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Abstract
In recent times, there has been renewed interest in understanding the dynamics of land cover change and its relationship 
with several environmental parameters. This study assesses the interrelationship between land surface temperature (LST), 
normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and land cover change in 
Amuwo-Odofin Local Government Area of Lagos State, Nigeria. Multi-temporal and multi-spectral Landsat imageries for 
years 2002, 2013, 2016, and 2019 served as the primary dataset. Using the parallelepiped classifier, the imageries were 
classified into five land cover classes — mixed vegetation, bare land, built-up area, water body, and wetland. The spectral 
indices (NDVI and NDBI) were computed and the LST was determined using a single-channel algorithm. Land cover tran-
sition matrices were calculated to examine the proportion of land cover change between classes, including the unchanged 
areas. Pearson’s correlation analysis enabled an analysis of the interdependence or interrelationship in the distribution of 
the parameters. From 2002 to 2019, the highest land cover transitions recorded were bare land to built-up area (12.64 km2), 
mixed vegetation to built-up area (21.55 km2), wetland to mixed vegetation (8.87 km2), and mixed vegetation to bare land 
(8.46 km2). There was a negative correlation between LST and NDVI, and between NDVI and NDBI. The distribution of the 
LST, NDVI, and NDBI varied correspondingly in accordance with land cover changes. The increase in built-up area could 
be the major driver of the observed changes in LST, NDBI, and NDVI, with an observed relationship that NDBI and LST 
values increase with increase in built-up areas.

Keywords  Land cover · Land cover transition matrix · Land surface temperature · Normalized difference vegetation index · 
Normalized difference built-up index

Introduction

In recent times, there has been renewed interest in under-
standing the dynamics of land cover change and its rela-
tionship with several environmental parameters. Some of 

these key environmental parameters that have received the 
attention of researchers include the land surface tempera-
ture (LST), normalized difference vegetation index (NDVI), 
and normalized difference built-up index (NDBI) (Grigoraș 
and Urițescu 2019; Jaber 2019; Guha et al. 2020). These 
three parameters (LST, NDVI, and NDBI) are integral in the 
study and monitoring of land cover change (e.g., Zha et al. 
2003; Deng et al. 2018; Alademomi et al. 2020). However, 
very few studies have investigated the link between LST, 
NDVI, NDBI, and land cover, and more studies are required 
to explore their interrelationship. Environmental parameters 
of relevance to human population and sustainability within 
an environment are mainly climatic factors which are easily 
influenced by land cover practices and the same holds for the 
reverse (Guha et al. 2018; Malik et al. 2019).

According to the United Nations Population Fund 
(UNFPA 2020), the planet is witnessing the biggest urban 
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growth wave in history. More than half of the world’s 
population now live in cities and towns, and this figure 
will rise to about 5 billion by 2030 (UNFPA 2020). As a 
result, this urbanization growth has emerged as a primary 
driving force of demographic, social, economic, and envi-
ronmental changes (Choudhury et al. 2019). For exam-
ple, there has been an increase in the rate of conversion 
of non-built-up area to impervious land and as well as 
changing scenario of general landscape due to population 
explosion and increase in the demand for urban expansion 
worldwide (Das et al. 2020). Due to urban growth, rapid 
change of land use/land cover (LULC) profoundly affects 
biodiversity and ecosystem function, as well as local and 
regional climate (Choudhury et al. 2019). Because of the 
fast alterations, the changes in land use will affect the 
degree of solar radiation absorption, surface temperature, 
evaporation rate, heat soil transfer, heat storage, and wind 
turbulence (Hua and Ping 2018).

Land Surface Temperature (LST) refers to the solar 
radiation-derived radiative skin temperature of the land 
(Jaber 2019). It is a measure of how hot the earth’s surface 
would feel to touch at specific spots which usually vary 
with land cover/land use type. According to Obiefuna et al. 
(2018), LST is one of the key environmental parameters 
that is affected by changes in land cover. For many fields, 
measuring LST is significant, including climate variabil-
ity and change, urban heat island impact, land/atmosphere 
feedback, fire monitoring, mapping and detection of land 
cover and change, geological studies, crop management, 
and water management (Jaber 2019). LST can provide 
information on the physical characteristics of the soil sur-
face and climatic conditions, as well as changes in land 
use and human activities that affect the climate (Fathizad 
et al. 2017). Land use purposes such as buildings, roads, 
and industries are known to be the impervious surface that, 
on the one hand, can absorb shortwave incoming solar 
radiation but, on the other hand, contribute to a decrease in 
outgoing longwave terrestrial emissions which in turn have 
direct impact on the LST (Das et al. 2020). The information 
of LST is crucial to the understanding of different envi-
ronmental complexities. However, due to the surface het-
erogeneity induced by the numerous land cover and mixed 
uses, LST estimation is complicated. This is because the 
emissivity of land surfaces is highly variable and can dif-
fer over short distances (Akinbobola 2019; Akinyemi et al. 
2019). Various forms of land cover affect the nature and 
distribution of the LST, and because of this, Guha et al. 
(2020) inferred from their study that seasonal fluctuations 
in LST are primarily dependent on elements of vegetation 
and temperature. Although it is known that vegetation cover 
reduces LST, yet vegetation types can vary in their abil-
ity to reduce the temperature of the surface. In addition to 

evapotranspiration, trees minimize surface and air tempera-
ture by shading (Alexander 2020).

A spectral index for detecting long-term differences in 
vegetation coverage and its status is the Normalized Differ-
ence Vegetation Index (NDVI) (Fathizad et al. 2017). With 
values ranging from − 1 to + 1, NDVI shows the condition 
and abundance of the green vegetation cover and biomass. 
The higher the values and closer to 1, the denser and health-
ier the vegetation on the ground and the non-vegetated sur-
faces are shown by zero or negative values (Jaber  2019). 
NDVI is used to quantify vegetation greenness and is useful 
in understanding vegetation density and assessing changes in 
plant health. The NDVI is one of the most widely used indi-
ces for regional and global monitoring of vegetation dynam-
ics. This index essentially reflects greenness, where negative 
values are derived primarily from clouds, water, and snow, 
and values close to zero are formed primarily from bare soil 
and rocks. The NDVI functions with very small values (0.1 
or less) corresponding to empty areas of rock, sand, or snow. 
Shrubs and meadows are characterized by moderate values 
(from 0.2 to 0.3), while high values (from 0.6 to 0.8) reflect 
temperate and tropical forests. This scale is successfully 
used for crop monitoring to show farmers which parts of 
their fields at any given moment have dense, moderate, or 
sparse vegetation. Studies have shown that there is a logical 
relationship between NDVI and LST (Fathizad et al. 2017; 
Marzban et al. 2018; Jaber 2019; Guha et al. 2020; Alad-
emomi et al. 2020).

Another interesting spectral index is the Normalized Dif-
ference Built-up Index (NDBI), which gives information on 
extent of urbanization in a region as well as the land cover 
change. This parameter has been found to exhibit good 
correlation with LST (Choudhury et al. 2019; Das et al. 
2020; Guha et al. 2020). NDBI values range from − 1 to + 1 
with higher values indicating presence of more impervi-
ous surface and vice versa. On a local scale, the expan-
sion of built-up/impervious areas alters the physical and 
geometrical characteristics of a land surface compared to 
natural land cover, resulting in surface energy alteration 
and radiation budgets (Choudhury et al. 2019). The pres-
ence of impervious surfaces such as buildings, roads, and 
industrial farms increases shortwave radiation absorption 
and reduces energy loss due to longwave radiation emission 
(Choudhury et al. 2019; Das et al. 2020). Consequently, 
these impervious surfaces will have higher LST compared 
to the surrounding environment. NDBI like other spectral 
indices which quantitively represent LULC type have been 
used widely in LST-LULC studies; however, the seasonal 
variability of the correlation between LST and NDBI is still 
an area of concern. NDBI plays an important role in urban 
areas where most of the human population are concentrated 
Guha et al. 2018).
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Researchers have adopted different approaches to exam-
ine the relationship between LST, land cover, and NDVI. 
Guha et al. (2020) estimated the LST of Raipur City in 
India and the relationship with NDVI, normalized differ-
ence water index (NDWI), NDBI, and normalized multi-
band drought index using four multi-date Landsat 8 images 
acquired at different seasons. Their work showed a weak 
correlation between LST and the spectral indices in the win-
ter and pre-monsoon images while the strongest correlation 
was in monsoon and post-monsoon images. Fathizad et al. 
(2017) investigated the spatiotemporal variability of LST 
in the desert region of Dasht-e-Abbas, Ilam, Iran, using 
Landsat images. Their findings indicated a rise in LST in 
areas where improvements in deforestation, land use, and 
land cover had taken place. Alexander (2020) combined 
NDVI estimated from Landsat 8 thermal band with different 
land cover types derived from airborne Light detection and 
ranging (LiDAR) data to understand LST in Aarhus city, 
Denmark. Their results showed that tree cover and building 
cover contribute more to the variation of LST compared 
to the surrounding vegetation cover in the study area. In 
Grigoraș and Urițescu (2019), NDVI was used to model the 
relationship between land cover and LST to understand their 
impact on surface urban heat island in the summer season 
between 1984 and 2016. Over the period of the study, their 
results showed evidence of increased urbanization and its 
contribution to the urban heat island (UHI) in the region. 
Jaber (2019) used the MODIS (Moderate Resolution Imag-
ing Spectrometer) dataset to analyze the effect of land cover 
on the relationship between daytime and nighttime LST. 
The findings showed that land cover accounted for a fair 
amount of NDVI variability, but a small amount of LST 
daytime and nighttime variability. Nse et al. (2020) evalu-
ated the relationship between LST, land cover, and NDVI 
from Landsat images using the contribution index (CI) and 
Pearson’s correlation analysis. The study discovered that 
the highest contribution to LST was the built-up area. In 
another study, Babalola and Akinsanola (2016) assessed 
the spatial distribution of land cover and LST changes in 
Lagos metropolis, Nigeria. UHI in the region has been 
greatly influenced by the increase in urbanization activities 
and the reduction in natural vegetation as reported in their 
study. The influence of land cover changes on LST in the 
rapidly urbanizing metropolis of Lagos was investigated by 
Obiefuna et al. (2018) between 1984 and 2015 using multi-
temporal Landsat imagery. Their findings showed that the 
rapid urbanization in the metropolis of Lagos altered the 
thermal surface environment as shown by increased LST. 
Using Landsat-derived data on land cover, LST, and vegeta-
tion indices, Alademomi et al. (2020) estimated the magni-
tude of environmental changes in the Lagos Lagoon envi-
ronment. Their analysis showed an increase in LST, with 
the built-up areas having the highest contribution while 

wetlands and other vegetated areas had the least impact on 
LST variability.

Siqi and Yuhong (2020) analyzed the patterns of LST 
and land cover in Hong Kong and their seasonal variabil-
ity using NDVI, NDBI, NDBal, and NDWI. The results 
indicated that LST is significantly affected by land cover 
types with good positive correlation between LST, NDBI, 
and NDBal and negative correlation between LST, NDVI, 
and NDWI. It was also reported that the magnitudes of 
the influences of indices vary with the season. The cor-
relation coefficients of above-mentioned relationships 
were more significant in summer season (May, August, 
September). More so, Choudhury et al. (2019), examined 
the influence of land use/land cover (LULC) on land sur-
face temperature using spectral indices including NDVI, 
NDBI, and NDWI in Asansol-Durgapur Development 
Region, India. It was observed that impervious surfaces 
largely contributed to the LST compared to other land 
cover types and that the rate of change of LST in winter 
was lower compared to what was observed in summer. 
On the contrary, Das et al. (2020) showed that the LST 
changed drastically over a 23-year study period in Asan-
sol subdivision, India, but the rate of change was higher 
in winter season than summer season. Generally, there 
was negative correlation between LST and NDVI and 
NDWI while a positive good correlation was recorded 
between LST and NDBI (Chouldhury et al. 2019; Das 
et al. 2020). In the overview, research has shown that 
LST is increasing generally in various communities of 
the world due to the increase in human population and 
human activities.

This study is focused on the assessment of the inter-
relationship between LST, NDVI, NDBI, and land cover 
change using multi-spectral Landsat imageries for 2002, 
2013, 2016, and 2019. The objectives are as follows: (i) 
supervised image classification of the Landsat image-
ries; (ii) accuracy assessment of the image classifica-
tion; (iii) calculation of the spectral indices: NDVI and 
NDBI; (iv) determination of the LST using the Landsat 
thermal bands and a single-channel algorithm; and (v) 
assessment of the correlation between LST, NDVI, and 
NDBI, and the relationship with land cover changes. The 
findings of this study contribute to the body of knowl-
edge on land cover change dynamics, and global and 
environmental change.

Materials and methods

Study area

The study area is Amuwo Odofin (shown in Fig. 1), one 
of the Local Government Areas (LGAs) in Lagos State, 
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Nigeria. It covers an area of about 173 km2 and is located 
within the metropolitan area of Lagos. According to the 
2006 Nigerian population census, Amuwo Odofin LGA has 
a population of over 524,971 and this figure was expected 
to rise to 766,111 in 2018 and over a million in 2021 (Lagos 
Bureau of Statistics 2019). The LGA shares borders with 
Ajeromi-Ifelodun, Surulere and Apapa LGAs to the east, 
Ojo LGA to the west, the Atlantic Ocean to the south, and 
Alimosho and Oshodi/Isolo LGAs to the north. Two air 
masses influence the climate of the area: the tropical mari-
time and tropical continental air masses. The former is wet 
and originates from the Atlantic Ocean, while the latter 
originates from the Sahara Desert and is warm, dry, and 
dusty. The two main seasons recognized in the region are as 
follows: the dry season (between November and March) and 
the rainy season (between April and October), with a brief 
break in the middle of August. Amuwo Odofin is divided 
into two distinct geographical spheres of riverine areas and 
upland. The area is richly blessed with mangroves and varie-
ties of coastal wetlands.

Landsat imagery

The Landsat program is a series of Earth-observing satel-
lite missions jointly managed by the National Aeronautics 
and Space Administration (NASA) and the United States 
Geological Survey (USGS) to provide a global and contin-
uous remote sensing of the earth’s resources. Since 1972, 
Landsat satellites have collected information about Earth 
from space. The products of this program are freely acces-
sible and of immense value to many potential users. The 
Earth observing instrument on Landsat 7, the Enhanced 
Thematic Mapper Plus (ETM +), is an improvement over 
the capabilities of the highly successful Thematic Map-
per instruments on Landsat 4 and 5. The Landsat 8 satel-
lite payload consists of two science instruments — the 
Operational Land Imager (OLI) and the Thermal InfraRed 
Sensor (TIRS). These two sensors provide seasonal cover-
age of the global landmass at a spatial resolution of 30 m 
(visible, near infrared and shortwave infrared); 100 m 
(thermal); and 15 m (panchromatic). The Landsat data for 

Fig. 1   Map showing the location of Amuwo Odofin LGA
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this study covered the dry season period in Lagos State 
and were downloaded from USGS Earth Explorer (https://​
earth​explo​rer.​usgs.​gov/). Landsat Level 2 products were 
ordered and downloaded from the USGS Earth Resources 
Observation and Science (EROS) Centre Earth Science 
Processing Architecture on-demand interface. Table 1 
shows the characteristics of the Landsat imageries used.

Image pre‑processing and enhancement

The Landsat imageries were combined into false color com-
posites within the ENVI 5.2 software environment using the 

following band combinations: 5–4-3 for Landsat 8 OLI and 
4–3-2 for Landsat 7 ETM + . Thereafter, the Gram-Schmidt 
spectral sharpening algorithm was used to pansharpen the 
image composite using the panchromatic band. This improved 
spatial resolution from 30 to 15 m thereby enhancing interpre-
tation. The Gram-Schmidt method gives accurate results and 
is recommended for most applications (L3Harris Geospatial 
2020).

Land cover, NDVI, NDBI, and LST

Using the parallelepiped supervised classification algorithm, 
the Landsat imageries were classified into 5 information 
classes — mixed vegetation, bare land, built-up area, water 
body, and wetland. The theoretical background of parallel-
epiped classification is already well explained in the extant 
literature (e.g., Obiefuna et al. 2021). After classification, 
the features were converted to ESRI shapefile format for fur-
ther editing. Land cover transition matrices were calculated 
to examine the proportion of land cover change between 
classes, including the unchanged areas. This was done with 
the Intersect tool in Arc Toolbox. The intersect table was 

Table 1   Characteristics of the Landsat imageries used for the study

Dataset Path/row Date of acquisition 
(DD-MM-YYYY)

Time (GMT)

Landsat 7 ETM +  191/55 28–12-2002 9:51:41
Landsat 8 OLI 18–12-2013 10:04:25

26–12-2016 10:03:10
01–01-2019 10:02:48

Fig. 2   Maps showing distribution of land cover. a 2002, b 2013, c 2016, and d 2019

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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transferred to Microsoft Excel where it was analyzed using 
pivot tables.

The NDVI is computed as the difference between the 
near-infrared (NIR) and red (RED) spectral reflectance 
bands divided by their sum. The NDBI is calculated as a 
ratio between the shortwave infrared (SWIR) and near infra-
red (NIR) values in traditional fashion.

where,
Red = Band 4 (Landsat 8 OLI) or Band 3 (Landsat 7 

ETM +).
NIR = Band 5 (Landsat 8 OLI) or Band 4 (Landsat 7 

ETM +).
SWIR = Band 6 (Landsat 8 OLI) or Band 5 (Landsat 7 

ETM +).

(1)NDVI =
NIR − RED

NIR + RED

(2)NDBI =
SWIR − NIR

SWIR + NIR

The LST was computed using the single-channel algo-
rithm (see Oguz 2013; Ferrelli et al. 2015; Alademomi et al. 
2020; Obiefuna et al. 2018, 2021). Landsat 7 ETM + Band 
6_1 and Landsat 8 TIRS Band 10 were used for the retrieval. 
This basically involves the following steps: (i) conver-
sion of digital number to spectral radiance (USGS 2015; 
Zareie et al. 2016), (ii) conversion of spectral radiance to 
top-of-atmosphere brightness temperature (Schott and Vol-
chok 1985; Wukelic et al. 1989; Qin et al. 2001; Zareie 
et al.2016), and (iii) conversion of brightness temperature to 
LST (Weng et al. 2004; Cummings 2007; Zareie et al. 2016).

Quantitative analysis

The minimum level of interpretation accuracy in the clas-
sification of land cover classes from remotely sensed data 
should be at least 85% (Anderson 1971; Alademomi et al. 
2020). An accuracy assessment was done by comparing 
the interpreted features on imagery and their correspond-
ing classification outputs. The kappa coefficient and overall 
accuracy were calculated. The classified data was converted 

Table 2   Coverage area of land 
cover classes in Amuwo Odofin 
LGA, 2002–2019

Land cover Area, 2002 Area, 2013 Area, 2016 Area, 2019

km2 % km2 % km2 % km2 %

Bare land 15.12 8.73 11.26 6.5 16.02 9.25 20 11.55
Built-up area 46.78 27 74.34 42.92 76.0 43.87 81.09 46.81
Mixed vegetation 44.93 25.94 23.74 13.71 25.7 14.84 18.88 10.9
Water body 23.82 13.75 22.84 13.18 23.02 13.29 22.73 13.12
Wetland 42.58 24.58 41.04 23.69 32.48 18.75 30.53 17.63
Total 173.23 100 173.22 100 173.22 100 173.23 100

Fig. 3   Areal changes in land 
cover

-30

-20

-10

0

10

20

30

40

Bare land Built-up area Mixed vegetation Water body WetlandA
re

a 
(s

q
.k

m
)

Land cover

2002-2013 2013-2016 2016-2019 2002-2019



305Applied Geomatics (2022) 14:299–314	

1 3

from polygon to raster format using the polygon to raster 
tool in ArcGIS. Afterwards, 200 random points were created 
using the ArcGIS Fishnet tool and spread across the Landsat 
imageries covering the different classes. The attribute table 
of these points were populated with class codes correspond-
ing to the different land cover classes which they coincided 
with. The kappa coefficient and overall accuracy of clas-
sification were then calculated with the following formulae 
(Das and Angadi 2020):

Fig. 4   Maps showing distribution of LST. a 2002, b 2013, c 2016, and d 2019

Table 3   Accuracy assessment results

Year Overall accuracy (%) Kappa coefficient

2002 82.14 0.7727
2013 87.89 0.8443
2016 95.56 0.9440
2019 93.16 0.9143

Table 4   Transition matrix of 
land cover change (in km2) from 
2002 to 2013

Land cover class 2013 Total

Bare land Built-up area Mixed vegetation Waterbody Wetland

2002 Bare land 2.50 11.89 0.62 0.00 0.11 15.12
Built-up area 1.97 41.29 2.91 0.05 0.55 46.78
Mixed vegetation 5.79 15.67 12.93 0.60 9.94 44.93
Water body 0.28 1.30 0.39 20.83 1.01 23.82
Wetland 0.72 4.19 6.83 1.36 29.47 42.56
Total 11.26 74.34 23.69 22.84 41.08 173.21
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Where:
r = number of rows and columns in error matrix
N = total number of observation (pixels)
Xii = observation in row i and column i
Xi+ = marginal total of row i
X+i = marginal total of column i
k = Kappa coefficient

Descriptive statistics and correlation analysis were per-
formed in Microsoft Excel to understand the relationship 
between the LST, NDVI, NDBI, and land cover. The Pear-
son’s correlation analysis enabled an analysis of the inter-
dependence or interrelationship in the distribution of the 

(3)k =
N
∑r

i=1
Xii −

∑r

i=1

�

Xi+ ∗ X+i

�

N2 −
∑r

i=1

�

Xi+ ∗ X+i

�

(4)

Overall accuracy =
Total number of correct samples

Total number of samples
× 100

parameters. The Pearson’s correlation coefficient is repre-
sented with the formula below (Nwilo et al. 2020):

xi = values of the x − variable in the sample
x = mean of the values of the x − variables
yi = values of the y − variable in the sample
y = mean of the values of the y − variables
r = correlation coefficient

Results and analysis

Analysis of land cover change

Figure 2 shows the land cover maps while Table 2 presents 
the coverage area of land cover classes in Amuwo Odofin 

(5)r =

∑
�

xi − x
��

yi − y
�

�

∑
�

xi − x
�2 ∑�

yi − y
�2

Table 5   Transition matrix of 
land cover change (in km2) from 
2013 to 2016

Land cover class 2016 Total

Bare land Built-up area Mixed vegetation Waterbody Wetland

2013 Bare land 3.52 6.12 1.23 0.19 0.21 11.26
Built-up area 4.55 66.07 1.78 1.32 0.61 74.34
Mixed vegetation 4.38 3.13 13.47 0.22 2.48 23.69
Waterbody 0.34 0.12 0.41 20.97 1.00 22.84
Wetland 3.23 0.52 8.81 0.34 28.17 41.08
Total 16.02 75.97 25.70 23.04 32.48 173.21

Table 6   Transition matrix of 
land cover change (in km2) from 
2016 to 2019

Land cover class 2019 Total

Bare land Built-up area Mixed vegetation Waterbody Wetland

2016 Bare land 6.46 6.03 1.97 0.34 1.24 16.02
Built-up area 4.74 70.64 0.46 0.12 0.01 75.97
Mixed vegetation 6.35 3.66 11.11 0.24 4.33 25.70
Water body 0.73 0.22 0.40 21.47 0.21 23.04
Wetland 1.73 0.52 4.93 0.56 24.74 32.48
Total 20.00 81.07 18.88 22.73 30.53 173.21

Table 7   Transition matrix of 
land cover change (in km2) from 
2002 to 2019

Land cover class 2019 Total

Bare land Built-up area Mixed vegetation Waterbody Wetland

2002 Bare land 2.31 12.64 0.14 0.01 0.02 15.12
Built-up area 3.94 41.76 0.63 0.11 0.33 46.78
Mixed vegetation 8.46 21.55 8.81 0.67 5.43 44.93
Water body 0.78 0.43 0.56 20.96 1.09 23.82
Wetland 4.52 4.69 8.72 0.97 23.67 42.56
Total 20.00 81.07 18.88 22.73 30.53 173.21
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LGA between 2002 and 2019. There was a very large 
increase in the extent of built-up area between 2002 and 
2019. Between 2002 and 2013, the built-up areas increased 
at a rate of 2.5 km2/year from 46.78 km2 to 74.34 km2. 
Between 2013 and 2016, the built-up areas increased at the 
rate of 0.5 km2/year, and by 1.7 km2/year between 2016 and 
2019. This resulted in an expansion of built-up areas from 
74.34 km2 in 2013 to 81.09 km2 in 2019. Bare lands declined 
from 15.12 km2 to 11.26 km2 between 2002 and 2013. How-
ever, between 2013 and 2019, it increased at the rate of 1.4 
km2/year; from 11.26 km2 in 2013 to 16.02 km2 in 2016 
and to 20 km2 in 2019. A possible reason for the increase 
in bare land could be due to several sand filling and land 
reclamation projects that were embarked upon by the Lagos 
State Government during this period. Also, there were sev-
eral cases of buildings that were demolished for encroaching 
into the right-of-way of the expanded Mile 2 — Badagry 
expressway. There are several open fields at road junc-
tions, transportation parks, and within residential areas (see 
Plate 1). Between 2002 and 2013, the wetlands decreased 
at the rate of 0.14 km2/year from 42.58 km2 to 41.04 km2. 

Subsequently, the coverage reduced at a rate of 2.8 km2/year 
to 32.48 km2 in 2016, and further declined at the rate of 0.65 
km2/year to 30.53 km2 in 2019. Similarly, there was an over-
all decrease in the vegetation cover between 2002 and 2019. 
At a rate of 2 km2/year, the vegetation cover declined from 
44.93 km2 in 2002 to 23.74 km2 in 2013. It subsequently 
increased between 2013 and 2016 from 23.74 km2 to 25.7 
km2 but reduced to 18.88 km2 in 2019. Between 2002 and 
2019, the vegetation reduced from 44.93 km2 to 18.88 km2. 
The coverage of water body decreased from 23.82 km2 to 
22.84 km2 between 2002 and 2013. It increased slightly by 
0.18 km2 between 2013 and 2016 and further decreased by 
0.29 km2 between 2016 and 2019.

Figure 3 shows areal changes in land cover. Between 
2002 and 2019, there was a net increase of 4.88 km2 in bare 
lands and 34.31 km2 in built-up areas, and a net decrease of 
26.05 km2 in mixed vegetation, 1.09 km2 in water bodies, 
and 12.05 km2 in wetlands.

The results of the land cover classification were validated 
through accuracy assessment analysis as shown in Table 3. 
The overall accuracy was lowest in 2002 and highest in 

Fig. 5   Maps showing distribution of NDVI. a 2002, b 2013, c 2016, and d 2019
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2016. The improvements in Landsat 8 OLI image over 
Landsat 7 ETM + image could be the reason for the higher 
accuracies observed for 2013, 2016, and 2019.

Transition matrix of land cover change

The transition matrix displays the number of different 
forms of land cover that have either remained unchanged 
or changed over the study periods. Tables 4, 5, 6, and 7 
present the land cover transition matrices between the peri-
ods 2002–2013, 2013–2016, 2016–2019, and 2002–2019, 
respectively. The highest transition between 2002 and 2013 
occurred with the built-up area which gained a combined 
sum of 27.56 km2 from mixed vegetation (15.67 km2) and 
bare land (11.89 km2). Within the same period, about 10 
km2 of mixed vegetation was converted to wetland; 5.79 
km2 of mixed vegetation and 1.97 km2 of built-up area were 
converted to bare land. Also, 2.91 km2 of built-up area and 
6.83 km2of wetland were converted to mixed vegetation. 
Water body scarcely changed within the period as 1.30 km2 
and 1.01 km2 were converted to built-up area and wetland, 

respectively. For the periods of 2013–2016 and 2016–2019 
(Tables 5 and 6), there were several low transitions. Between 
2013 and 2016, 8.81 km2 of wetland changed to mixed veg-
etation, 6.12 km2 of bare land changed to built-up area, 4.55 
km2 of built-up area changed to bare land, and 4.38 km2 of 
mixed vegetation was converted to bare land.

Between 2016 and 2019, the significant transitions were 
bare land to built-up area (6.03 km2), mixed vegetation to 
bare land (6.35 km2), wetland to mixed vegetation (4.93 
km2), built-up area to bare land (4.74 km2), and mixed 
vegetation to wetland (4.33 km2). From 2002 to 2019, the 
highest transitions recorded were bare land to built-up area 
(12.64 km2), mixed vegetation to built-up area (21.55 km2), 
wetland to mixed vegetation (8.72 km2), and mixed vegeta-
tion to bare land (8.46 km2). Other transitions in the period 
include wetland to bare land (4.52 km2), wetland to built-up 
area (4.69 km2), mixed vegetation to wetland (5.43 km2), 
built up area to bare land (3.94 km2), and water body to 
wetland (1.09 km2).

Fig. 6   Maps showing distribution of NDBI. a 2002, b 2013, c 2016, and d 2019
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Analysis of variation in LST, NDVI, and NDBI

Figures 4, 5, and 6 show the distribution of LST, NDVI, 
and NDBI. The LST is observed to have increased in tan-
dem with the expansion in built-up areas. This increase 
is most noticeable in the central and northern parts of the 
study area. Relatedly, the large expansion in built-up areas 
is associated with higher LST (Fig. 4), lower NDVI (Fig. 5), 
and higher NDBI (Fig. 6). The NDVI spatial distribution 
depicts an inverse pattern to LST and NDBI. The NDVI 
values are generally higher over mixed vegetation and wet-
land compared to other land cover types. The diminishing 
NDVI is partly attributable to the built-up area expansion 
which causes loss of vegetation and wetland cover. Table 8 
presents the descriptive statistics of LST, NDVI, and NDBI 
for the Landsat 8-derived data (2013, 2016 and 2019) which 
were summarized from 2752 random points spread across 
the study area.

Interrelationship between LST, NDVI, and NDBI

Table 9 presents the coefficient of correlations between LST, 
NDVI, and NDBI for the Landsat-8 derived data (2013, 2016 
and 2019). Generally, LST versus NDVI, and NDBI versus 
NDVI are negatively correlated. Conversely, there is a strong 
positive correlation between LST and NDBI with values 
ranging from 0.84–0.86 for all the years.

Relationship between land cover, LST, NDVI, 
and NDBI

Table 10 presents the descriptive statistics of LST, NDVI, 
and NDBI per land cover class for the Landsat 8-derived 
data (2013, 2016 and 2019). The highest mean LSTs are 
generally observed in built-up areas followed by bare land. 
The mean LST values for mixed vegetated and wetland 
areas are roughly in the same region with about 0.5 °C 

Plate 1   An open field adjacent 
to Alakija roundabout along 
Lagos-Badagry expressway in 
Amuwo-Odofin ( source: Field 
survey, 2021)

Table 8   Descriptive statistics of NDVI, NDBI, and LST

Parameter LST NDVI NDBI

2013 2016 2019 2013 2016 2019 2013 2016 2019

Mean 26.69 25.47 26.25 0.41 0.36 0.36 -0.14 -0.11 -0.10
Median 26.10 25.18 26.18 0.43 0.35 0.34 -0.16 -0.12 -0.10
Min 22.31 21.42 20.15 -0.12 -0.02 -0.03 -0.48 -0.44 -0.42
Max 33.05 31.24 32.06 0.80 0.67 0.73 0.20 0.20 0.19
Range 10.75 9.81 11.91 0.93 0.69 0.76 0.68 0.64 0.61
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difference in the mean LSTs. The mean NDVI is highest 
over wetland and mixed vegetation. This is indicative of 
the moderating effect of vegetation cover on LST. The 
mean NDBI values are mostly negative for almost all the 
land cover classes through the years the study covers. The 
highest is observed over bare land and built-up area while 
the lowest is recorded over wetland. Furthermore, it is 
observed in Table 9 that there exists a negative correla-
tion between LST and NDVI in the years 2016 and 2019 
with values of − 0.53 and − 0.37, respectively. The positive 
relationship found between NDBI and LST suggests that 
built-up area is generating much surface temperature varia-
tions and perhaps one of the key contributors in urban heat 
island. This further indicates that the development of urban 
heat islands is detrimental to phonological process in the 
tropics (Kabano et al. 2021).

Discussion

The observed increase in built-up area is in tandem with the 
findings of Obiefuna et al. (2018), Babalola and Akinsanola 
(2016), and Abiodun et al. (2005). All these studies examined 
the land cover changes in Lagos metropolis. Another reason 
for the rapid increase in the built-up area is the rate of popu-
lation growth in the area. According to Yusuf et al. 2013), 
the population in Lagos grew from 9.3 million in 2006 to 
over 21 million in 2018. In Amuwo Odofin, the population 
was projected to be 697,000 in 2015 from 225,823 in 1991. 
Some densely populated areas of Amuwo Odofin include 
Alakija (Plate 2) and Festac Town (Plate 3). The decrease in 
bare lands between 2002 and 2013 agrees with the results of 
Abiodun et al. (2005) and Babalola and Akinsanola (2016). 
A possible explanation for this decrease is sand filling and 
conversion of vegetated area and wetland area into residential 
areas (Ajibola et al. 2012). The decline in wetlands is also 
corroborated by Obiefuna et al. 2013, 2013b, 2018) and Aji-
bola et al. (2012). Ajibola et al. (2012) posited that the loss of 
wetland in Lagos metropolis is as a result of human activities 
which include incessant sand filling and conversion of wetland 
environment to economic uses (through construction) and per-
ennial flooding which is a common and regular occurrence 
in the metropolis. Other studies have also reported vegeta-
tion decline in Lagos (e.g., Abiodun et al. 2005; Babalola 
and Akinsanola 2016; Obiefuna et al. 2018). However, the 
small increase in the vegetation cover between 2013 and 2016 
can be traced to grass and tree planting projects in the Lagos 
metropolis by the state government while the slight decrease 
in the water body area is as a result of the expansion of the 
residential area causing the inland water bodies to reduce in 
extent. Also, as earlier identified, another possible reason for 
decrease in water body could be the land reclamation projects 
within the study area.Ta
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The pattern of the land cover change was also examined 
through the transition matrices of the land cover types. The 
highest transitions noticed were the mixed vegetation to 
built-up area, and bare land to built-up area. The effect of 
these changes manifested in the distribution of LST, NDVI, 
and NDBI. The spatial pattern of the LST was similar to 
built-up areas. This validates the known premonitions that 
built-up areas are major contributors to increase in LST. 
This relationship has been corroborated by several authors 

including Nse et al. (2020), Das and Angadi. (2020), Tepa-
nosyan et al. 2020), Malik et al. (2019), Guha et al. (2018), 
and Obiefuna et al. (2021). According to Obiefuna et al. 
(2021), the main driver of land cover change is built-up area 
or urban development which had grown by over 770% since 
1984 and as a result caused an increase in the mean LST 
over Lagos from 28.60 °C in 1984 to 30.76 °C in 2019. The 
low mean LST in the vegetated and wetland areas suggests 
relatively a higher rate of evapotranspiration and favoring  

Table 10   Descriptive statistics of LST, NDVI and NDBI perland cover class

*N – Number of sample points

Year Land cover class *N LST NDVI NDBI

Min Max Mean Min Max Mean Min Max Mean

2013 Bare land 12404 23.17 33.28 27.98 -0.03 0.8 0.45 -0.29 0.29 -0.05
Built-up area 82466 23.03 33.93 28.8 -0.05 0.66 0.31 -0.28 0.25 -0.01
Mixed vegetation 26300 23.09 30.78 25.45 0.06 0.82 0.62 -0.3 0.12 -0.15
Wetland 45580 23.09 29.62 24.9 0.13 0.82 0.65 -0.32 0.03 -0.21

2016 Bare land 17784 21.67 31.64 25.89 0.05 0.66 0.41 -0.41 0.39 -0.09
Built-up area 84271 22.52 31.66 27.45 0.06 0.55 0.26 -0.28 0.35 0.03
Mixed vegetation 28519 21.39 29.71 23.63 0.11 0.67 0.53 -0.44 0.19 -0.21
Wetland 36110 21.44 29.96 23.41 0.26 0.68 0.58 -0.45 0.03 -0.32

2019 Bare land 22100 21.93 33.17 26.32 0.04 0.72 0.44 -0.23 0.13 -0.08
Built-up area 89862 20.12 33.15 28.08 0.05 0.61 0.27 -0.18 0.16 0.001
Mixed vegetation 21007 19.64 29.14 24.77 0.06 0.73 0.53 -0.25 0.07 -0.14
Wetland 33841 21.65 28.99 24.27 0.21 0.73 0.58 -0.26 0.00 -0.19

Plate 2   A high-density urban 
area at Alakija roundabout 
along Lagos-Badagry express-
way in Amuwo-Odofin ( source: 
Field survey, 2021)
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of latent exchange between surface and atmosphere as com-
pared with impervious surface like built-up and bare land 
areas (Alademomi et al. 2020). The NDBI results exhibited 
similar trend as LST and this is backed by the strong posi-
tive correlation between the indices for all the years: 2013 
(r = 0.84), 2016 (r = 0.87), and 2019 (r = 0.86). The low 
NDVI observed over bare land and built-up area and high 
values seen over mixed vegetation and wetland is a common 
trend which has been reported by different NDVI-land cover 
studies (e.g., Han et al. 2019; Alademomi et al. 2020).

Generally, negative correlation coefficients are observed 
in the LST-NDVI and NDVI-NDBI relationship for all the 
years (Table 9). The similar behaviors exhibited in the rela-
tionship of LST and NDBI is expected because of the strong 
positive correlation between them. This agrees with Das 
et al. (2020) and Alexander (2020).

Conclusion

The interrelationship between LST, NDVI, and NDBI within 
Amuwo Odofin LGA of Lagos state have been examined in 
this study in relation to the prominent land uses. The study 
observed that the pattern and values of the three parameters 
varied correspondingly in accordance to changes in land cover. 
The built-up area had the most significant change and as such, 
the LST increased considerably during the study period. Con-
sequently, it can be concluded that increase in the built-up area 
is the major driver of LST, NDBI, and NDVI with an observed 

relationship that NDBI and LST values increase with increase 
in built-up areas. Conversely, it was observed that there exists 
an inversely proportional relationship between NDVI and LST, 
and LST is directly proportional to NDBI
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