation livelihood. There are some direct techniques for 
preventing landslides, such as modifying slope geometry, 
vegetation placement and management, using chemical 
agents to reinforce slope material, constructing rock 
buttresses and retaining walls, debris removal, divert-
ing waste routes, and rerouting surface and underwater 
drainage (drainage pipes, ditches, berms, and catchment 
basins). In the study area, terrace cultivation needs to 
stop at the top of the hills because tillage and irrigation 
increase infiltration, which leads to more landslide events. 
Constructions are experiencing exponential growth in the 
studied region to satisfy the demands of the large popula-
tion. In order to decrease the probability of a landslide, 

Fig. 9   Landslide scars in the Ragnu Khola River Basin in the Darjeeling Himalaya (location: a 27° 02′ 00″ N, 88° 16′ 26″ E; b 27° 00′ 16″ N, 
88° 16′ 39″ E; and c 27° 01′ 23″ N, 88° 16′ 04″ E; 27° 01′ 10″ N, 88° 15′ 58″ E; 27° 01′ 16″ N, 88° 16′ 17″ E)
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construction work should be done scientifically. The 
southwestern part of the study area is less vegetated, and 
it is a significant factor in landslides. So, both the local 
community and the government agency should focus to 
checked deforestation and will need more tree plantations 
in this region.

Conclusions

The landslide susceptibility mapping (LSM) of the Ragnu 
Khola River Basin in Darjeeling Himalaya included a variety 
of morphometric criteria, and these criteria were also divided 
into two-part, such as drainage diversity (DD) and relief diver-
sity (RD) indicators. These morphometric parameters reflect 
the characteristics of the hydro-geomorphological system of 
the study area. It was observed during the study that mor-
phometric parameters are capable of creating the landslide 
susceptibility map. The study region is only about 64.79 km2 
in its extent, and the morphometric variables are reliable 
even in this small-scale perspective for identifying landslide 
susceptibility zones (LSZ). Aside from that, morphometric 
parameters show that areas with higher drainage density and 
cliffs are primarily susceptible to landslide phenomena in the 
river basin. Almost monsoon rains cause landslides in these 
places every year. The resulting map has provided the spa-
tial distribution of landslide zones, and the FDL and ROC 
curve analysis validated it. It came out from the study that 
a high LSZ is interrelated to the places particularly vulner-
able to drainage and relief conditions. The upper catchment 
of the basin is very sensitive and varies from high to very 
high landslide zones, while the lower part is less vulnerable. 
There, 17.83% area is highly susceptible to landslides, which 
are observed in the upper catchment of the basin. Therefore, 
there should be implemented restrictions and proper guide-
lines for constructional activity. Thus, the MCDM technique 
is useful globally to generate such a kind of susceptibility 
map. The work will also assist the decision-makers in devel-
oping strategies to prevent landslide destruction. This type of 
work will be required in the future for appropriate planning of 
developmental activities in tectonically active areas.
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