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Abstract
The study strictly inclined to the Land Use and Land Cover (LULC) change mapping and assessing, surrounding and inside 
the abandoned natural river cutoffs and oxbow lakes of Bhagirathi-Hooghly river in the stretch between Katwa and Kalna, 
East India. Landsat satellite images of selected years (1990, 2000, 2013, and 2020) and supervised classification technique 
(Maximum Likelihood Classifier) were used for mapping and assessing LULC classification in four selected Areas of Interest, 
namely A, B, C, and D. Six LULC classes were adopted by deeply observing the selected areas: vegetation, waterbody, sandy 
land, bare and fallow land, agricultural land, and settlement and built up. LULC matrixes prepared for evaluating the land 
transformation in three decades (1990–2020). The study results witnessed a huge transformation of land by anthropogenic 
pressures and river channel migration. In every region, the waterbody area declines and transforms mostly to the fallow land 
and agricultural land. On the other side, settlement and built-up areas were increased by primarily occupying the agricul-
tural land, bare and fallow land, and vegetation. In the last three decades, a massive expansion happened in agricultural land 
except region C, primarily for the conversion of bare and fallow land. Except for region B, the conversion of agricultural, 
bare and fallow, and settlement and built up land to vegetation has triggered the growth of vegetation area. Therefore, the 
transformation of land, primarily driven by anthropogenic activities, requires utmost concern. The study findings help in 
proper integrated LULC and resource management, planning, and sustainable development.

Keywords LULC change · Bhagirathi-Hooghly river · Landsat satellite image · Maximum likelihood classifier · LULC 
change matrix

Introduction

Land use and land cover change detection has been remark-
ably popularized in the past three decades in land change 
science for the advancement of remote sensing and com-
puter technology as well as easy and open accessibility of 
remotely sensed data. However, land use and land cover are 
used interchangeably in several studies, but these have dif-
ferent meanings (Giri 2012; Lillesand et al. 2015). Land 
use refers to the human activity and economic activities 

on a piece of land (Ardli and Wolff 2008; Comber 2008; 
Lillesand et al. 2015). On the other hand, the land cover is a 
physical feature observable in the earth’s surface (Giri 2012; 
Lillesand et al. 2015). Human activities predominantly alter 
land use and land cover of the earth’s surface, and when the 
changes are combined globally, they greatly trigger the func-
tions of the earth system (Lambin et al. 2001; Lambin and 
Geist 2006). Various human-induced activities like demo-
graphic changes (migration, population growth), globaliza-
tion, technological development, and human responses to the 
changing economic condition are the primary driving forces 
for land use and land cover change (Lambin and Geist 2006).

LULC change study has been accomplished with the compari-
son in between the present and historical data, which is obtained by 
remote sensing techniques and by using the integrated approach of 
remote sensing and GIS; the data is interpreted accurately, which 
let us be aware of the trends and patterns of land changes, amounts 
of land changes, and associated challenging issues (Loveland et al. 
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2016; Nath et al. 2018). Moreover, LULC change studies try to 
unfold some queries such as (1) Where is the land use and land cover 
change emerging? (2) What type of land use and landcover classes 
are changing? (3) What type of changes taking place? (4) What are 
the rates and degrees of change? (5) What are the controlling factors 
and causes of land use and land cover change (Loveland et al. 2016).

LULC changes have been accelerated in the earth’s surface 
over the last 30 years (Lambin and Geist 2006), and also enor-
mous studies have been done. Similarly, numerous studies have 
been accomplished on LULC change surrounding waterbodies 
like lakes, rivers, wetlands. In the USA, LULC change mainly 
happened due to the increase in new construction (40%) and 
decrease in agricultural land (2.3%) and forest land (2.3%), 
including wetland area (38%) in the watershed of the Great lake 
from 1992 to 2001 (Wolter et al. 2006). In China, Lake Qinghai 
has encountered extreme declination in respect of water level 
(6.7 cm a-1) and area (6.4  km2 a-1) between 1959 and 2007 
(Li et al. 2008). Karki et al. (2018) have shown that an acute 
reduction has been observed in the forest area and lake area of 
Lake Inle in Myanmar but cropland and seasonal freshwater 
areas have increased in 25 years. Settlements, cultivated land, 
grasslands, water, and bare soil area have been increased, and 
forest land cover and wetlands area has been decreased heav-
ily in Lukanga lake catchment of Zambia from 1997 to 2017 
(Changwe 2020). Bhattacharjee et al. (2021) conclude cropland, 
bare soil, and shallow water have been increased in the North-
eastern wetland ecosystem, Bangladesh, resulting in reduced 
deep-water body and vegetation. Besides, natural vegetation 
areas decreased, and residential and commercial areas increased 
surrounding Bolgoda wetland of Srilanka from 2000 to 2019 
(Athapaththu et al. 2020). Amin et al. (2014) have revealed 
the land transformation, and anthropogenic activities in Dal 
lake (India) converted the freshwater lake into a deteriorated 
pond. Similarly, the Wular lake of India drastically transformed 
because of decreasing lake area (− 62.5%) and marshy land 
(− 94.117%) and increasing settlements (642.85%) (Mushtaq 
and Pandey 2013). Large-scale haphazard development, agricul-
tural expansion around the pong dam, and excessive siltation in 
the lake affected the Pong dam of Himachal Pradesh (Malik and 
Rai 2019). From the information regarding LULC of an area, 
we can understand the relationship between forest, agricultural 
land, wetland, and settlement, including river morphology which 
supports bridging the gaps of knowledge (Kotoky et al. 2012).

Several difficulties and transformations have been observed 
in the earth surface due to the LULC change, which is unsystem-
atic development, deteriorating wetland condition, degradation 
of soil and water quality, destruction of biodiversity and ecosys-
tem, including global and regional climate change (Anderson 
et al. 1976; Chase et al. 1999; Houghton 1999; Pimm and Raven 
2000; Ellis et al. 2010; Foley et al. 2005). Globally, 35 years 
(1982–2016) of study of Song et al. (2018) reveals tropical 
deforestation and agricultural extension, temperate reforestation 
or afforestation, farmland intensification, and urbanization all 

show regional dominance in land-use change. Moreover, land-
use changes increase mean surface warming of 0.27 ◦ C per cen-
tury (Kalnay and Cai 2003). Dewan et al. (2021) observed that 
the urban expansion and less presence of vegetation in the cit-
ies of Bangladesh increase urban warming. In Alberta, Canada, 
changing patterns in LULC triggers the change in albedo which 
exceptionally alter the local environment (Hassan et al. 2021). In 
Beressa watershed of the Blue Nile basin, Yohannes et al. (2021) 
observed that Hydrological Ecosystem Services has been highly 
degraded by farmland and plantation. The water availability of 
upper catchment in the Bagmati river is significantly changed 
due to the shortage of regional annual rainfall and increasing 
urbanization (Tuladhar et al. 2019). Rahman et al. (2021) found 
that rising population and rapid urbanization negatively affect 
the waterbodies and agricultural land and also increase the flood 
susceptibility in Sunamganj, Bangladesh. Hence, the LULC 
change detection and its several impact assessment studies play 
a vital role in different parts of the world for proper planning, 
policy framing, and systematic development, which ensure envi-
ronmental sustainability and improvement.

In my study area, the Bhagirathi-Hooghly river bank expe-
rienced a fast-increasing population density for rapid accel-
eration of birth rate and large-scale migration (Rudra 2018). 
Moreover, massive urbanization and agricultural expansion 
continuously change the LULC scenarios of the bank of the 
Bhagirathi-Hooghly river. Hence, these frequent anthropo-
genic activities create enormous pressure on the river and 
adjacent abundant cutoffs and oxbow lakes. Also, The Bha-
girathi-Hooghly river migrates its channel frequently in its 
vulnerable stretches (Rudra 2018). Thus, extreme settlement 
displacement, losses of human lives, livestock, and crops have 
occurred due to the random meandering and excessive chan-
nel migration (Bag et al. 2019). Additionally, the floods in the 
study area causes huge settlement displacement (Chatterjee 
and Mistri 2013) as most of the floodplain area occupied by 
the migrated people from East Pakistan (Presently Bangla-
desh) after partition (Rudra 2020). Therefore, LULC changes 
along the bank of the Bhagirathi-Hooghly river and surround-
ing and inside the oxbow lakes require utmost concern. That is 
why four major oxbow lakes and plenty of abundant decaying 
cutoff have been selected in the stretch between Katwa and 
Kalna of Bhagirathi-Hooghly river to study the LULC change 
and land transformation over three decades (1990 to 2020). 
No scientific study has been found on LULC change and land 
transformation in the selected study area. However, the area 
has been encountered by continuous and haphazard transfor-
mation anthropogenically as well as naturally. In the present-
day context, there is an urgent need for this study for sustain-
able LULC model framing, including systematic micro-level 
planning and policymaking. Therefore, the study’s primary 
contribution is to quantify and evaluate the LULC changes 
over three decades (1990–2020) surrounding and inside the 
oxbow lakes and abandoned meanders along the bank of 
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Bhagirathi-Hooghly river in the stretch between Katwa and 
Kalna. In addition, another focus of the study is to assess land 
transformations of Area of Interest (AoI) from 1990 to 2020.

Study area

The study was conducted in the floodplain areas along the Bha-
girathi-Hooghly river. Bhagirathi-Hooghly river is the western 
distributary of river Ganga, which flows more than 500 km in 
West Bengal. The lower 280 km stretch of the river is under tidal 
regime, named as Hooghly river (Rudra 2018). This study was 
carried out in the floodplain areas of the tidal portion and the 
non-tidal portion of the river, which deeply focused on the diver-
sity of water bodies. Four rectangular Areas of Interest (AoI) 
were taken by considering the 2020 Landsat satellite image 
along the Bhagirathi-Hooghly river, namely A, B, C, and D. The 
mentioned areas were very important for study as these areas 
were fulfilled with abundant natural resources. Three major 
oxbow lakes, plenty of meandering cutoffs, natural ponds, natu-
ral vegetation have tremendously faced the pressure of excessive 
growth in population density and infiltration. The Bhagirathi-
Hooghly river is dynamic in this region, and shifting its channel 
frequently, causes massive LULC changes. Also, anthropogenic 
activities like cropland extension, settlement, and built up area 
increase were severe and uncontrolled. Hence, many abundant 
river channels and oxbow lakes were lost their previous glory by 
becoming fallow land and then agricultural land or settlement 
and built up area. That is why the study is mostly focused on 

natural waterbodies along the river from Katwa to Kalna. Two 
districts were located in the selected Areas of Interest, namely 
East Barddhaman and Nadia. The area is under quaternary sedi-
mentary deposits as well as lowest and highest elevation of the 
area is − 83 m and 41 m, respectively (Wandrey and Law 1997).

Materials and methodology

Database

The entire study is dependent on secondary source of data-
base. Two types of secondary data were required: satellite data 
and ancillary data. For assessing the land use and land cover 
changes in the study area, Landsat satellite images have been 
collected from 1990 to 2020. Almost cloud-free (< 1%) day 
time Landsat satellite imageries were freely acquired from 
USGS Earth Explorer online archive. All acquired imageries 
were registered in the UTM/WGS 1984 projected coordinate 
system. Landsat TM, ETM + , and Oli sensors imageries have 
been chosen to carry out the LULC classifications and only 
Visible (Blue, Green, Red Bands) and Near Infrared (NIR) 
bands were used to prepare composite images. Other infor-
mation regarding collected and used satellite imageries are 
described in Table 1. Side by side, ancillary data as a form of 
Google Earth Pro images for three decades (1990–2020) were 
required for validation and verification of the accuracy of the 
classified images.

Table 1  Information about 
analyzed satellite imageries

Satellite Sensor Spatial 
resolu-
tion

Spectral
bands used

Wavelength (μm) Path/row Acquisition date

Landsat 5 TM 30 m 1–4 0.45–0.90 138/44 30.01.1990
Landsat 7 ETM + 30 m 1–4 0.45–0.90 138/44 17.11.2000
Landsat 8 Oli 30 m 2–5 0.45–0.88 138/44 15.12.2013, 02.12.2020

Table 2  Class details of Land Use and Land Cover classification

Class Allo-
cated 
Symbol

Descriptions

Vegetation V Sparse forest vegetation, vegetation of the waterbodies, fruit cultivation (like banana and mango), and other 
vegetation

Waterbody W Rivers, ponds, oxbow lakes, and abandoned cutoffs of the river
Sandy land SL Riparian open sandy areas, sandy char lands, and other uncultivated sandy areas, sandy areas around brick 

kilns
Agricultural land AL Croplands, horticultural lands used for vegetables and flowers cultivation, and pastures
Bare and fallow land BFL Riparian sediment deposits, open playground, transitional areas around the water body, land with or without 

shrub, and brushes which is likely to be changed in near future
Settlement and built up SBU Residential and industrial areas, educational institute and commercial complexes, railway and roadway net-

works, bridges, brick kilns, green houses of agriculture, and other human-made open concrete structures
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LULC classification

Classification scheme

The classification scheme of six (6) classes has been adopted by 
extensive Google Earth observations and validated that with rig-
orous field visits following Anderson et al. 1976. Also, the color, 
tone, pattern, and texture of the Landsat images have played an 
important role in the selection of six (6) classes. LULC classes 
have been computed for the years 1990, 2000, 2013, and 2020. 
The classes were Vegetation, Water Body, Sandy Land, Bare 
and Fallow Land, Agricultural land, Settlement, and Built Up. 
It has been confirmed that each class sufficiently represented 
the selected Areas of Interest by avoiding possible overlaps and 
exclusions as far as possible. The explicit information regarding 
each and every class has been described in Table 2.

Data preprocessing

Image preprocessing of every Landsat image from 1990 to 
2020 has been accomplished, including radiometric cor-
rection, compositing different spectral bands and masking, 
and clipping areas of interest. Four masked and then clipped 
images have been adopted as an Areas of Interest (AoI) from 
1990, 2000, 2013, and 2020 to compare and change detection.

Image classification

Classification of the image leads to the extraction of classes of 
information from multispectral images. Image classification in 
remote sensing can be accomplished using supervised, unsu-
pervised, and object-based image classification (Vivekananda 
et al. 2021). In the supervised classification technique, numerical 
descriptors of several classes have been specified to the com-
puter algorithms to categorize pixels (Lillesand et al. 2015). In 
the past few years, supervised classification has been recognized 
as the important and effective method for automatically generat-
ing LULC classification of extended geographical areas (Bruz-
zone and Prieto 2001; Richards and Jia 2006). Generally, prior 
knowledge about the study region is essential for supervised 
classification, as it requires ground-truth data for validation of 
each classified class (Kim 2016). Maximum Likelihood Clas-
sification (MLC) has been chosen for this study among the sev-
eral well-known supervised classifications. MLC is a tool which 
is one of the most popular and common in remote sensing for 
image analysis (Bolstad and Lillesand 1991; Richards and Jia 
2006), and also, it is extensively used in the moderate-resolution 
satellite image (Strahler 1980; Bayarsaikan et al. 2009; Vive-
kananda et al. 2021). The maximum Likelihood decision rule 
quantitatively assesses the variance and covariance of the pat-
tern of the spectral responses for classifying an unknown pixel 
(Lillesand et al. 2015). Moreover, it depends on probability for 
assigning pixels in a particular class (Moreno and Larriva 2012).

In this study, the MLC method has been executed using the 
Arc GIS 10.3 software which includes several steps. Firstly, 
training sample selection has been made for each of the four 
Areas of Interest for selected years (1990, 2000, 2013, 2020) in 
the selected stretch of Bhagirathi-Hooghly River by carefully 
verifying the satellite images with Google Earth Pro software. 
Region D and Region C consist of maximum (170.71  km2) and 
minimum (59.94  km2). As the Areas of Interest are some smaller 
critical pockets in the lower part of the Great Plain of India, 
more than 50 training samples were assigned for the class with 
extensive areal coverage (like, Agricultural Land) and less than 
50 training samples for the class with smaller areal coverage 
(Like, Sandy Land). Then, training samples were merged for 
producing six classes. Then, a total of sixteen (16) signature files 
(.sig) were created for the LULC change study of three decades 
(1990–2020). Lastly, sixteen LULC maps have been prepared 
using those signature files before accuracy assessment.

Accuracy assessment by classification error matrix

“A classification is not complete until its accuracy is assessed” 
(Lillesand et al. 2015). Hence, after producing all LULC maps, 
the accuracy assessment of all classified images for selected 
years has been attained using the Arc GIS 10.3 software. Error 
matrix or Confusion matrix is the most common method for 
assessing accuracy. Also, it helps us to understand the relation-
ship between known reference data and corresponding outcomes 
of automated LULC classification (Lillesand et al. 2015).

For Accuracy assessment, a few steps were followed. In the 
beginning, stratified random sampling was adopted for getting 
sample points to ensure the adequate representation of com-
paratively smaller classes. Here, the class of every image was a 
stratum, and then random sampling was carried out in each class 
to generate an ideal result. Secondly, the sample points were 
converted into a KML file (.kml) using the conversion tool of 
the Arc GIS 10.3 for importing it in the Google Earth Pro. After 
that, each sample point has been verified and validated with 
the ground-truth data of Google Earth and then tabulated the 
outcome manually in the attribute table of the respective classi-
fied image. Finally, the error matrix and kappa coefficient were 
produced for calculating the accuracy of the classified image. As 
per Lillesand et al. (2015), the error matrix for accuracy assess-
ment and the kappa coefficient ( ̂k ) has been generated.

Generally, the value of kappa coefficient ( ̂k ) ranges between 
0 and 1, where the value equals 1 represents true or perfect 
agreement between reference data and automated classifier; and 
less than 1 represents less perfect agreement (Lillesand et al. 
2015; Hua and Ping 2018). Several scholars have a different 
view on the kappa coefficient. After reviewing several pieces 
of literature, it can be said more precisely that less than 0.4 is 
considered as poor and very poor agreement, values lie in 0.4 
to 0.55 are considered as fair agreement, values from 0.55 to 
0.7 are noted as the good agreement, values 0.7 to 0.85 exhibit 
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very good agreement, and values more than 0.85 represent an 
excellent agreement among the images (Hua and Ping 2018).

LULC change detection and land transformation

Remote sensing data has the major advantage of capturing 
and recording significant spatial–temporal information, and 
it has been widely used for change detection in recent dec-
ades (Lu et al. 2004; Lillesand et al. 2015). Change detection 
is the most common digital image analysis technique and is 
denoted as the identification and characterization of changes 
of remote sensing images over a period of time (Lillesand 
et al. 2015). Several techniques of change detection have 
been developed, and the most common techniques are image 
differencing post-classification comparison matrix and Prin-
ciple Component Analysis (PCA) (Lu et al. 2004; Mishra 
et al. 2020). A post-classification comparison matrix was 
generated of classified images from 1990 to 2000, 2000 to 
2013, 2013 to 2020, and finally 1990 to 2020 by using the 
Arc GIS 10.3 and MS-Excel 2016 software for evaluating 
aggregate changes in the study area. After that, in 1990 and 
2020, both the years have been selected for showing land 
transformation over three decades in the selected areas.

Result

Status of LULC from 1990 to 2020

Over three decades, the LULC status of different selected years 
(1990, 2000, 2013, 2020) has been assessed in selected four 
regions (A, B, C, D) along the bank of the Bhagirathi-Hooghly 
river, West Bengal. D (173.77  km2) is the Largest, and C (59.94 
 km2) is the smallest in the selected regions. Multiband satellite 
images of Landsat have been used. The images were classified 
and evaluated in six classes: vegetation, waterbody, sandy land, 
agricultural land, bare and fallow land, and settlement and built 
up.

LULC of 1990

Results of LULC 1990 of A region have shown that the most 
prominent land share (29.61%) has been occupied by agricul-
tural land, followed by bare and fallow land (28.45%) (Table 3). 

Vegetation and settlement and built up areas were covered by 
17.23% and 11.25%, respectively, while waterbody and sandy 
land secured the smallest share of land of 6.23%. In the case 
of B region, vegetation and settlement and built up area cov-
ered by 17.12% and 10.97%, respectively, whereas sandy land 
(3%) and agricultural land (40.12%) consisted of smallest share 
and largest share, respectively (Table 3). In addition, 7.67% and 
21.12% share of land covered by waterbody and Bare and fal-
low land, respectively. In region C, 9.43% and 10.65% of the 
land were covered by vegetation and waterbody, respectively, 
while dominated LULC class in that region is agricultural land 
(44.37%) followed by bare and fallow land (19.01%) (Table 3). 
Consequently, settlement and built up occupied 11.65% of the 
land, and the least occupied LULC class is sandy land (4.88%) in 
region C. LULC Result from the region D reveals that the major-
ity of the land is occupied by agricultural land (36.88%), fol-
lowed by bare and fallow land (25.24%). In comparison, sandy 
land (5.6%) and waterbody (7.34%) both the class secured the 
least share (Table 3). Settlement and built up covered 11.98% 
area as well as vegetation-covered 12.96% of the area. From 
the overall scenario, it is observed that in all regions, majority 
of land share has been occupied by Agricultural land followed 
by bare and fallow land while least share of land is under sandy 
land.

LULC of 2000

In region A, the result tabulated in Table 3 indicated different 
LULC classes had occupied the area, viz. vegetation-covered 
17.09%, waterbody covered around 10.46%, agricultural land 
and bare and fallow land covered maximum area of 35.41% and 
17.70%, respectively. In contrast, sandy land covered a minimum 
area of 3.64%; additionally, 15.70% area has been occupied by 
settlement and built up. In 2000; waterbody, agricultural land, 
settlement, and built up were increased, and others were declined 
from 1990. In the B region, the largest area has been occupied 
by agricultural land (25.49%) and vegetation (23.96%), while 
waterbody covered 12.38%. Despite that, bare and fallow land 
secured 19.94%, and the smallest area of 3.08% has been occu-
pied by sandy land. Also, 15.25% of the area was covered by the 
settlement and built up. A prominent increase has been observed 
in settlement and built up, vegetation, and waterbody from the 
previous year. Moreover, agricultural land faced a massive 
decrease of around 15% (Table 4). In the case of the C region, 

Table 5  Overall accuracy and 
Kappa Coefficient of 2013 and 
2020

2013 2020

Region Kappa coefficient Overall accuracy Kappa coefficient Overall accuracy

A 0.8496 87.54% 0.8709 89.24%
B 0.8972 91.55% 0.8895 90.83%
C 0.8739 89.58% 0.9323 94.41%
D 0.9002 91.72% 0.7761 81.35%
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settlement and built up and bare and fallow lands were witnessed 
a striking increase to 15.19% and 26.74%, respectively (Table 3). 
Also, vegetation, waterbody, and sandy land were exhibited a 
slight increase to 13.69%, 12.15%, and 7.63%, respectively, 
while a large-scale (around 20%) decrease has been observed in 
only agricultural land (Table 4). The result of region D indicated 
an exceptional increase of about 20% in vegetation (Table 4), 
and its land share is 33.54% (Table 3). Sandy land, agricultural 
land, and bare and fallow land decreased to 3.76%, 22.34%, and 
15.46%, respectively, while waterbody and settlement and built 
up encountered by little increase to 10.42% and 14.49%, respec-
tively (Table 3). In the year 2000, overall sandy land is secured 
least covered area, and agricultural land is mostly covered class 
except for region C and D. In region C, bare and fallow land and 
in region D, vegetation occupied majority of the area.

LULC of 2013

For A region, a dominated share occupied by agricultural land of 
about 38.87%, which is a result of the increase in the land share 
of around 3% (Table 4). On the other side, sandy land became 
very minimum to 1.04%. Vegetation increased to 22.89%, while 

bare and fallow land, waterbody, settlement, and built up collec-
tively lost its land share (Table 3). In the B region, the result of 
classification revealed several increments and decline, viz. agri-
cultural land increased to 37.40%. It is the prime class while bare 
and fallow land increases to 20.74%, sandy land increases to 
4.57%, and contrary to these, settlement and built up, vegetation, 
and waterbody decreased to 10.14%, 18.14%, and 9%, respec-
tively. In cases of C region, vegetation and agricultural land have 
faced increment, and declining nature has been observed in four 
classes: bare and fallow land, settlement and built up, vegetation, 
and waterbody (Table 4). Moreover, the most and least domi-
nant class is agricultural land (29.87%) and sandy land (3.56%), 
respectively. In the D region, the maximum percentage of area 
occupied by agricultural land (40.22%) followed by vegetation 
(21.39%), while sandy land and waterbody have decreased and 
secured the least share of the area, which were 2.52% and 7.79%, 
respectively. In addition, settlement and built up have decreased 
to 11.09%, whether bare and fallow land slightly increased to 
16.99%. The overall scenario depicted that the agricultural land 
holds most of the land share, and the least share has been occu-
pied by sandy land.

Table 6  LULC change matrix in between 1990 and 2020 in Region A and B

AL, agricultural land; BFL, bare and fallow land; SL, sandy land; SBU, settlement and built up; V, vegetation; W, waterbody; * unchanged land

Region A Region B

Area in  km2 (2020) Area in  km2 (2020)

Class AL BFL SL SBU V W Total AL BFL SL SBU V W Total

Area in  km2 (1990) AL 26.9* 0.9 0.96 5.63 7.93 0.83 43.14 15.61* 3.23 0.8 1.77 3.21 0.79 25.42
BFL 22.01 3.22* 1.32 6.47 6.69 1.74 41.46 6.27 3.3* 1.03 0.8 1.62 0.36 13.38
SL 3.54 0.92 0.44* 1.4 2.32 0.45 9.08 0.58 0.43 0.22* 0.07 0.14 0.45 1.9
SBU 4.14 0.77 0.21 7.09* 4.79 0.13 17.13 1.81 0.97 0.17 2.48* 1.34 0.17 6.95
V 16.38 0.38 0.37 3.02 4.6* 0.36 25.11 3.07 1.14 0.18 2.53 3.58* 0.35 10.85
W 2.05 0.76 0.67 0.54 1.43 4.37* 9.81 1.3 1.18 0.45 0.01 0.16 1.75* 4.86
Total 75.02 6.94 3.97 24.15 27.77 7.87 145.73 28.65 10.26 2.86 7.66 10.05 3.87 63.35

Table 7  LULC change matrix in between 1990 and 2020 in Region C and D

AL, agricultural land; BFL, bare and fallow land; SL, sandy land; SBU, settlement and built up; V, vegetation; W, waterbody; * unchanged land

Region C Region D

Class Area in  km2 (2020) Area in  km2 (2020)

AL BFL SL SBU V W Total AL BFL SL SBU V W Total

Area in  km2 (1990) AL 15.03* 3.38 0.69 2.01 4.42 1.08 26.6 39.31* 3.28 1.04 9.71 8.26 1.35 62.95
BFL 4.61 3.7* 0.27 0.71 1.62 0.5 11.4 21.3 4.29* 0.96 7.62 7.12 1.78 43.08
SL 1.27 0.44 0.33* 0.14 0.38 0.37 2.93 4.42 0.47 0.83* 1.42 1.11 1.3 9.56
SBU 1.77 1.04 0.11 2.36* 1.45 0.27 6.99 5.43 1.06 0.1 9.1* 4.58 0.2 20.46
V 0.29 0.23 0.01 1.86 3.24* 0.02 5.65 2.97 2.37 0.05 8.43 8.03* 0.27 22.13
W 1.14 1.8 0.53 0.02 1.04 1.85* 6.39 1.7 1.98 1.64 0.48 0.46 6.27* 12.53
Total 24.1 10.59 1.93 7.09 12.15 4.07 59.94 75.13 13.45 4.62 36.76 29.56 11.18 170.71
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LULC of 2020

In A region, agricultural land tremendously increased and cov-
ered more than half of the total land (Table 3). Moreover, set-
tlement and built up and sandy land increased to 16.57% and 
2.73%, respectively. Despite these, bare and fallow land, vegeta-
tion, and waterbody collectively lost their land share (Table 3). 
In the B region, the lion’s share (45.22%) of land has been 
occupied by agricultural land, increasing by almost 8% from 
2013 (Table 4). Settlement and built up area also increased to 
12.09%. On the other hand, bare and fallow land, vegetation, 
waterbody, and sandy land have been decreased to 16.19%, 
15.87%, 6.11%, and 4.51%, respectively. The result of LULC 
in the C region indicated that the largest share of land had been 
occupied by agricultural land (40.21%), and it is the only class 
that increased from 2013 (Table 3). The other five classes, viz. 
settlement and built up, vegetation, sandy land, bare and fal-
low land, and waterbody, were decreased to 11.83%, 20.28%, 
3.21%, 17.67%, and 6.79%, respectively. In cases of D region, 
agricultural land and settlement and built up both have increased 
to 43.73% and 21.43%, respectively, by which both the classes 
have secured maximum coverage of land share. Settlement and 
built up also gain a remarkable percentage of land of 21.43%, 

as well as a slight increase, has been found in sandy land. Bare 
and fallow land, waterbody, and vegetation decreased to 8.02%, 
6.69%, and 17.36%, respectively. In 2020, it was observed that 
agricultural land gained a remarkable land share in every region 
which makes it the most dominant class.

Accuracy assessment

Accuracy assessment of classified LULC maps was carried 
out for the year of 2013 and 2020. The accuracy assessment of 
1990 and 2000 could not be performed due to the low-resolu-
tion Google Earth images. In the time of accuracy assessment, 
several misclassifications were noticed in between ground 
truth data and classified images, such as riparian unexposed 
bedrock sometimes classified as the Settlement and built up, 
riverside sandy land as the agricultural land and settlement 
and built up as the bare land. Additionally, settlement and 
built up sometimes considered as the vegetation and water-
body as bare and fallow land because of the juxtaposition in 
some patches of each region. Moreover, bare and fallow land 
is sometimes classified as waterbody because of the misclas-
sification in the transitional fallow land zone surrounding the 
waterbody.

Fig. 1  Location map of the study area
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The most used reliable Kappa Coefficient method has 
been used for accuracy assessment (Okeke and Karnieli 
2006). Table 5 shows all the details of overall accuracy and 
kappa coefficient of 2013 and 2020. In 2013, the overall 
accuracy of classified images of regions A, B, C, and D 
were 87.54%, 91.55%, 89.58%, and 91.72%, respectively. 
Additionally, the kappa value of region A, B, C, and D were 
0.8496, 0.8972, 0.8739, and 0.9002, respectively. The kappa 
value of regions B, C, and D indicates excellent agreement, 
and the value of region A indicates very good agreement 
among the images. In 2020, the results indicated that the 
overall accuracy of classified images of regions A, B, C, and 
D were 89.24%, 90.83%, 94.41%, and 81.35%, respectively. 
In Addition, the Kappa Coefficient of A, B, C, and D regions 
were 0.8709, 0.8895, 0.9124, and 0.8226, respectively. The 
kappa value of classified images of regions A, B, and C were 
denoted as excellent agreement and region D as very good 
agreement.

Overall scenarios of changing patterns of LULC

Table 6 and 7 show the changes in LULC and the pre-
sent LULC status of the changed land. The bold letter is 
recognized as the unchanged land in the tables. Conver-
sion Over three decades (1990–2020) has been measured 

and evaluated. A significant trend of conversion has been 
observed in every region, which was conversion happened 
from waterbody to fallow land, in the primary stage, and 
then those fallow land converted to agricultural land.

Changing LULC patterns in between 1990 and 2020 
in Region A

From 1990 to 2020, primary changes were noticed in 
bare and fallow land to agricultural land from region A. 
As per Table 6, About 22.01  km2 bare and fallow land 
converted to agricultural land as the gradual increase in 
population density as well as agricultural practices. It 
was observed that bare and fallow land was converted 
all over the region. Moreover, 16.38  km2 of vegetation 
has been converted to agricultural land due to the rea-
sons mentioned above, and it was the second-largest con-
version of region A. 7.93  km2 of agricultural land was 
converted to vegetation due to the expansion of social 
forestry, agroforestry, mango, and guava cultivation in 
different parts of the region. Also, a second major con-
version of 5.63  km2 has been found in agricultural land 
to settlement and built up along the riverside due to the 
excessive and haphazard migration of the river chan-
nel, resulting from human-made settlement and built-up 

Fig. 2  Flow chart showing 
methodology of the study
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area shifting. Most of the sandy land (3.54  km2) was 
converted to agricultural land as the agricultural domi-
nance took place in a riverine sandy area and char lands 
of the region. Around 5.25  km2 settlement and built up 
area turned into agricultural land, bare and fallow land, 
sandy land, and waterbody because of the massive chan-
nel shifting and continuous flooding of river Bhagirathi-
Hooghly. The majority of the conversion occurred in the 
riparian floodplain area of the river. In addition, 4.79 
 km2 settlement and built up area converted to the vegeta-
tion in different settlement patches as a result of social 
forestry, reforestation programs. It was observed that 
the waterbody was gradually decreased over three dec-
ades and 4.37  km2 of waterbody remained unchanged 
(Table 6). The waterbody became agricultural land, set-
tlement and built up area, sandy land, vegetation, and 
bare and fallow land due to the annihilation of abandoned 
river meander, cutoff, oxbow lakes, and natural ponds. 
Also, sediment deposition in the convex bank of the river 

accelerated land gains by which the waterbody turned 
into several other LULC classes. The most prevalent 
LULC class is agricultural land, and the least prevalent 
is sandy land in that region.

Changing LULC patterns in between 1990 and 2020 
in Region B

In the B region, Table 6 shows that 15.61  km2 of agricul-
tural land remains unchanged, and it was the largest in that 
particular area. Around 3.23  km2 of agricultural land was 
converted to bare and fallow land due to the expansion of 
the width of the river channel and mid-channel bar forma-
tion in the river. Moreover, 3.21  km2 of agricultural land was 
changed to vegetation as the fruit cultivation (like mango, 
litchi, guava, papaya) increased, and agroforestry was 
expanding over the decades. The most remarkable transfor-
mation of 6.27  km2 has been observed from bare and fallow 
land to agricultural land due to the rising population and 

Fig. 3  LULC map of selected years of Region A

324 Applied Geomatics (2022) 14:315–334



1 3

excessive food requirements over three decades. The bare 
and fallow land turned into sandy land, and vice versa along 
the Bhagirathi-Hooghly river as a result of point bar and 
mid-channel bar formation due to the erosional and depo-
sitional work carried out by the river Bhagirathi-Hooghly. 
Though sandy land is very marginal, it has a significant role 
in the riparian system; near about 1  km2 sandy land con-
verted to agricultural land and fallow land due to the rapid 
agricultural expansion and increasing sediment deposition in 
the convex bend as well as mid-channel bar of the river while 
45  km2 of the sandy land converted to the waterbody due to 
the mid-channel bar formation in Bhagirathi-Hooghly river 
which accelerated erosional activity in the sandy land of the 
concave bank near Rukunpur. The settlement and built up 
area encountered a slight increase over three decades, near 
about 0.5  km2. Maximum conversion in settlement and built 
up was observed from settlement and built up to agricultural 
land, which was 1.81  km2; this is due to the devastating flood 
in the floodplain area of the river Bhagirathi-Hooghly in 
2000. It was observed that agricultural land played a domi-
nant role all over the region in three decades and 3.07  km2 

vegetation area also converted to the agricultural land all 
over the part due to deforestation and agricultural expansion 
while 2.53  km2 of vegetation changed to settlement and built 
up, which was mostly happened within the oxbow lakes and 
left bank of the river. Considering the waterbody, almost 
1  km2 of waterbody decreased over three decades, and the 
majority of the waterbody was encountered by agricultural 
expansion.

Changing LULC patterns in between 1990 and 2020 
in Region C

The most considerable amount of 4.61  km2 of bare and fal-
low land was converted to agricultural land, and the reason 
was the same as cited previously for other regions (Table 7). 
Contrary to this, 3.38  km2 of agricultural land degraded to 
the bare and fallow land, and it mainly was occurred along 
the oxbow lakes and rivers due to the frequent flooding.

The second-largest conversion was 4.42  km2, and it hap-
pened from agricultural land to vegetation as a result of shift-
ing from traditional grain-based farming to fruit cultivation 

Fig. 4  LULC map of selected years of Region B
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and agroforestry. On the other hand, only 0.29  km2 of land 
converted from vegetation to agricultural land. In cases of 
sandy land, it was observed that most of the sandy land (1.27 
 km2) was converted to agricultural land in the sandy riparian 
area due to the rapid agricultural expansion. In the past three 
decades, 1.77  km2 settlement and built up changed to agri-
cultural land, while 2.01  km2 of agricultural land converted 
to the settlement and built up because of rapid expansion of 
rural areas like Purbasthali, Bhandartikuri, and Mayapur. 
Also, 1.45  km2 settlement and built up turned into vegeta-
tion, and contrary to this, 1.86  km2 vegetation area converted 
to the settlement and built up, and the reason behind these 
was mentioned above in the description of previous regions. 
Ultimately, the area of settlement and built up is increased 
over three decades. Waterbody is the most important in this 
region as it consists of two major oxbow lakes and rivers. 
From 1990 to 2020, almost 3  km2 waterbody converted to 
the bare and fallow land and agricultural land (Table 7). It 
is due to the farmland expansion on newly formed char land 
and rapid declination of oxbow lakes.

Changing LULC patterns in between 1990 and 2020 
in Region D

In Region D, from 1990 to 2020, agricultural land held the larg-
est share (39.31  km2) of unchanged land due to the agricultural 
predominance from the 1990s (Table 7). The majority of the 

agricultural land (9.71  km2) changed to settlement and built up 
as a result of growing population and expansion of urban and 
rural areas like Kalna, Santipur, Bhaluka, Samudragarh, Nasrat-
pur, and Dhatrigram, while only 5.43  km2 settlement and built 
up area was changed to agricultural land because of repetitive 
migration of residents due to the destructive floods happened 
almost in every year in low-lying areas. Moreover, 8.26  km2 of 
agricultural land was converted to vegetation due to the expan-
sion of agroforestry, reforestation, and cultivation of mango, 
guava, jujube, papaya, litchi, etc., mainly in the south-eastern 
part of the region. On the other side, 2.97  km2 vegetation area 
converted to the agricultural land due to the deforestation and 
agricultural stretching in mid-channel bar near Krishnadebpur, 
inside oxbow lake near Kalna and different settlement patches 
located all over the region. Bare and fallow land has been 
reduced abruptly over three decades, and maximum (21.30  km2) 
of it converted to agricultural land while only 3.28  km2 agricul-
tural land degraded to the bare and fallow land. Around 7.12  km2 
bare and fallow land has converted to vegetation due to social 
forestry, afforestation program which was primarily occurred in 
the left bank of the river Bhagirathi-Hooghly. Contrary to this, 
2.37  km2 of vegetation has also changed to bare and fallow land 
mostly along the river meanders and abandoned cutoffs as a 
result of evolving river course. In addition, a large amount (7.62 
 km2) of bare and fallow land has also changed in settlement 
and built up area in the last three decades due to the expansion 
of several urban and rural areas such as Samudra Garh, Kalna, 

Fig. 5  LULC map of selected years of Region C
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Dignagar, Baganchra, and Santipur. The sandy land was sig-
nificantly reduced, and most of the reduced land was converted 

into agricultural land (4.42  km2) along both rivers (Table 7). In 
the south-eastern part of the region, 4.58  km2 settlement and 

Fig. 6  LULC maps of selected years of Region D

Table 8  Overall change scenarios in A, B, C and D Regions

Class 1990–2020

Region A Region B Region C Region D

Change in area Change in % Change in area Change in % Change in area Change in % Change in area Change in %

Vegetation 2.67 1.83  − 0.79  − 1.25 6.50 10.85 8.03 4.40
Waterbody  − 1.94  − 1.33  − 0.99  − 1.56  − 2.31  − 3.86  − 0.91  − 0.65
Sandy land  − 5.11  − 3.50 0.95 1.51  − 1.00  − 1.67  − 4.73  − 2.82
Agricultural land 31.88 21.87 3.23 5.10  − 2.49  − 4.16 13.02 6.85
Bare and fallow 

land
 − 34.52  − 23.69  − 3.12  − 4.92  − 0.80  − 1.34  − 29.14  − 17.21

Settlement and 
built up

7.02 4.82 0.71 1.12 0.11 0.18 16.77 9.44
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built up area has changed to vegetation while 8.43  km2 vegeta-
tion became a settlement and built up area due to expansion of 
urban and rural areas. Considering the waterbody, in the last 
three decades more than 1  km2 of waterbody was decreased, and 
bare and fallow land, agricultural land and sandy land expansion 
is the main reason behind declination of waterbody. Unscientific 
usage, massive exploitation, and improper planning were accel-
erating the waterbody’s changes from bare and fallow land to 
agricultural land (Figs. 1, 2, 3, 4, 5, and 6).

Overall changing scenario

The overall changes in all regions (A, B, C, and D) from 
1990 to 2020 have been depicted in Table  8. Regard-
ing region A, it was observed that maximum change has 
occurred in agricultural land and bare and fallow land, where 
agricultural land changed positively and bare and fallow land 
changed negatively. In total, 31.88  km2 of land became agri-
cultural land, denoted a 21.87% increase, whether bare and 
fallow land decreased by 34.52  km2. The most significant 

increase found in agricultural land and the reduction in 
bare and fallow land were seen in the A region. The B and 
C region is tiny compared to the A and D, and changes in 
LULC is very marginal in these regions. Among B and C 
regions, maximum positive change has been observed in 
vegetation in the C region, which is 10.85%. Contrary to 
this, top negative change (− 4.92%) has been found in bare 
and fallow land. In the D region, change in bare and fallow 
land and settlement and built up was prominent. Among 
these, settlement and built up changed and increased by 
16.77  km2 (9.44%) while bare and fallow land decreased by 
29.14  km2 (17.21%) (Figs. 7, 8, 9, and 10).

Discussion and conclusion

Prior work has documented the LULC change detection 
and prediction in different critical parts of the world and 
its role in environmental degradation (like vegetation loss, 
waterbody degradation). However, these studies have either 

Fig. 7  LULC conversion map for Region A since 1990–2020
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been very primitive or have not focused on the particular 
study area. The previous researches in the selected study 
area had concentrated on changing channel dynamics (Islam 
and Guchhait 2017) and its socio-economic impacts on the 
riparian communities (Islam and Guchhait 2015), chang-
ing channel morphometry (Bag et al. 2019), issues related 
to wetlands (Chatterjee et al. 2021), changing LULC pat-
terns in Bhagirathi floodplain (Misra and Roy 2019). How-
ever, in this study, we quantify and evaluate the LULC 
changes and assess land transformations over three decades 
(1990–2020) surrounding and inside the oxbow lakes and 
abandoned meanders, lying in the lower part of the Great 
Plain of India, along the bank of Bhagirathi-Hooghly river 
in the stretch between Katwa and Kalna. A total of four rec-
tangular areas (A, B, C, and D) have been chosen by focus-
ing the critical water bodies, including river channel, four 
major oxbow lakes and plenty of abundant cutoffs to show 
the rise and fall of LULC classes. In accordance with the 
previous findings, overall, we found that the LULC changes 
in the selected areas were driven mainly by anthropogenic 
activities (Alam et al. 2019; Liu et al. 2020), especially by 
the expansion in agricultural land (Sánchez-Cuervo et al. 

2020) and settlement and built up areas (Alam et al. 2019; 
Chamling and Bera 2020).

Our study provides surprising observation that the 
LULC of selected areas were frequently changed in the last 
three decades, and waterbody, sandy land, bare and fallow 
land exhibit a negative change in most regions (Table 8,  
. 11) Waterbody declined by − 1.33%, − 1.56%, − 3.86%, 
and − 0.65% in Region A, B, C, and D, respectively. From 
the entire scenario of LULC, it was revealed that waterbod-
ies, especially abandoned natural river cutoffs and oxbow 
lakes, were decreased over three decades by the extreme 
expansion of agricultural land and settlement and built up 
areas in all regions. The study finding is consistent with 
other observations (Zhang et al. 2017; Ganaie et al. 2020; 
Bhattacharjee et al. 2021; Jamal and Ahmad 2020); how-
ever, it contradicts with Mishra et al. (2020) finding where 
waterbody was increased in the Rani Khola watershed, 
Sikkim, and in the Bhutan-Bengal foothill region, water-
body also increased due to the artificial pond construction 
and spill channel formation (Chamling and Bera 2020). In 
many cases, it has been observed that agricultural prac-
tice is taking place in the bed of abandoned cutoffs and 

Fig. 8  LULC conversion map for Region B since 1990–2020
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oxbow lakes. Also, unplanned built up (Like brick kilns, 
roads) continuously and unprecedently shapes the water-
bodies. Waterbody was a tremendous natural resource, 
and it helps to maintain balance in the hydrological cycle 
(Li et al. 2018), groundwater replenishment (Arya et al. 
2020), and several anthropogenic activities. Therefore, 
loss in the areal coverage of waterbody could lead to 
extreme lopsidedness in the environment and humankind 
shortly. Another triggering factor of LULC change in the 
particular study area is frequent and haphazard flooding, 
which primarily happened due to the dam-included dis-
charge and excessive rainfall in Jharkhand (Rudra 2020). 
In my study time period (1990–2020), several years (1998, 
1999, 2000, 2003, 2006, 2015) were affected by small or 
devastated floods and which causes abrupt LULC changes 
in the floodplain area. Additionally, a striking decrement 
in the area of bare and fallow land has also been observed, 
which were − 23.69%, − 4.92%, − 1.34%, and − 17.21% for 
regions A, B, C, and D, respectively. Mostly, bare and 
fallow land was replaced by agricultural land and faced 
a massive declination in each area from 1990 to 2020. 
In contrast with the previous finding, Wu et al. 2013 has 
shown an incredible increase in bare and fallow land and 

decrease in agricultural land in Hangzhou metropolitan 
area, China, and Pilgrim et al. (2014) also revealed that 
the bare ground experienced a positive change in the Lake 
Issaqueena watershed, South Carolina. In contrast, several 
study findings (Malik and Rai 2019; Mawenda et al. 2020; 
Mishra et al. 2020) align with the present finding. Moreo-
ver, Sandy land, facing declination of − 3.50%, − 1.67%, 
and − 2.82% in Region A, C, and D, respectively, trans-
formed most of the sandy land in agricultural land. Con-
trary to this, Rimal et al. (2017) has noticed that sandy 
area has been increased by predominantly converting the 
waterbody. On the other hand, Horqin sandy land in inner 
Mongolia has been declined, whereas irrigated agricultural 
land and salinized area increased (Bai et al. 2017).

In contrast, agricultural land, settlement and built up, and 
vegetation overall faced positive change in three decades 
(Table 8; Fig. 11). Agricultural land was the prevalent class 
in this particular region as the area was located in the lower 
stretch of the Great Plain of India, and it was flourished by 
agriculture from the primitive period. It was facing remark-
able growth in A, B, and D regions by predominantly reduc-
ing the bare and fallow land. In the past three decades, rapid 
growth in population density has increased food demand and 

Fig. 9  LULC conversion map for Region C since 1990–2020
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strikingly accelerated agricultural expansion. This finding 
has similarities with other works in the Wami river Basin, 
Tanzania (Twisa and Buchroithner 2019) and Pong dam, 
India (Malik and Rai 2019). The expansion in agricultural 
land has been found in the A, B, and D region, representing 

massive changes of 21.87%, 5.10%, and 6.85%, respectively. 
Additionally, settlement and built up areas were facing the 
growth of 4.82%, 1.12%, 0.18%, and 9.44%, respectively, 
and It increased in all regions, proving the increasing pop-
ulation and expansion of rural and urban areas. Several 

Fig. 10  LULC conversion map for Region D since 1990–2020

Fig. 11  Diagrammatic represen-
tation of overall changes (%) in 
all regions
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studies (Miheretu and Yimer 2017; Alam et al. 2019; Cham-
ling and Bera 2020; Ganaie et al. 2020) have shown similar 
tendencies. Primarily, the reason behind the areal expansion 
of settlement and built up was the conversion of agricul-
tural land, bare and fallow land, and vegetation. Except for 
region B, vegetation was increased in all regions by 1.83%, 
10.85%, and 4.40% in A, C, and D, respectively. The agri-
cultural land was predominantly replaced by vegetation, and 
it was due to the expansion of social forestry, riverside tree 
plantation for riverbank protection, reforestation, agrofor-
estry, and expansion of fruit cultivation like mango, banana, 
guava, and papaya. Also, in Sikkim, the dense forest has 
been increased due to the afforestation program sustainable 
agroforestry program (Mishra et al. 2020). However, dif-
ferent studies (Ganaie et al. 2020; Naikoo et al. 2020; Nath 
et al. 2021) have observed declining vegetation.

Over three decades, the most dominant LULC class in 
all regions was agricultural land. It significantly increased 
in every part except region C. At the same time, the least 
dominant class was sandy land as its land share in all areas 
were significantly less as well as it was decreased from 1990 
in every region except region B. Waterbody was declining 
over three decades in all areas and needed utmost concern to 
save waterbodies. The detailed and thorough observations on 
waterbody revealed that abandoned cutoffs and oxbow lakes 
of river Bhagirathi- Hooghly, natural and artificial ponds, 
and the river itself declined over three decades due to several 
deleterious anthropogenic activities (like unplanned settle-
ment and built up construction, conversion of waterbody into 
fallow land and agricultural land, increasing water usages for 
rising population). Vegetation has slightly increased except 
for region B. In addition, settlement and built-up increased 
in all regions, put a remarkable footprint in every class, and 
changed the scenarios of each region.

Chatterjee et al. (2021) showed land transformation and 
land reclamation through LULC change for two specific 
wetlands in the selected study area. Moreover, Misra and 
Roy (2019) focused on changing the pattern of LULC in the 
Bhagirathi floodplain. The inefficiency of comprehensive 
and substantial research work in LULC change and transfor-
mation assessment in the selected critical Areas of Interest 
have made some of our study findings completely new. The 
evaluation of the transformation of selected Land Use and 
Land Cover (Figs. 7–10) in the selected study area over three 
decades is, to our knowledge, the first of its kind.

The study provides compelling evidence to identify the 
crucial areas and the affected LULC classes. By identifying 
those classes, some hotspot areas can be demarcated for giv-
ing special attention and proper planning. Great attention is 
required on waterbody as it was severely declined over the 
periods. As the population in the study area is increasing 
rapidly, agricultural area and settlement and built up area 
expansion has occurred. Hence, there is an extreme need to 

control the haphazard expansion by formulating and applying 
practical, sustainable, comprehensive land-use policies. Our 
study also enriched local people, policymakers, researchers, 
scholars, and administrators by providing substantial shreds 
of evidence of abrupt and unplanned changes in some critical 
pockets in the lower stretch of the Great Plain of India. The 
overall study evaluation and findings are essential for ensur-
ing sustainable LULC practices and sound policymaking.
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